JPH03163873A - Charge-transfer complex electric element - Google Patents

Charge-transfer complex electric element

Info

Publication number
JPH03163873A
JPH03163873A JP2172710A JP17271090A JPH03163873A JP H03163873 A JPH03163873 A JP H03163873A JP 2172710 A JP2172710 A JP 2172710A JP 17271090 A JP17271090 A JP 17271090A JP H03163873 A JPH03163873 A JP H03163873A
Authority
JP
Japan
Prior art keywords
resistance state
voltage
charge transfer
transfer complex
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2172710A
Other languages
Japanese (ja)
Inventor
Chiaki Sato
千秋 佐藤
Seiichi Wakamatsu
若松 誠一
Kaoru Tadokoro
田所 かおる
Toyoo Nishiyama
西山 東洋雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2172710A priority Critical patent/JPH03163873A/en
Publication of JPH03163873A publication Critical patent/JPH03163873A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To conduct reversible switching operation stably by reversibly changing switching operation between the two states of an ON state and an OFF state by controlling applied voltage. CONSTITUTION:An electric element 11 is composed of a pair of opposed first electrode 12 and second electrode 13 and a charge transfer complex layer 14 interposed between the electrodes 12, 13, and the first electrode 12 is formed onto one main surface of a substrate 15. The voltage of a DC power 16 is applied to both electrodes 12, 13 of the electric element 11 through a series resistor 17. When first voltage applied between the electrodes 12, 13 exceeds a first threshold, electric resistance relatively changes from the state of, high resistance to the state of low resistance, and electric resistance varies from the state of low resistance to the state of high resistance when second voltage having polarity reverse to first voltage is applied between the electrodes 12, 13 and exceeds a second threshold. Consequently, the two states of an ON state and an OFF state can be changed reversibly by controlling applied voltage. Accordingly, reversible switching operation is conducted stably.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、スイッチング素子や記憶素子として使用可能
な電荷移動錯体電気素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a charge transfer complex electric element that can be used as a switching element or a memory element.

[従来の技術] 米国特許第4371883号明細書や特開昭82−95
878号公報には、電荷移動錯体化合物を用いた電気素
子が開示されている。
[Prior art] U.S. Patent No. 4,371,883 and Japanese Patent Application Laid-Open No. 82-95
No. 878 discloses an electric device using a charge transfer complex compound.

3 第4図は、上記公知技術の基本構成を示す断面図である
。電荷移動錯体層1は対向する一対の第1電極2,第2
電極3の間には設けられ、これらの各部材により電気素
子4が構成されている。
3 FIG. 4 is a sectional view showing the basic configuration of the above-mentioned known technology. The charge transfer complex layer 1 includes a pair of opposing first electrodes 2 and a second electrode.
An electric element 4 is provided between the electrodes 3, and each of these members constitutes an electric element 4.

前記電気素子4は、例えば次のようにして作製される。The electric element 4 is manufactured, for example, as follows.

ここで、第1電極2としては、CuまたはAgなどのド
ナーとなる拐料からなる基板を用いる。まず、基板を、
中性のアクセプタ分子であるTCNQ (テトラシアノ
キノジメタン)をアセトニトリル(冶媒)中に廂角tt
.シたm ?tJi中にdす。
Here, as the first electrode 2, a substrate made of a donor material such as Cu or Ag is used. First, the board
TCNQ (tetracyanoquinodimethane), a neutral acceptor molecule, is dissolved in acetonitrile (hydrogen) at an angle of tt.
.. Shita m? d during tJi.

この結果、酸化還元反応が起こり、アクセプタ分子のイ
オンラシカルと金属塩が形成される。次に、結晶が適当
な厚さ(数μm)になるまで戊長じたら、溶液中から基
板を取りだし、真空乾燥により基板から溶媒を除失する
。更に、前記基板にAi+またはCrを蒸着して第2の
電極3を形成し、電気素子を作製する。
As a result, a redox reaction occurs, and an ionic radical of the acceptor molecule and a metal salt are formed. Next, when the crystals are elongated to an appropriate thickness (several μm), the substrate is taken out of the solution and the solvent is removed from the substrate by vacuum drying. Furthermore, Ai+ or Cr is deposited on the substrate to form a second electrode 3, and an electric element is manufactured.

第5図は、・前記電気素子に直列抵抗を介して電圧を印
加した場合の電圧一電流特性(V− I特性)を示す。
FIG. 5 shows voltage-current characteristics (VI characteristics) when a voltage is applied to the electric element via a series resistor.

同図より、印加電圧がしきい値V,,,に到4  − 達すると、ロードラインLに沿ってA点からB点に移行
する(つまり、不連続な変化が生じる)ことが明らかで
ある。この事は、前記電荷移動錯体層3の抵抗値が高抵
抗状態から低抵抗状態に急変することを示している。こ
うした抵抗変化は、電流制御型の負性正抵抗と呼ばれて
いる。
From the same figure, it is clear that when the applied voltage reaches the threshold value V, 4 -, it moves from point A to point B along the load line L (that is, a discontinuous change occurs). . This shows that the resistance value of the charge transfer complex layer 3 suddenly changes from a high resistance state to a low resistance state. Such resistance changes are called current-controlled negative positive resistance.

このように、電荷移動錯体層1は双安定性特性を有する
。即ち、電荷移動錯体層1の抵抗値は、しきい値V7H
または−VTRを境として、一方の安定な状態(高抵抗
状態)から他方の安定な状態(低抵抗状態)に移行する
特性を有する。既述した米国特許の発明者らは、上記現
象が生じるのは、下記(1)式の電気化学反応が所定の
電界Eのもとで因体結晶中に生じるからである、と指摘
している。
Thus, the charge transfer complex layer 1 has bistability properties. That is, the resistance value of the charge transfer complex layer 1 is equal to the threshold value V7H.
Or, it has a characteristic of transitioning from one stable state (high resistance state) to the other stable state (low resistance state) with -VTR as the boundary. The inventors of the above-mentioned US patents point out that the above phenomenon occurs because the electrochemical reaction of formula (1) below occurs in the factor crystal under a predetermined electric field E. There is.

[Cu ” (TCNQ” ) ] n −> CLI
 , 十[Cu .(TCNQ7)],−, 十(TC
QN’ ),・・・(1) 上記発明者らは、上記反応により、有機電荷移動錯体層
1中に電気的に中性なCu  とTCNQ’5 とか等量ずつ生じて電荷移動錯体層3中の導電性を上昇
させ、これにより高抵抗状態から低抵抗状態に変化する
、と指摘している。
[Cu” (TCNQ”)] n -> CLI
, ten [Cu. (TCNQ7)], −, ten (TC
QN'),...(1) The above inventors have discovered that the above reaction produces equal amounts of electrically neutral Cu and TCNQ'5 in the organic charge transfer complex layer 1, and the charge transfer complex layer 3 They point out that this increases the conductivity of the material, thereby changing from a high-resistance state to a low-resistance state.

また、上記発明者らは、電荷移動錯体層1が、スイッチ
ング特性Aを示すか、メモリ特性Bを示すかは、錯体を
構成しているアクセプタ分子の酸化還元電位による、と
指摘している。
Furthermore, the inventors point out that whether the charge transfer complex layer 1 exhibits the switching characteristic A or the memory characteristic B depends on the redox potential of the acceptor molecules constituting the complex.

スイッチング特性A;印加電圧かしきい値電圧に到達す
ると、高抵抗状態から低抵抗状態に変化し、印加電圧を
除去して零電圧にすると低抵抗状態から高抵抗状態に復
帰する特性。
Switching characteristic A: A characteristic that changes from a high resistance state to a low resistance state when the applied voltage reaches a threshold voltage, and returns from the low resistance state to the high resistance state when the applied voltage is removed and the voltage becomes zero.

メモリ特性B;印加電圧かしきい値に到達して低抵抗状
態に変化すると、印加電圧を除去してもそのまま低抵抗
状態を保持・記憶する特性。
Memory characteristic B: When the applied voltage reaches a threshold value and changes to a low resistance state, the low resistance state is maintained and stored even after the applied voltage is removed.

つまり、酸化還元電位の低いアクセプタ分子であるT 
C N Q M e 2  (2.5−ジメチル−7.
7,8,8.テトラシアノキノジメタン) 、TCNQ
 (OMe)2( 2.5 =ジメルエーテル−7.7
,8,8テトラシアノキノジメタン)などを用いた場合
、スイッチング特性を有する電気素子となる。また、酸
化還元電位の6 高いアクセプタ分子であるTCNQF4  (2,3,
5,6,テ1・ラジルオロ−7.7,8,8,テ1・ラ
シアノキノジメタン)を用いた場合、メモリ特性を有す
る電気素子となる。更に、中間的な酸化還元電位を有す
るTCNQやTNAP (テトラシアノナフ1・キノジ
メタン)を用いた場合、スイッチング特性またはメモリ
特性のいずれかを示す電気素子となる。
In other words, T is an acceptor molecule with a low redox potential.
C N Q M e 2 (2.5-dimethyl-7.
7, 8, 8. tetracyanoquinodimethane), TCNQ
(OMe)2(2.5 = dimel ether-7.7
, 8,8 tetracyanoquinodimethane), etc., it becomes an electric element with switching characteristics. In addition, TCNQF4 (2,3,
When 5,6,Te1・radiolo-7.7,8,8,Te1・Racyanoquinodimethane) is used, an electric element having memory properties is obtained. Furthermore, when TCNQ or TNAP (tetracyanonaf-1-quinodimethane), which has an intermediate redox potential, is used, the electric element exhibits either switching characteristics or memory characteristics.

このように、電荷移動錯体電気素子は、電流制御型の負
性抵抗を示す電気素子として注目されている。
As described above, charge transfer complex electric devices are attracting attention as electric devices that exhibit negative resistance under current control.

[発明が解決しようとする課題] しかし、従来の電気素子は、印加電圧がしきい値に到達
すると、高抵抗状態から低抵抗状態に変化する電流制御
型の負性抵抗を示す。このため、第5図のA点からB点
への移行によって示されているように、低抵抗状態に変
化した際に電流が急激に増大し、電気素子が熱損傷を受
ける恐れがある。熱損傷を受けると、例えばスイッチン
グ特性をもたせた電気素子の場合、印加電圧を除去した
りあるいは印加電圧と逆極性の電流パルスをくわえる等
の消去操作を行なっても、低抵抗状8態から高抵抗状態
に復帰しなくなる。このように、従来の電気素子は、リ
バーシブルなスイッチング動作を安定に行うことができ
ないという問題点を有していた。
[Problems to be Solved by the Invention] However, conventional electric elements exhibit current-controlled negative resistance that changes from a high resistance state to a low resistance state when the applied voltage reaches a threshold value. Therefore, as shown by the transition from point A to point B in FIG. 5, when the resistance changes to a low resistance state, the current increases rapidly, and there is a risk that the electric element may be thermally damaged. When thermally damaged, for example, in the case of an electrical element with switching characteristics, even if an erase operation such as removing the applied voltage or adding a current pulse of the opposite polarity to the applied voltage is performed, the resistance state changes from the low resistance state to the high state. It will not return to the resistance state. As described above, conventional electric elements have had the problem of not being able to stably perform reversible switching operations.

本発明は、印加電圧の制御により、ON状態(記憶状態
)とOFF状態(消去状態)との二状態(二値)の間を
、安定かつリバーシブルに変化できる電荷移動錯体電気
素子を提供することを目的とする。
The present invention provides a charge transfer complex electrical element that can stably and reversibly change between two states (binary values), an ON state (memory state) and an OFF state (erase state), by controlling applied voltage. With the goal.

[課題を解決するための手段と作用コ 本願第1の発明は、対向する一対の電極間に電荷移動錯
体層を有した電気素子において、電極間に印加される第
1電圧が第1のしきい値を越えると電気抵抗が相対的に
高抵抗状態から低抵抗状態に変化し、この後前記第1電
圧と逆極性の第2電圧を電極間に印加して第2のしきい
値を越えると電気抵抗が低抵抗状態から高抵抗状態に変
化することを特徴とする電荷移動錯体電気素子である。
[Means and effects for solving the problem] The first invention of the present application is an electric element having a charge transfer complex layer between a pair of opposing electrodes, in which a first voltage applied between the electrodes is a first voltage. When the threshold value is exceeded, the electrical resistance changes from a relatively high resistance state to a low resistance state, and then a second voltage having a polarity opposite to the first voltage is applied between the electrodes to exceed the second threshold value. This is a charge transfer complex electric element characterized in that the electric resistance changes from a low resistance state to a high resistance state.

本願m 2の発明は、対向する一対の電極間に電7,I
I移動錯体層を有した電気素子において、電極間に印加
される第1電圧が第1のしきい値を越えると電気抵抗が
相対的に高抵抗状態から低抵抗状態に変化し、この後前
記第1電圧と逆極性の第2電圧を電極間に印加して第2
のしきい値を越えると電気抵抗が低抵抗状態から相対的
に高抵抗状態に変化するとともに、印加電圧が前記第2
のしきい値より大きい第3のしきい値を越えると前記高
低抗状態から前記低抵抗状態より更に低い低抵抗状態に
不可逆的に変化することを特徴とする電荷移動錯体電気
素子である。
The invention of m2 of the present application provides an electric current 7, I between a pair of opposing electrodes.
In an electric element having an I-transfer complex layer, when the first voltage applied between the electrodes exceeds the first threshold, the electrical resistance changes from a relatively high resistance state to a relatively low resistance state, and then the above-mentioned A second voltage of opposite polarity to the first voltage is applied between the electrodes to generate a second voltage.
When the threshold value is exceeded, the electrical resistance changes from a low resistance state to a relatively high resistance state, and the applied voltage
The charge transfer complex electric element is characterized in that when a third threshold value, which is larger than the threshold value of , is exceeded, the high-low resistance state irreversibly changes to a low-resistance state that is even lower than the low-resistance state.

本発明に係る電荷移動錯体電気素子は、一対の電極(夫
々銅電極,アルミニウム電極からなり、かつ電荷移動錯
体層が銅−TCNQからなることが最も望ましい。更に
、前記銅−TCNQは、アセトンとアセトニトリルの混
合溶媒を用いたTCNQ溶液に銅電極を接触させること
により形成されることがもっとも望ましい。
The charge transfer complex electric device according to the present invention has a pair of electrodes (each consisting of a copper electrode and an aluminum electrode, and the charge transfer complex layer is most preferably made of copper-TCNQ. Most preferably, it is formed by contacting a copper electrode with a TCNQ solution using a mixed solvent of acetonitrile.

本発明において、銅一TCNQのスイッチングメカニズ
ムについては十分解明されていないが、9 負の電圧でスイッチングするのは次のような理由と推測
される。つまり、 −■ Cu” TCNQ−    Cu”  +TCNQ”の
ようなイオン性結晶中に中性のCu” とTCNQ゜が
できて抵抗値が下がるものと考えられる。
In the present invention, although the switching mechanism of copper-TCNQ has not been fully elucidated, it is presumed that the reason for switching at a negative voltage is as follows. In other words, it is considered that neutral Cu'' and TCNQ° are formed in the ionic crystal such as -■Cu'' TCNQ- Cu''+TCNQ'', and the resistance value decreases.

勿論、中性のCu” とTCNQ’ はイオン性結晶中
にもわずかながら(f−在しているが、スイッチングに
よりさらにこの数か地加するものと考えられる。スイッ
チング速度が高々400 H z (2.5msec 
)なのは、前記Cu  ,TCNQ’の動きが極めて遅
いためと考えられる。
Of course, neutral Cu'' and TCNQ' exist in small amounts (f-) in the ionic crystal, but it is thought that this number is added due to switching.The switching speed is at most 400 Hz ( 2.5msec
) is considered to be because the movement of Cu and TCNQ' is extremely slow.

本発明において、RAM/ROMの動作について考察す
ると、RAM動作(随時書き込み,消去できる)の場合
は、第6図に示ずように■→■一■のループを繰り返す
。この動作はポーラライズドメモリ動作である。ここで
、ROMタイプの永久書込み型メモリにするには、高抵
抗状態において+V側の印加電圧を加え、図のように+
12V〜+3V以上にすればよい。これにより、■→■
のルプを描き、RAM動作の場合のON状態におけ10 る低抵抗より更に低い抵抗状態に不可逆的に至たらしめ
ることかできる。
In the present invention, considering the operation of RAM/ROM, in the case of RAM operation (which can be written and erased at any time), a loop of ■→■1■ is repeated as shown in FIG. This operation is a polarized memory operation. To create a ROM type permanent write memory, apply a voltage on the +V side in a high resistance state, as shown in the figure.
The voltage may be set to 12V to +3V or more. As a result, ■→■
It is possible to irreversibly reach a resistance state even lower than the low resistance of 10 in the ON state in the case of RAM operation.

[実施例] 以下、本発明の一実施例を第1図を参照して説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

電気素子11は、対向する一対の第1の電極(下部電極
)12,第2の電極(上部電極)13と、これらの電極
間に介在された電荷移動錯体層14とから構成されてい
る。ここで、前記第1の電極12は、常温で熱膨脹率が
Cuと同程度の結晶化ガラス基板l5の一方の主面に形
成されている。また、前記第1の電極12はCu(銅)
からなり、第2の電極13はl  (アルミニウム)か
らなる。直流電源1Gの電圧は、1KΩ程度の直列抵抗
{7を介して前記電気素子1lの両電極12. 13に
印加される。電流計18や電圧計19も前記電気素子の
電極12. 13に接続されている。
The electric element 11 includes a pair of opposing first electrodes (lower electrodes) 12 and second electrodes (upper electrodes) 13, and a charge transfer complex layer 14 interposed between these electrodes. Here, the first electrode 12 is formed on one main surface of a crystallized glass substrate l5 having a coefficient of thermal expansion comparable to that of Cu at room temperature. Further, the first electrode 12 is made of Cu (copper).
The second electrode 13 is made of l (aluminum). The voltage of the DC power supply 1G is applied to both electrodes 12. 13. The ammeter 18 and the voltmeter 19 are also connected to the electrode 12 of the electric element. 13.

こうした構成の電気素子は、次のように製作されている
An electric element having such a configuration is manufactured as follows.

まず、常温で熱膨脹率がCuと同程度の結晶化11 ガラス基板15の一方の主面にCuを真空蒸着し、第1
の電極l2を形成した。つづいて、前記托1の電地12
を2.896のフフ化水素酸水溶戚によってエッチング
処理し、蒸留水で洗浄した後、Arガスブロアーで乾燥
した。次に、TCNQ (東京化成)をアセトン(和光
・特級)とアセトニトリル(和光・特級)とを1,1の
況含した混合溶媒中に冶解させ、TCNQ濃度100m
g/ 50 ml)の溶戚を作った。ひきつづき、この
溶液に前記電極I2を20℃の温度下で30秒間浸漬し
、電極12上にCu−TCNQ結品を成長させた。更に
、前記結晶を成長させた裁板を前記溶戚から取り出し、
アセ1・ンで洗浄して未反応のTCNQを除去した後、
真空乾燥させて電荷移動錯体層14を形成した。最後に
、前記電荷移動錯体層l4上にAρを真空蒸着して第2
の電極13を形成し、電荷移動錯体電気索子1lを製作
した。
First, Cu is vacuum-deposited on one main surface of a crystallized glass substrate 15 with a coefficient of thermal expansion similar to that of Cu at room temperature.
An electrode l2 was formed. Continuing, the electric ground 12 of the above-mentioned Taku 1
was etched with aqueous hydrofluoric acid of 2.896, washed with distilled water, and then dried with an Ar gas blower. Next, TCNQ (Tokyo Kasei) was dissolved in a mixed solvent containing acetone (Wako, special grade) and acetonitrile (Wako, special grade) in a 1:1 ratio, and the TCNQ concentration was 100 m
g/50 ml) was prepared. Subsequently, the electrode I2 was immersed in this solution at a temperature of 20° C. for 30 seconds to grow a Cu-TCNQ crystal on the electrode 12. Furthermore, the cut board on which the crystals have grown is removed from the melting plate,
After washing with acetic acid to remove unreacted TCNQ,
A charge transfer complex layer 14 was formed by vacuum drying. Finally, Aρ is vacuum deposited on the charge transfer complex layer l4 to form a second layer.
An electrode 13 was formed, and a charge transfer complex electric cable 1l was manufactured.

以上のように作製した電気素子について第1図に示す回
路を用いてV−1特性を測定したところ、第2図に示す
V−1特性図を得た。ここで、lllJ定1 2 に際しては、電気素子11の第1の電極l2及び第2の
電極I3に対して、第1図の破線で示す極性に接続され
た直流電源16により、第2の電極13の側が正となる
「正の電圧」を印加した。しかし、電気索T−11はス
イッチング動作しなかった。
When the V-1 characteristic of the electric element produced as described above was measured using the circuit shown in FIG. 1, the V-1 characteristic diagram shown in FIG. 2 was obtained. Here, when determining lllJ constant 1 2 , the second electrode is connected to the first electrode l2 and the second electrode I3 of the electric element 11 by the DC power supply 16 connected to the polarity shown by the broken line in FIG. A "positive voltage" in which the side numbered 13 was positive was applied. However, electric cable T-11 did not perform a switching operation.

そこで、第1図の実線で示す極性に接続された直流電源
16により、第2の電極13の側が負となる「負の電圧
」を印加した。その結果、電気素子1lは、負のしきい
値VTIで初期状態の高抵抗状態から低抵抗状態に変化
した。初期状態の底抗値はVVTIで57.5KΩであ
った。また、スイッチング後の低抵抗状態の抵抗値は、
2.3KΩであった。
Therefore, a "negative voltage" was applied so that the second electrode 13 side was negative using the DC power supply 16 connected to the polarity shown by the solid line in FIG. As a result, the electric element 1l changed from the initial high resistance state to the low resistance state at the negative threshold value VTI. The bottom resistance value in the initial state was VVTI of 57.5KΩ. Also, the resistance value in the low resistance state after switching is
It was 2.3KΩ.

この低抵抗状態は、電気素子11に印加されている電圧
を取り除いても保持されていた。事実、確認の為、再び
電気素子1!に電圧を加えたところ、やはり低抵抗状態
のままであった。
This low resistance state was maintained even when the voltage applied to the electric element 11 was removed. In fact, to confirm the fact, electric element 1 again! When a voltage was applied to it, it remained in a low resistance state.

次に、直流電源16の極性を再び破線の状態にし、第2
の電極13の側が正となる「正の電圧」を加えた。「正
の電圧」の大きさが正のしきい値Vア,に達すると、電
気素子4は初期状態である高抵抗状1 3 ?に復帰した。
Next, the polarity of the DC power supply 16 is changed to the broken line again, and the second
A "positive voltage" was applied so that the side of the electrode 13 was positive. When the magnitude of the "positive voltage" reaches the positive threshold value Va, the electric element 4 is in its initial state of high resistance 1 3 ? returned to.

上記実施例の電気素子l1は、印加電圧の制御による書
き込み操作及び消去操作を行うことにより、ON状態(
記憶状態)とOFF状態(消去状態)との二状態(二値
)の間を自6ニに変化する。前記電気素子l1における
記憶情報の読出しは、次のように行う。即ち、記憶状態
(低抵抗状態)にある電気素子1lに対し、負のしきい
値電圧より絶対値の小さな「負の電圧」を印加して電流
検出を行えばよい。上記のような電圧信号を人力すると
、記憶状態を示す電流が前記電気素子に流れる。従って
、電流を倹出することにより、記悌悄報を読みだすこと
ができる。前記電気索子l1に正の電圧を印加すると、
印加電圧の大きさまたは印加時間により初期状態に戻す
ことができる。
The electric element l1 of the above embodiment is turned on (ON state) by performing write and erase operations by controlling the applied voltage.
It changes between two states (binary values): memory state) and OFF state (erased state). Reading of the stored information in the electric element l1 is performed as follows. That is, current detection may be performed by applying a "negative voltage" whose absolute value is smaller than the negative threshold voltage to the electric element 1l in the memory state (low resistance state). When a voltage signal such as the one described above is applied manually, a current indicating a memory state flows through the electric element. Therefore, by discharging the current, the recorded information can be read out. When a positive voltage is applied to the electric cord l1,
It is possible to return to the initial state by changing the magnitude of the applied voltage or the application time.

第3図は、上述した状態を示すV−1特性図である。負
の電圧V+  (Vl <VTI)を印加した後暫くそ
のままの状態に放置すると、V−1特性曲線が破線で示
すように低抵抗側に変化する。逆に正の電圧V2 (V
2くVT■)を印加した後暫くそ1 4 のままの状態に放置すると、■−■特性曲線が一点鎖線
で示すように高抵抗側に変化する。また、スイッチング
後の状態Aを負の電圧Vllで読み込むと、状態Aから
状態Bへ移ることになり、メモリの保持時間を長持ちさ
せることが可能となる。
FIG. 3 is a V-1 characteristic diagram showing the above-mentioned state. If the negative voltage V+ (Vl<VTI) is left as it is for a while after being applied, the V-1 characteristic curve changes to the low resistance side as shown by the broken line. On the contrary, positive voltage V2 (V
If the voltage is left in the state of 14 for a while after applying VT2), the characteristic curve 2--2 changes to the high resistance side as shown by the dashed line. Furthermore, when the state A after switching is read with a negative voltage Vll, the state A is transferred to the state B, which makes it possible to extend the memory retention time.

上述したように、上記実施例による電気素子I1は、対
向する第1の電極12と第2の電極13との間に印加し
た負の電圧値が負のしきい値に到達すると、抵抗状態は
初期状態の相対的に高抵抗な状態から低抵抗な状態に変
化する。ひきつづき、第1の電極12と第2の電極l3
との間に印加した正の電圧値が正のしきい値に到達する
と、抵抗状態は相対的に低抵抗な状態から尚抵抗な状態
に表化し、元の状態に1k帰する。このように、本発明
は、印加電圧の極性に対して方向性を有する(リバーシ
ブルなスイッチング特性を有する)点に特徴がある。
As described above, in the electric element I1 according to the above embodiment, when the negative voltage value applied between the opposing first electrode 12 and second electrode 13 reaches a negative threshold value, the resistance state changes. The initial state of relatively high resistance changes to a state of low resistance. Continuing, the first electrode 12 and the second electrode l3
When the positive voltage value applied between reaches a positive threshold value, the resistance state changes from a relatively low resistance state to a still high resistance state and returns to the original state by 1k. As described above, the present invention is characterized in that it has directionality (has reversible switching characteristics) with respect to the polarity of the applied voltage.

なお、上記実施例においても、高抵抗状態から低抵抗状
態に移行する場合、電流増大によって熱損傷が生じると
いう問題は本質的にはなくならな15 い。しかし、スイッチング後、一定電圧が印加されてい
る間は一定電流しか流れない。従って、第1図に示した
ように、例えば1KΩ程度の直列抵抗l7を介して電圧
印加を行えば、過大な電流が流れることはなく、熱損傷
の問題は実質的に解決できる。かくして、常に良奸な繰
り返し特性が得られる。
Note that even in the above embodiments, the problem of thermal damage occurring due to an increase in current cannot be essentially eliminated when transitioning from a high resistance state to a low resistance state. However, after switching, only a constant current flows while a constant voltage is applied. Therefore, as shown in FIG. 1, if a voltage is applied via a series resistor l7 of, for example, about 1 KΩ, an excessive current will not flow, and the problem of thermal damage can be substantially solved. In this way, good repeatability is always obtained.

また、上記実施例の電気素子I1においては、高抵抗状
態から低抵抗状態に移行した後、電荷移動錯体電気素子
11に印加している電圧を取り去っても、低抵抗状態が
保持される(メモリ特性がある)。このメモリ特性を解
除するには、正の電圧を加えればよい。
Further, in the electric element I1 of the above embodiment, even after the voltage applied to the charge transfer complex electric element 11 is removed after the transition from the high resistance state to the low resistance state, the low resistance state is maintained (memory characteristics). This memory characteristic can be canceled by applying a positive voltage.

本発明は上記大施例にliLLl’Mされるものではな
く、本発明の要旨を逸脱しない範囲で抽々変形すること
ができることは勿論のことである。具体的には、下記第
1表のNo.2〜No.l2のようにTCNQ濃度,ア
セトン濃度比率,温度,浸漬時間をかえて試験したとこ
ろ、上記実施例(No、1)と略同様な効果が得られた
。但し、No.5.16 No. 10, No. 11, No. i2の場合、 面内での 結晶の均一性は良くないが、 SW特性はある。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and can be modified at will without departing from the gist of the present invention. Specifically, No. 1 in Table 1 below. 2~No. When the test was conducted by changing the TCNQ concentration, acetone concentration ratio, temperature, and immersion time as in 12, substantially the same effect as in the above Example (No. 1) was obtained. However, No. 5.16 No. 10, No. 11, No. In the case of i2, the in-plane crystal uniformity is not good, but it has SW characteristics.

但し、 アセトン濃度比率は 1 7 また、Cu基板処理は全て2.8%HF酸を用いた。however, The acetone concentration ratio is 1 7 In addition, 2.8% HF acid was used for all Cu substrate treatments.

[発明の効果] 本発明によれば、印加電圧の制御により、ON状態(記
憶状態)とOFF状態(消去状態)との二状態(二値)
の間を、安定かつリバーシブルに変化し、例えばリバー
シブルなスイッチング動作を長期に亙って安定に行い得
る等、高い信頼性をもって作動するスイッチング素子及
びメモリ素子として使用できる電荷移動錯体電気素子を
提供できる。
[Effects of the Invention] According to the present invention, two states (binary values), an ON state (memory state) and an OFF state (erased state), are achieved by controlling the applied voltage.
It is possible to provide a charge transfer complex electrical element that can be used as a switching element and a memory element that operates with high reliability, for example, can stably and reversibly change between .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る電荷移動錯体電気素子
の構或を示す図、第2図及び第3図は夫々第1図の電気
素子の作用を説明するためのVI特性図、第4図は従来
の電Q移動錯体電気素子の址本構成を示す図、第5図は
第4図の電気素子の作用を説明するためのV−1特性図
、第6図はR A M / R O Mの動作を説明す
るためのV−■特性図である。 1 8 11・・・電気素子、12・・・第1の電極、13・・
・第2の電極l3、14・・・電荷移動錯体層、15・
・・結晶化ガラス基板、16・・・直流電源、17・・
・直列抵抗、18・・電流計、l9・電圧計。
FIG. 1 is a diagram showing the structure of a charge transfer complex electric device according to an embodiment of the present invention, and FIGS. 2 and 3 are VI characteristic diagrams for explaining the action of the electric device shown in FIG. 1, respectively. Fig. 4 is a diagram showing the basic configuration of a conventional electric Q-transfer complex electric element, Fig. 5 is a V-1 characteristic diagram for explaining the action of the electric element shown in Fig. 4, and Fig. 6 is a diagram showing the R A M FIG. 2 is a V-■ characteristic diagram for explaining the operation of ROM. 1 8 11... Electric element, 12... First electrode, 13...
・Second electrode l3, 14...charge transfer complex layer, 15.
...Crystalline glass substrate, 16...DC power supply, 17...
・Series resistance, 18...ammeter, l9・voltmeter.

Claims (1)

【特許請求の範囲】 1、対向する一対の電極間に電荷移動錯体層を有した電
気素子において、電極間に印加される第1電圧が第1の
しきい値を越えると電気抵抗が相対的に高抵抗状態から
低抵抗状態に変化し、この後前記第1電圧と逆極性の第
2電圧を電極間に印加して第2のしきい値を越えると電
気抵抗が低抵抗状態から高抵抗状態に変化することを特
徴とする電荷移動錯体電気素子。 2、前記低抵抗状態で印加電圧を除去しても低抵抗状態
を保持する特性を有する請求項1記載の電荷移動錯体電
気素子。 3、電極間に第1のしきい値、第2のしきい値を越える
極性の異なる電圧を交互に印加することにより、抵抗状
態が高抵抗状態と低抵抗状態との間で交互に変化する特
性を有する請求項1記載の電荷移動錯体電気素子。 4、一対の電極が夫々銅電極、アルミニウム電極であり
、電荷移動錯体層が銅−TCNQからなる請求項1記載
の電荷移動錯体電気素子。 5、前記銅−TCNQは、アセトンとアセトニトリルの
混合溶媒を用いたTCNQ溶液に銅電極を接触させるこ
とにより形成される請求項4記載の電荷移動錯体電気素
子。 6、前記第1のしきい値と第2のしきい値の前後におけ
る抵抗状態の変化を用いて書替え可能な記憶素子として
用いる請求項1記載の電荷移動錯体電気素子。 7、書替え可能な記憶素子の抵抗状態の検出は、第1の
しきい値より低くかつ該第1のしきい値と同じ極性の電
圧を印加することにより行う請求6記載の電荷移動錯体
電気素子。8、対向する一対の電極間に電荷移動錯体層
を有した電気素子において、電極間に印加される第1電
圧が第1のしきい値を越えると電気抵抗が相対的に高抵
抗状態から低抵抗状態に変化し、この後前記第1電圧と
逆極性の第2電圧を電極間に印加して第2のしきい値を
越えると電気抵抗が低抵抗状態から相対的に高抵抗状態
に変化するとともに、印加電圧が前記第2のしきい値よ
り大きい第3のしきい値を越えると前記高抵抗状態から
前記低抵抗状態より更に低い低抵抗状態に不可逆的に変
化することを特徴とする電荷移動錯体電気素子。 9、前記第1のしきい値と第2のしきい値の前後におけ
る抵抗状態の変化を用いて書替え可能な記憶素子として
用い、前記第3のしきい値の前後における抵抗状態の変
化を用いて書替え不能な記憶素子として用いる請求項8
記載の電荷移動錯体電気素子。
[Claims] 1. In an electric element having a charge transfer complex layer between a pair of opposing electrodes, when the first voltage applied between the electrodes exceeds the first threshold, the electric resistance becomes relatively When the electrical resistance changes from a high resistance state to a low resistance state, and then a second voltage of opposite polarity to the first voltage is applied between the electrodes and exceeds the second threshold, the electrical resistance changes from a low resistance state to a high resistance state. A charge transfer complex electric device characterized by a change in state. 2. The charge transfer complex electric device according to claim 1, which has a characteristic of maintaining the low resistance state even if the applied voltage is removed in the low resistance state. 3. By alternately applying voltages with different polarities exceeding the first threshold value and the second threshold value between the electrodes, the resistance state alternately changes between a high resistance state and a low resistance state. The charge transfer complex electric device according to claim 1, having the following characteristics. 4. The charge transfer complex electric device according to claim 1, wherein the pair of electrodes is a copper electrode and an aluminum electrode, respectively, and the charge transfer complex layer is made of copper-TCNQ. 5. The charge transfer complex electric device according to claim 4, wherein the copper-TCNQ is formed by bringing a copper electrode into contact with a TCNQ solution using a mixed solvent of acetone and acetonitrile. 6. The charge transfer complex electric device according to claim 1, which is used as a rewritable memory element using a change in resistance state before and after the first threshold value and the second threshold value. 7. The charge transfer complex electric element according to claim 6, wherein the resistance state of the rewritable memory element is detected by applying a voltage lower than a first threshold value and having the same polarity as the first threshold value. . 8. In an electric element having a charge transfer complex layer between a pair of opposing electrodes, when the first voltage applied between the electrodes exceeds the first threshold, the electrical resistance changes from a relatively high resistance state to a low resistance state. The electrical resistance changes from a low resistance state to a relatively high resistance state when a second voltage of opposite polarity to the first voltage is applied between the electrodes and the second threshold is exceeded. At the same time, when the applied voltage exceeds a third threshold value that is higher than the second threshold value, the high resistance state irreversibly changes to a low resistance state that is lower than the low resistance state. Charge transfer complex electric device. 9. Used as a rewritable memory element using changes in resistance state before and after the first threshold and the second threshold, and using changes in resistance state before and after the third threshold. Claim 8: Used as a non-rewritable storage element.
The charge transfer complex electrical device described.
JP2172710A 1989-08-31 1990-07-02 Charge-transfer complex electric element Pending JPH03163873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172710A JPH03163873A (en) 1989-08-31 1990-07-02 Charge-transfer complex electric element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22560189 1989-08-31
JP1-225601 1989-08-31
JP2172710A JPH03163873A (en) 1989-08-31 1990-07-02 Charge-transfer complex electric element

Publications (1)

Publication Number Publication Date
JPH03163873A true JPH03163873A (en) 1991-07-15

Family

ID=26494975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172710A Pending JPH03163873A (en) 1989-08-31 1990-07-02 Charge-transfer complex electric element

Country Status (1)

Country Link
JP (1) JPH03163873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124360A (en) * 2006-11-15 2008-05-29 Sony Corp Functional molecular element, manufacturing method thereof and functional molecular device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124360A (en) * 2006-11-15 2008-05-29 Sony Corp Functional molecular element, manufacturing method thereof and functional molecular device

Similar Documents

Publication Publication Date Title
Scott et al. Nonvolatile memory elements based on organic materials
US4652894A (en) Electrical organic thin film switching device switching between detectably different oxidation states
KR101067582B1 (en) Method for driving memory devices to exhibit multi-state
TWI401684B (en) Systems and methods for adjusting programming thresholds of polymer memory cells
Hosoi et al. High speed unipolar switching resistance RAM (RRAM) technology
Ma et al. Organic electrical bistable devices and rewritable memory cells
Majumdar et al. Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative
KR101390011B1 (en) Organic memory devices and preparation method thereof
JP6208946B2 (en) Conductance-based memory device switching at polymer / electrolyte contacts
WO2015154695A1 (en) Organic macromolecule resistance memory structure unit
US7482621B2 (en) Rewritable nano-surface organic electrical bistable devices
TW201637192A (en) Electronic component
US7635859B2 (en) Memory device including dendrimer
JPH02239664A (en) Electric memory
KR101206605B1 (en) Organic memory devices and preparation method thereof
WO2006049261A1 (en) Memory element and method for manufacturing same
WO2006050052A2 (en) Organic-complex thin film for nonvolatile memory applications
JPH03163873A (en) Charge-transfer complex electric element
US7656697B2 (en) Integrated circuit having a resistively switching memory and method
KR101036975B1 (en) Resistive memory devices with resistor part for controlling switching window
CN111081870A (en) Resistive random access memory based on ferroelectric tunnel junction and writing method of resistive random access memory
KR20080056416A (en) Organic memory device using iridium organometallic compound and preparation method thereof
KR101224768B1 (en) Organic memory device and preparation method thereof
Duhalde et al. Electric field-driven resistive switching in magnetoresistive La0. 5Ca0. 5MnO3 thin films
Tan et al. WORM-type device with rectifying effect based on a conjugated copolymer of fluorene and europium complex