JPH0316365B2 - - Google Patents

Info

Publication number
JPH0316365B2
JPH0316365B2 JP58015901A JP1590183A JPH0316365B2 JP H0316365 B2 JPH0316365 B2 JP H0316365B2 JP 58015901 A JP58015901 A JP 58015901A JP 1590183 A JP1590183 A JP 1590183A JP H0316365 B2 JPH0316365 B2 JP H0316365B2
Authority
JP
Japan
Prior art keywords
polymerization
copolymer
hexane
catalyst
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58015901A
Other languages
Japanese (ja)
Other versions
JPS59142212A (en
Inventor
Yasuo Toyama
Noboru Ooshima
Sadahide Yamazaki
Yoshito Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP1590183A priority Critical patent/JPS59142212A/en
Publication of JPS59142212A publication Critical patent/JPS59142212A/en
Publication of JPH0316365B2 publication Critical patent/JPH0316365B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、゚チレンずα−オレフむンず−゚
チリデン−−ノルボルネン以䞋ENBず略
す。たたは、ゞシクロペンタゞ゚ン以䞋DCP
ず略す等の非共圹ゞ゚ンずからなる䞉元ゎム状
共重合䜓の改良された補造方法に関し、さらに詳
しくは該共重合䜓を補造するに際しお、回収工皋
前に炭玠数〜の炭化氎玠を添加し、スチヌム
ストリツピング法にお共重合䜓を回収する方法に
関するものである。 埓来、゚チレンずα−オレフむンずENBたた
はDCPからなる䞉元ゎム状共重合䜓を補造する
工業的な方法には、溶媒ずしお−ヘキサン、
−ヘプタン、シクロヘキサンの劂き垞態で液状の
䞍掻性な炭化氎玠を䜿甚し、共重合䜓を溶媒䞭に
溶解させお重合を行う溶液重合法ず、単量䜓を液
䜓状態に保持し、重合で生成したゎム状共重合䜓
を該液状単量䜓䞭に析出分散した状態で重合を行
う懞濁重合法がある。 ずころが溶液重合においお、工業的に連続で安
定に前蚘ゎム状共重合䜓を埗るためには、重合噚
内の溶液を完党に均䞀し、重合反応熱を効率よく
陀去する必芁があり、そのため共重合䜓溶液の撹
拌、移送が容易でなければならない。 そのため共重合䜓溶液䞭の共重合䜓の濃床を調
節しお共重合䜓溶液の粘床をある皋床抑制しなけ
ればならず、工業的には共重合䜓濃床の最高倀が
10〜18重量パヌセントに制限されおいるのが珟状
である。 埓぀お共重合䜓溶液に含たれる溶媒の量は玄80
〜90重量パヌセントにも達し、この溶媒を分離、
粟補、回収するのに倚倧な゚ネルギヌを費さざる
を埗ず、たた溶媒の量を少なくするず、必然的に
溶液の粘床が䞊昇し、このような高粘床溶液を取
扱う堎合、撹拌、移送等の操䜜に問題が生ずるこ
ずずなるこずは前に述べた通りである。 これに反しお、無溶媒懞濁重合方匏は、かかる
技術的問題は無いず蚀぀おも良く、共重合䜓を懞
濁液䞭の濃床が30〜40重量パヌセントの高濁床
で、しかも液䜓単量䜓ず同じ䜎粘床溶液の状態で
取り扱う事ができ、共重合䜓の回収にも倚くの゚
ネルギヌを必芁ずせず工業的に有利な方匏であ
る。 この様に無溶媒懞濁重合方匏は、経枈的芋地か
ら有利な方匏ではあるが、溶媒が実質的に無いに
等しく重合溶液系党䜓が単量䜓で占められるが故
に単量䜓である゚チレンずα−オレフむンの濃床
がENB、DCP等の非共圹ゞ゚ンに比べお高くな
り、埓぀お非共圹ゞ゚ンの盞察的濃床が䜎䞋する
こずずなり、そのために非共圹ゞ゚ンの反応率が
䜎䞋し、未反応の非共圹ゞ゚ンが倚くな぀お沞点
の高いこれら非共圹ゞ゚ンの陀去に倚くの゚ネル
ギヌを芁するのみならず、これが補品ゎム䞭に倚
く残存するず品質䞊、特に加硫物性䞊支障をきた
し、たた仕䞊工皋での悪臭発生による䜜業環境の
汚染、装眮の腐蝕を招くずいう倧きな問題が掟生
し、極力完党に陀去する方法が望たれおいた。 発明者らは、この問題を解決すべく、未反応で
残存するこれらENB、DCP等の非共圹ゞ゚ンを
効率良く陀去する方法を鋭意研究した結果、本発
明の達成に至぀たものである。 すなわち本発明は、゚チレンずα−オレフむン
ず非共圹ゞ゚ンずを懞濁重合方匏で共重合し、回
収するに際し、重合觊媒の䞀方の成分である還移
金属化合物ずしお塩化チタン化合物を遞定し、有
機アルミニりム化合物ず䜵甚し、か぀回収工皋前
に炭玠数〜の炭化氎玠を液状α−オレフむン
の100容量郚に察しお〜40容量郚添加し、共重
合䜓を觊媒の陀去にも極めお効果的ないわゆるス
チヌムストリツピング法で回収するこずにより、
ゎム状共重合䜓䞭に残留する非共圹ゞ゚ンの量を
驚くべき皋床に効率よく陀去できるこずを芋出
し、ここに改良されたゎム状共重合䜓の補造方法
を提䟛するものである。 発明者らの研究の結果から、本発明方法におけ
る觊媒の特定ならびに炭化氎玠の添加に぀いお
倫々次のような効果があるこずがわか぀おいる。 先づ觊媒に぀いおは、還移金属化合物ずしお、
埓来から広く甚いられおいるVOCl3、VCl4、VO
AcAc3等の溶液状態のバナゞりム化合物ず有
機アルミニりム化合物ずの組合せでは、懞濁重合
䞋で極めお䞍郜合なこずに觊媒が反応噚内で䞍均
䞀な状態ずなり、しかも綿状に沈柱し、そのため
析出生成する共重合䜓粒子䞭に異垞に倧きなもの
が倚量に含たれるこずずなり、そのため析出生成
する共重合䜓粒子䞭に異垞に倧きなものが倚量に
含たれ、移送を困難にするのみならず、スチヌム
ストリツピング法で高沞点のENBやDCP等の非
共圹ゞ゚ンを共重合䜓粒子䞭から陀去するのが極
めお困難ずなる。 これに察し䟡たたは䟡の塩化チタン化合物
固䜓を有機アルミニりム化合物ず䜵甚しお甚いる
ず、觊媒が重合噚内で均䞀で埮小な粉末状である
ため、均䞀な埮粒子の圢で共重合䜓が埗られ、そ
のため未反応のENB、DCP等の非共圹ゞ゚ンの
粒子䞭での拡散速床が倧きくなり、陀去され易く
なる。たた移送䞊の閉塞等の問題も皆無に等しく
なる。 次に炭化氎玠の添加に぀いおは䟋えば液状プロ
ピレンの䞭で実質的に無溶媒䞋で共重合を行う
ず、前述の劂くゎム状共重合䜓が析出した安定な
埮粒子スラリヌの圢で埗られるが、反面粒子自䜓
が極めお密でタむトな状態を保぀おいるがため粒
子䞭から高沞点の未反応非共圹ゞ゚ンを拡散陀去
させるには奜たしくない。 このため該スラリヌ系に炭玠数〜の炭化氎
玠を適量存圚させるこずにより粒子の圢を安定に
保持し぀぀粒子を溶解させるこずなく適圓に膚最
させるこずができる。膚最した重合䜓粒子から未
反応非共圹ゞ゚ンを陀去するこずがタむトな粒子
から陀去するより拡散、抵抗がはるかに小さく、
容易である。 前蚘の劂く埓来のバナゞりム化合物ず有機アル
ミニりム化合物ずを觊媒ずしお甚いた堎合には、
ゎム状共重合䜓の巚倧粒子が生成し、未反応の非
共圹ゞ゚ンを陀去し難くなるが、その際炭玠数
〜の炭化氎玠を添加しおも粒子間の付着が激し
くなり、かえ぀お巚倧な粒子が倚くなり本発明の
効果を埗るこずができない。これは觊媒の圢状の
違いによるものず考えられる。即ち本発明の方法
は觊媒の遞択ず所定の炭化氎玠の䜿甚によ぀おは
じめお効果的な補法ずなし埗たものである。 本発明における炭玠数〜の炭化氎玠ずしお
は、−ペンタン、−ペンタン、−ヘキサ
ン、シクロヘキサン、−ヘプタン、−オクタ
ンなど重合掻性を阻害しない炭化氎玠から遞ばれ
るこずが奜たしく、特に−ヘキサンが膚最性、
沞点の面から奜たしい。 炭玠数が以䞋の炭化氎玠では、ゎム状重合䜓
に察しお溶解力が乏しく、共重合䜓粒子を膚最す
るこずができないので奜たしくない。たた炭玠数
が以䞊の炭化氎玠では、膚最胜力は高いが沞点
が高くなり共重合䜓から分離するのに倚くの゚ネ
ルギヌを芁し、経枈的にかえ぀お䞍利ずなり奜た
しくない。 前蚘炭化氎玠の添加量は、α−オレフむン100
容量郚に察しお〜40容量郚である。ここで、
容量郚は15℃、10Kgcm2absの倀を瀺す。炭化
氎玠が液状α−オレフむンの100容量郚に察しお
容量未満であれば、懞濁液䞭のゎム状共重合䜓
粒子の炭化氎玠による膚最が充分でなくなり、埓
぀おスチヌムストリツピング時点で未反応非共圹
ゞ゚ンがゎム状共重合䜓粒子䞭に倚量に残るこず
ずなり、本発明の目的を達し埗ない。 たた炭化氎玠の添加量が液状α−オレフむンの
100容量郚に察し、40容量郚を越えるず、ゎム状
共重合䜓粒子の膚最が著しくなり、粒子状では存
圚し埗ずかなりの郚分が溶解し、重合系の粘床が
著しく増し、もはや懞濁重合の圢態でなくなりむ
しろ溶液重合に近い状態ずなり奜たしくない。 炭玠数〜の炭化氎玠を添加する時期は (ã‚€) 重合反応噚に觊媒を䟛絊する前に予め添加し
おおきしかる埌に、觊媒を連続的に䟛絊するず
同時に炭化氎玠も連続的に添加する。 (ロ) 重合反応噚に觊媒を䟛絊するず同時に、炭化
氎玠を連続的に添加する。 (ハ) 重合反応完了埌、炭化氎玠を連続的に添加す
る。 等があり、䞭でも(ã‚€)の方法がポリマヌ粒子を良く
膚最させ埗る点から奜たしい。 又前蚘の添加方法は回分匏重合にも適甚し埗
る。 本発明における有機アルミニりム化合物は䞀般
匏AlRoX3-oで衚わされる化合物ここでは
〜の炭玠数をも぀炭化氎玠基であり、はハロ
ゲンであり、は、、1.5たたはである
であり、奜たしくはトリ゚チルアルミニりム、ト
リむ゜ブチルアルミニりム、ゞ゚チルアルミニり
ムクロラむド、ゞむ゜ブチルアルミニりムクロラ
むド、゚チルアルミニりムセスキクロラむド、む
゜ブチルアルミニりムセスキクロラむドから遞ば
れた化合物たたはそれらの混合物である。 本発明に甚いられる觊媒成分である塩化チタン
化合物は、䟡又は䟡の塩化チタンで特願昭57
−65489、57−65490、57−65491、57−65492、57
−92121、57−99955の各号及び特開昭57−55905
号、特公昭57−9566号等に蚘茉の方法等により調
補したものが䜿甚できるが、埗られる共重合䜓の
結晶性が少なく、よりゎム状であるずいう点で、
特願昭57−65489、57−65491、57−65492、57−
92131の各号の方法が奜たしい。 觊媒を構成する塩化チタン化合物(A)ず有機アル
ミニりム化合物(B)の割合は(B)(A)をモル比で衚わ
しお〜100の範囲が䜿甚できるが、ポ
リマヌをより無定圢にし、膚最しやすくお、本発
明の目的を効果的に達成するには〜20
が奜たしい。 本発明におけるα−オレフむンは炭玠数〜10
を有するα−オレフむンで、䟋えばプロピレン、
−ブテン、−ペンテン、−ヘキセン、−
メチル−−ペンテン、−オクテン、−デセ
ンなどがあり、特に奜たしくはプロピレン、−
ブテンである。 本発明で䜿甚できる非共圹ゞ゚ンずしおは盎鎖
たたは環状のゞ゚ンたたは、ポリ゚ンであり、た
ずえば−メチレン−−ノルポルネン、−゚
チリデン−−ノルボルネンENB−プロ
ピリデン−−ノルポルネン、ゞシクロペンタゞ
゚ンDCP、−む゜プロペニル−−ノルボ
ルネンなどであるが、共重合反応性が高く、䞔぀
加硫ゎム物性においお、䟋えば加硫速床が速い等
の利点の倚いENBず共重合反応性が比范的高く、
か぀安䟡に入手きるDCPずが特に奜たしく䜿甚
される。 本発明においお、重合枩床は〜80℃が奜たし
いが特に制限する必芁はない。 本発明におけるスチヌムストリツピング法は、
䞀般的に工業的に行なわれおいる方法で良い。䟋
えば、スチヌムストリツピングを行う枩床は70〜
120℃が奜たしく、たた運転圧力は倧気圧〜15
Kgcm2が奜たしい。たたゎム状共重合䜓のスト
リツパヌにおける平均滞留時間は時間皋床であ
る。 以䞋に実斜䟋をあげお本発明をさらに具䜓的に
説明するが、その芁旚を越えない限り、本発明は
これらの実斜䟋によ぀お制限されるものではな
い。 各実斜䟋及び比范䟋においお、ゎム状共重合䜓
䞭に残留する未反応の非共圹ゞ゚ン化合物の含量
ppmは、スチヌムストリツピングによ぀お回
収したゎム状共重合䜓を−ヘキサン100ml
に溶かし、ガスクロマトグラフむヌ島接補䜜所
補GC−6A䜿甚、カラムシリコンKF−96.3
を甚いお、怜量線法で求めた。 たたゎム状共重合䜓の非共圹ゞ゚ン結合量を瀺
すペヌ゜䟡はペヌ゜滎定法により求めた。 実斜䟋  (1) チタン化合物觊媒の調補 充分に也燥し、窒玠眮換したフラスコに無氎
の塩化マグネシりムず、ゞ−゚チルヘ
キシル−゚チルヘキシルホスホネヌト40
を加え、100℃に加熱しお、塩化マグネシりム
を完党に溶解させた埌、宀枩たで冷华し、也燥
した−ヘキサン150mlを加えた。次に別に甚
意したフラスコに也燥した−ヘキサン100ml
及び四塩化チタン7.5を加え次いでゞオクチ
ルホズプヌト10を加え、これを党量前蚘塩
化マグネシりム溶液に加えた。次に四塩化チタ
ン60を前蚘混合物に撹拌しながら、ゆ぀くり
加え、埮粒子状固䜓を折出させたのち也燥した
−ヘキサン250mlで回掗浄したものを觊媒
ずしお䜿甚した。尚調補した觊媒䞭の四塩化チ
タン量は原子吞光法で求めた。 (2) 共重合䜓の重合及び回収 ゎム状共重合䜓の重合及び回収は、次のよう
にしお行぀た。 充分に也燥し、プロピレンガス眮換した撹拌
矜根付16ステンレス補重合噚に、液䜓プロピ
レンず−ヘキサン0.6、−゚チリデ
ン−−ノルボルネンENB0.14Kgを仕蟌
んだ。 重合噚内の枩床を55℃にした埌、゚チレンガ
スを吹き蟌み重合噚内の圧力を30Kgcm2ずし
た。次にトリむ゜ブチルアルミニりム2.5
及び前蚘調補方法による塩化マグネシりムに
担持した塩化チタン觊媒を四塩化チタン換算
0.06で連続しお添加し、同時にプロピレ
ン、゚チレン0.9Kg、ENB0.14
Kg及び−ヘキサン0.6で連続で添
加した。重合噚内の液䜍が垞に䞀定ずなるよう
反応混合物を連続で抜き出した。重合噚内の共
重合䜓粒子は、粒埄〜ミリメヌトルで懞濁
液䞭に均䞀に分散し、明らかに膚最状態であ぀
た。重合開始より時間埌の重合噚内の反応混
合物を、撹拌噚付容積100の蒞留噚内に導き、
100℃の枩氎䞭で倧気圧䞋時間スチヌムスト
リツピングを行い、ゎム状共重合䜓を回収し
た。 ゎム状共重合䜓の分析結果及び氎蒞気蒞留を
行぀た埌にゎム状共重合䜓䞭に残留しおいる非
共圹ゞ゚ン化合物含量の枬定結果を衚−に瀺
した。 実斜䟋  実斜䟋においお、圓初に仕蟌む−ヘキサン
の量を1.2ずし、たた重合䞭の−ヘキサンの
連続添加量を1.2ずしお、−ヘキサン
液䜓プロピレンの容積比が垞に15郚100郚の䞀
定で重合を行うこず、さらに重合時の圧力を、29
Kgcm2で行う以倖は実斜䟋の方法を繰返し
た。結果を衚−に瀺す。 実斜䟋  実斜䟋においお、圓初に仕蟌む−ヘキサン
の量を2.8ずし、たた重合䞭の−ヘキサンの
連続添加量を2.8ずしお、−ヘキサン
液状プロピレンの容積比が垞に35郚100郚の䞀
定で重合を行うこず、さらに重合時の圧力を28
Kgcm2で行う以倖は、実斜䟋の方法を繰返し
た。結果を衚−に瀺す。 比范䟋  実斜䟋においお、圓初に仕蟌む−ヘキサン
の量を、0.16ずし、たた重合䞭の−ヘキサン
の連続添加量を0.16ずしお、−ヘキサ
ン液状プロピレンの容積比が垞に郚100郚
の䞀定で重合を行うこず、さらに重合時の圧力を
31Kgcm2で行う以倖は実斜䟋の方法を繰返し
た。結果を衚−に瀺す。 重合䞭の懞濁液䞭のゎム状共重合䜓粒子は、粒
埄が0.5〜ミリメヌトルで、膚最した様子はほ
ずんど無く、非垞にタむトな圢状を保぀おいた。
たた、スチヌムストリツピングによ぀お回収した
ゎム状共重合䜓粒子も前蚘実斜䟋〜に比范
し、発泡の皋床が少ないこずが芳察された。 比范䟋  実斜䟋においお、圓初に仕蟌む−ヘキサン
の量を3.4ずし、たた重合䞭の−ヘキサンの
連続添加量を3.4ずしお−ヘキサン液
状プロピレンの容積比が垞に43郚100郚の䞀定
で重合を行うこず、さらに重合時の圧力を27Kg
cm2で行う以倖は、実斜䟋の方法を繰返した。
結果を衚−に瀺す。 この堎合、重合䞭のゎム状共重合䜓は、液状プ
ロピレン䞭でほずんど粒子状にならず、明らかに
ゎム状共重合䜓が溶解しおいるのが芳察された。 実斜䟋  実斜䟋においお、非共圹ゞ゚ンずしお、
ENBの代りにDCPを甚い、その他党お同䞀条件
で繰返した。 すなわち、重合噚に液䜓プロピレン、−
ヘキサン1.6、ゞシクロペンタゞ゚ンDCP
0.38Kg仕蟌み重合噚内の枩床を55℃にした埌、゚
チレンガスを吹き蟌み、圧力を29Kgcm2ずし
た。 次に実斜䟋ず同じ觊媒を同じ流量で連続添加
しお重合を開始し、同時に液状プロピレン
、゚チレンガス0.9Kg、DCP0.16Kgを
連続で添加しお重合を行぀た。ゎム状重合䜓の回
収は実斜䟋に蚘茉ず同様の方法で行぀た。結果
を衚−に瀺す。 比范䟋  実斜䟋においお、圓初に仕蟌む−ヘキサン
の量を0.16ずし、たた重合䞭の−ヘキサンの
連続添加量を0.16ずしお、−ヘキサン
液状プロピレンの容積比が垞に郚100郚の䞀
定で重合を行うこず、さらに重合時の圧力を31
Kgcm2で行う以倖は、実斜䟋の方法を繰返し
た。結果を衚−に瀺す。 この堎合、重合䞭の懞濁液の様子は比范䟋ず
党く同じであ぀た。 比范䟋  実斜䟋においお、觊媒にゞ゚チルアルミニり
ムモノクロラむド5.4、オキシ䞉塩化バナ
ゞりムのアルコヌル倉性したものをオキシ䞉塩化
バナゞりム換算0.7で連続添加する以倖は、
実斜䟋の方法を繰返しゎム状共重合䜓を埗た。 オキシ䞉塩化バナゞりムのアルコヌル倉性觊媒
は次のようにしお調補した。 充分に也燥、窒玠眮換したフラスコに也燥した
−ヘキサン100mlを入れ、これにオキシ䞉塩化
バナゞりム100を添加、次いで−プタノヌル
6.4を撹拌しながらゆ぀くりず添加しお調補し
た。 この堎合、懞濁液䞭のゎム状共重合䜓粒子の粒
埄は巚倧なものは10〜30ミリメヌトルにも達し、
撹拌、移送に極めお䞍郜合であ぀た。たた氎蒞気
蒞留した埌の共重合䜓粒子䞭に未反応非共圹ゞ゚
ンが非垞に倚く残留した。結果を衚−に瀺す。
The present invention combines ethylene, α-olefin and 5-ethylidene-2-norbornene (hereinafter abbreviated as ENB) or dicyclopentadiene (hereinafter referred to as DCP).
Regarding an improved method for producing a ternary rubber-like copolymer consisting of a non-conjugated diene such as The present invention relates to a method for recovering a copolymer using a steam stripping method. Conventionally, the industrial method for producing a ternary rubbery copolymer consisting of ethylene, α-olefin, and ENB or DCP uses n-hexane, n-hexane, and n-hexane as solvents.
- A solution polymerization method in which the copolymer is polymerized by dissolving it in a solvent using normally liquid inert hydrocarbons such as heptane or cyclohexane, and a solution polymerization method in which the copolymer is polymerized by keeping the monomer in a liquid state. There is a suspension polymerization method in which polymerization is carried out in a state in which a rubbery copolymer is precipitated and dispersed in the liquid monomer. However, in solution polymerization, in order to industrially continuously and stably obtain the rubbery copolymer, it is necessary to make the solution in the polymerization vessel completely homogeneous and to efficiently remove the heat of the polymerization reaction. The combined solution must be easy to stir and transport. Therefore, it is necessary to control the viscosity of the copolymer solution to some extent by adjusting the concentration of the copolymer in the copolymer solution, and industrially, the maximum value of the copolymer concentration is
Currently, it is limited to 10-18% by weight. Therefore, the amount of solvent contained in the copolymer solution is approximately 80
Separating this solvent reaches ~90% by weight,
A large amount of energy must be spent for purification and recovery, and if the amount of solvent is reduced, the viscosity of the solution will inevitably increase. As mentioned above, this will cause problems in operation. On the other hand, it can be said that the solvent-free suspension polymerization method does not have such technical problems. This method is industrially advantageous because it can be handled in the same low-viscosity solution state as the copolymer, and it does not require much energy to recover the copolymer. As described above, the solvent-free suspension polymerization method is an advantageous method from an economic point of view, but since the entire polymerization solution system is occupied by the monomer, there is virtually no solvent. The concentration of α-olefin becomes higher than that of non-conjugated dienes such as ENB and DCP, and therefore the relative concentration of non-conjugated diene decreases, which reduces the reaction rate of non-conjugated diene and unreacted As the amount of non-conjugated dienes increases, not only does it take a lot of energy to remove these non-conjugated dienes with high boiling points, but if a large amount of these dienes remain in the product rubber, quality, especially the physical properties of the vulcanizate, are affected, and it is difficult to remove them during the finishing process. This has led to major problems such as foul odors that contaminate the working environment and corrode equipment, and a method to eliminate them as completely as possible has been desired. In order to solve this problem, the inventors conducted extensive research on a method for efficiently removing these non-conjugated dienes such as ENB and DCP that remain unreacted, and as a result, the present invention was achieved. That is, in the present invention, when ethylene, α-olefin, and non-conjugated diene are copolymerized and recovered by a suspension polymerization method, a titanium chloride compound is selected as a reduction metal compound which is one component of the polymerization catalyst, and an organic When used in combination with an aluminum compound and by adding 5 to 40 parts by volume of a hydrocarbon having 5 to 8 carbon atoms per 100 parts by volume of liquid α-olefin, the copolymer is extremely effective in removing the catalyst. By collecting it using the so-called steam stripping method,
It has been discovered that the amount of non-conjugated diene remaining in a rubbery copolymer can be removed with surprising efficiency, and an improved method for producing a rubbery copolymer is provided. From the results of the research conducted by the inventors, it has been found that the specificity of the catalyst and the addition of hydrocarbons in the method of the present invention have the following effects. First, regarding the catalyst, as a reduction metal compound,
Conventionally widely used VOCl 3 , VCl 4 , VO
In the case of the combination of vanadium compounds in solution, such as (AcAc) 3 , and organoaluminum compounds, it is extremely disadvantageous that during suspension polymerization the catalyst becomes inhomogeneous in the reactor, and also precipitates in flocculent forms, resulting in This results in a large amount of abnormally large particles being contained in the copolymer particles that are precipitated, which not only makes transportation difficult; It is extremely difficult to remove high boiling point non-conjugated dienes such as ENB and DCP from copolymer particles using the steam stripping method. On the other hand, when a solid trivalent or tetravalent titanium chloride compound is used in combination with an organoaluminum compound, the copolymer is produced in the form of uniform fine particles because the catalyst is in the form of a uniform fine powder in the polymerization vessel. Therefore, the diffusion rate of unreacted non-conjugated dienes such as ENB and DCP in the particles increases, making them easier to remove. Furthermore, problems such as blockage during transportation are virtually eliminated. Next, regarding the addition of hydrocarbons, for example, if copolymerization is carried out in liquid propylene substantially without a solvent, a rubber-like copolymer can be obtained in the form of a stable fine particle slurry with precipitated particles as described above, but on the other hand, Since the particles themselves remain extremely dense and tight, it is not preferable to diffuse and remove unreacted unconjugated dienes with high boiling points from the particles. Therefore, by including an appropriate amount of a hydrocarbon having 5 to 8 carbon atoms in the slurry system, it is possible to stably maintain the shape of the particles and swell the particles appropriately without dissolving them. Removing unreacted nonconjugated diene from swollen polymer particles has much less diffusion and resistance than removing it from tight particles.
It's easy. As mentioned above, when conventional vanadium compounds and organoaluminum compounds are used as catalysts,
Huge particles of rubbery copolymer are formed, making it difficult to remove unreacted non-conjugated diene, but in this case
Even if hydrocarbons of 1 to 8 are added, the adhesion between particles increases, and the number of giant particles increases, making it impossible to obtain the effects of the present invention. This is thought to be due to the difference in the shape of the catalyst. That is, the method of the present invention can only be made effective by selecting a catalyst and using a specified hydrocarbon. The hydrocarbon having 5 to 8 carbon atoms in the present invention is preferably selected from hydrocarbons that do not inhibit polymerization activity, such as n-pentane, i-pentane, n-hexane, cyclohexane, n-heptane, and n-octane. In particular, n-hexane has swelling properties,
Preferable in terms of boiling point. Hydrocarbons having 4 or less carbon atoms are not preferred because they have poor dissolving power for rubbery polymers and cannot swell the copolymer particles. Furthermore, hydrocarbons having 9 or more carbon atoms have a high swelling ability, but have a high boiling point and require a lot of energy to separate from the copolymer, which is economically disadvantageous and undesirable. The amount of the hydrocarbon added is α-olefin 100
5 to 40 parts by volume. (here,
The capacity part shows the value of 10Kg/cm 2 abs at 15℃. ) If the amount of hydrocarbon is less than 5 volumes per 100 parts by volume of liquid α-olefin, the rubbery copolymer particles in the suspension will not be sufficiently swollen by the hydrocarbons, and therefore at the time of steam stripping. In this case, a large amount of unreacted non-conjugated diene remains in the rubbery copolymer particles, making it impossible to achieve the object of the present invention. Also, the amount of hydrocarbon added is
If the amount exceeds 40 parts by volume compared to 100 parts by volume, the rubber-like copolymer particles will swell significantly, cannot exist in particulate form, and a considerable portion will dissolve, the viscosity of the polymerization system will increase significantly, and it will no longer be suspended. This is not preferable since it is no longer in the form of polymerization, but rather resembles solution polymerization. When to add hydrocarbons having 5 to 8 carbon atoms: (a) Add them in advance before supplying the catalyst to the polymerization reactor, and then continuously add the hydrocarbons at the same time as the catalyst is continuously supplied. . (b) Hydrocarbons are continuously added at the same time as the catalyst is supplied to the polymerization reactor. (c) After the polymerization reaction is completed, hydrocarbons are continuously added. Among them, method (a) is preferred because it can swell the polymer particles well. The above-mentioned addition method can also be applied to batch polymerization. The organoaluminum compound in the present invention is a compound represented by the general formula AlR o X 3-o (where R is 1
a hydrocarbon group with a carbon number of ~5, X is a halogen, and n is 3, 2, 1.5 or 1)
and preferably a compound selected from triethylaluminum, triisobutylaluminum, diethylaluminum chloride, diisobutylaluminum chloride, ethylaluminum sesquichloride, isobutylaluminum sesquichloride, or a mixture thereof. The titanium chloride compound, which is a catalyst component used in the present invention, is trivalent or tetravalent titanium chloride.
−65489, 57−65490, 57−65491, 57−65492, 57
-92121, 57-99955 and JP-A-57-55905
Copolymers prepared by the method described in Japanese Patent Publication No. 57-9566, etc. can be used, but the resulting copolymer has less crystallinity and is more rubber-like.
Patent application Sho 57-65489, 57-65491, 57-65492, 57-
92131 are preferred. The ratio of the titanium chloride compound (A) and the organoaluminum compound (B) constituting the catalyst can be in the range of 2/1 to 100/1 expressed as a molar ratio of (B)/(A), but if the polymer is In order to make it amorphous and easily swell, and to effectively achieve the purpose of the present invention, the ratio is 5/1 to 20/1.
is preferred. The α-olefin in the present invention has 3 to 10 carbon atoms.
an α-olefin having, for example, propylene,
1-butene, 1-pentene, 1-hexene, 4-
Examples include methyl-1-pentene, 1-octene, 1-decene, etc., particularly preferably propylene, 1-decene, etc.
It is butene. Non-conjugated dienes that can be used in the present invention include linear or cyclic dienes or polyenes, such as 5-methylene-2-norporene, 5-ethylidene-2-norbornene (ENB), 5-propylidene-2-norbornene, and diene. Cyclopentadiene (DCP), 5-isopropenyl-2-norbornene, etc., have high copolymerization reactivity and are copolymerizable with ENB, which has many advantages in terms of physical properties of vulcanized rubber, such as fast vulcanization speed. is relatively high;
DCP, which is available at low cost, is particularly preferably used. In the present invention, the polymerization temperature is preferably 0 to 80°C, but is not particularly limited. The steam stripping method in the present invention is
Any method generally used in industry may be used. For example, the temperature for steam stripping is 70~
120℃ is preferable, and the operating pressure is atmospheric pressure to 15℃.
Kg/cm 2 G is preferred. The average residence time of the rubbery copolymer in the stripper is about 1 hour. EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited by these Examples unless the gist thereof is exceeded. In each Example and Comparative Example, the content (ppm) of unreacted non-conjugated diene compounds remaining in the rubbery copolymer was calculated by adding 2g of the rubbery copolymer recovered by steam stripping to n-hexane. 100ml
Gas chromatography (using Shimadzu GC-6A, column silicon KF-96.3%5)
m) using the calibration curve method. Further, the iodine value, which indicates the amount of non-conjugated diene bonds in the rubbery copolymer, was determined by the iodine titration method. Example 1 (1) Preparation of titanium compound catalyst 3 g of anhydrous magnesium chloride and 40 g of di(2-ethylhexyl) 2-ethylhexylphosphonate were placed in a flask that had been thoroughly dried and purged with nitrogen.
was added and heated to 100°C to completely dissolve the magnesium chloride, then cooled to room temperature and 150 ml of dry n-hexane was added. Next, add 100 ml of dried n-hexane to a separately prepared flask.
and 7.5 g of titanium tetrachloride were added, followed by 10 g of dioctylphosphaate, and the entire amount was added to the magnesium chloride solution. Next, 60 g of titanium tetrachloride was slowly added to the above mixture while stirring, and a fine particulate solid was precipitated, washed five times with 250 ml of dry n-hexane, and used as a catalyst. The amount of titanium tetrachloride in the prepared catalyst was determined by atomic absorption spectrometry. (2) Polymerization and recovery of copolymer Polymerization and recovery of the rubbery copolymer were performed as follows. 8 kg of liquid propylene, 0.6 kg of n-hexane, and 0.14 kg of 5-ethylidene-2-norbornene (ENB) were charged into a 16 stainless steel polymerization vessel equipped with a stirring blade that had been thoroughly dried and replaced with propylene gas. After the temperature inside the polymerization vessel was set to 55°C, ethylene gas was blown into the vessel to make the pressure inside the polymerization vessel 30Kg/cm 2 G. Next, 2.5g/triisobutyl aluminum
H and the titanium chloride catalyst supported on magnesium chloride prepared by the above preparation method in terms of titanium tetrachloride.
Continuously add 0.06g/H, simultaneously propylene 8/H, ethylene 0.9Kg/H, ENB0.14
Kg/H and n-hexane 0.6/H were added continuously. The reaction mixture was continuously extracted so that the liquid level in the polymerization vessel was always constant. The copolymer particles in the polymerization vessel had a particle size of 2 to 4 mm, were uniformly dispersed in the suspension, and were clearly in a swollen state. The reaction mixture in the polymerization vessel 4 hours after the start of polymerization was introduced into a 100-volume distillation vessel equipped with a stirrer.
Steam stripping was performed in hot water at 100°C under atmospheric pressure for 1 hour to recover the rubbery copolymer. Table 1 shows the analysis results of the rubbery copolymer and the measurement results of the content of non-conjugated diene compounds remaining in the rubbery copolymer after steam distillation. Example 2 In Example 1, the amount of n-hexane initially charged was 1.2, and the amount of n-hexane continuously added during polymerization was 1.2/H, so that n-hexane/
The polymerization should be carried out at a constant volume ratio of liquid propylene of 15 parts/100 parts, and the pressure during polymerization should be 29
The method of Example 1 was repeated except that Kg/cm 2 G was used. The results are shown in Table-1. Example 3 In Example 1, the amount of n-hexane charged at the beginning was set to 2.8, and the amount of n-hexane added continuously during polymerization was set to 2.8/H.
Polymerization must be carried out at a constant volume ratio of liquid propylene of 35 parts/100 parts, and the pressure during polymerization must be 28 parts.
The method of Example 1 was repeated except that Kg/cm 2 was used. The results are shown in Table-1. Comparative Example 1 In Example 1, the amount of n-hexane initially charged was 0.16, and the amount of n-hexane continuously added during polymerization was 0.16/H, so that the volume ratio of n-hexane/liquid propylene was always 2. Polymerization should be carried out at a constant ratio of parts/100 parts, and the pressure during polymerization should be
The method of Example 1 was repeated except at 31 Kg/cm 2 G. The results are shown in Table-1. The rubbery copolymer particles in the suspension during polymerization had a particle size of 0.5 to 2 mm, showed almost no swelling, and maintained a very tight shape.
Furthermore, it was observed that the rubbery copolymer particles recovered by steam stripping were also less foamed than in Examples 1 to 3. Comparative Example 2 In Example 1, the amount of n-hexane initially charged was 3.4, and the amount of n-hexane continuously added during polymerization was 3.4/H, so that the volume ratio of n-hexane/liquid propylene was always 43 parts/H. Polymerization was carried out at a constant rate of 100 parts, and the pressure during polymerization was 27 kg/
The method of Example 1 was repeated except that cm 2 G was used.
The results are shown in Table-1. In this case, the rubbery copolymer during polymerization hardly became particulate in liquid propylene, and it was observed that the rubbery copolymer was clearly dissolved. Example 4 In Example 1, as the non-conjugated diene,
DCP was used instead of ENB, and all other conditions were repeated under the same conditions. That is, liquid propylene 8,n-
Hexane 1.6, dicyclopentadiene (DCP)
After 0.38 kg was charged and the temperature inside the polymerization vessel was brought to 55°C, ethylene gas was blown into the reactor to make the pressure 29 kg/cm 2 G. Next, the same catalyst as in Example 1 was continuously added at the same flow rate to start polymerization, and at the same time liquid propylene 8/
Polymerization was carried out by continuously adding H, 0.9 kg/H of ethylene gas, and 0.16 kg/H of DCP. Recovery of the rubbery polymer was carried out in the same manner as described in Example 1. The results are shown in Table-1. Comparative Example 3 In Example 4, the amount of n-hexane initially charged was 0.16, and the amount of n-hexane continuously added during polymerization was 0.16/H, so that n-hexane/
Polymerization must be carried out at a constant volume ratio of liquid propylene of 2 parts/100 parts, and the pressure during polymerization must be kept at 31
The method of Example 4 was repeated except that Kg/cm 2 G was used. The results are shown in Table-1. In this case, the appearance of the suspension during polymerization was exactly the same as in Comparative Example 1. Comparative Example 4 In Example 2, except that 5.4 g/H of diethylaluminum monochloride and alcohol-denatured vanadium oxytrichloride were continuously added to the catalyst at a rate of 0.7 g/H in terms of vanadium oxytrichloride.
The method of Example 2 was repeated to obtain a rubbery copolymer. An alcohol-modified catalyst for vanadium oxytrichloride was prepared as follows. Pour 100 ml of dry n-hexane into a flask that has been sufficiently dried and purged with nitrogen, add 100 g of vanadium oxytrichloride, and then add n-butanol.
It was prepared by slowly adding 6.4 g while stirring. In this case, the particle size of the rubbery copolymer particles in the suspension is huge, reaching 10 to 30 mm.
This was extremely inconvenient for stirring and transport. Furthermore, a large amount of unreacted non-conjugated diene remained in the copolymer particles after steam distillation. The results are shown in Table-1.

【衚】【table】

【衚】 〓
〓DCPゞシクロペンタゞ゚ン
[Table] 〓
〓DCP; dicyclopentadiene

Claims (1)

【特蚱請求の範囲】  ゚チレン、α−オレフむンおよび非共圹ゞ゚
ンを懞濁重合方匏で共重合せしめ、共重合䜓を回
収する方法に斌お、 塩化チタン化合物ず有機アルミニりム化合物ず
からなる觊媒の存圚䞋で、 回収工皋前に、炭玠数が〜の脂肪族炭化氎
玠をα−オレフむン100容量郚に察し〜40容量
郚添加し、共重合䜓をスチヌムストリツピング法
により回収するこずを特城ずするゎム状共重合䜓
の補造方法。
[Scope of Claims] 1. In a method for copolymerizing ethylene, α-olefin and non-conjugated diene by a suspension polymerization method and recovering the copolymer, the presence of a catalyst comprising a titanium chloride compound and an organoaluminum compound Below, before the recovery step, 5 to 40 parts by volume of an aliphatic hydrocarbon having 5 to 8 carbon atoms is added to 100 parts by volume of α-olefin, and the copolymer is recovered by a steam stripping method. A method for producing a characteristic rubber-like copolymer.
JP1590183A 1983-02-02 1983-02-02 Production of rubbery polymer Granted JPS59142212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1590183A JPS59142212A (en) 1983-02-02 1983-02-02 Production of rubbery polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1590183A JPS59142212A (en) 1983-02-02 1983-02-02 Production of rubbery polymer

Publications (2)

Publication Number Publication Date
JPS59142212A JPS59142212A (en) 1984-08-15
JPH0316365B2 true JPH0316365B2 (en) 1991-03-05

Family

ID=11901676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1590183A Granted JPS59142212A (en) 1983-02-02 1983-02-02 Production of rubbery polymer

Country Status (1)

Country Link
JP (1) JPS59142212A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242961A (en) * 1992-05-28 1993-09-07 Shell Oil Company Color prevention in titanium catalyzed hydrogenated diene polymers
JP2005213313A (en) * 2004-01-28 2005-08-11 Sumitomo Chemical Co Ltd Production system for ethylene-propylene rubber

Also Published As

Publication number Publication date
JPS59142212A (en) 1984-08-15

Similar Documents

Publication Publication Date Title
US4978722A (en) Method for producing a propylene-α-olefin block copolymer
FI74476B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN ZIEGLER-CATALYSATOR PAO EN BAERARE FOER POLYMERISERING AV ALFA-OLEFINER.
JPS5841283B2 (en) Method for producing propylene polymer or copolymer
JPS6152846B2 (en)
GB2061297A (en) Process for producing propylene-ethylene block copolymers
JPH01318019A (en) Continuous production of ethylene-alpha-olefin copolymer and ethylene copolymer having low residual monomer content
EP3976670B1 (en) Suspension process for preparing ethylene polymers comprising work-up of the suspension medium
JPH0316365B2 (en)
CN112154159A (en) Suspension process for the preparation of ethylene copolymers in a reactor cascade
JPS5830887B2 (en) Method for purifying highly crystalline polyolefin
CN113840843B (en) Suspension process for preparing ethylene polymers comprising drying polymer particles
JPS5811448B2 (en) Manufacturing method of block copolymer
KR102504117B1 (en) Suspension process for the production of ethylene polymers involving work-up of a suspension medium
JPH0128051B2 (en)
JP2710796B2 (en) Method for producing polyolefin resin composition
JPS6211709A (en) Production of ethylene-propylene-diene terpolymer
WO2024056466A1 (en) Process for preparing ethylene copolymer
JP2710799B2 (en) Method for producing polyolefin resin molded article
JPS6250484B2 (en)
JPS63225612A (en) Manufacture of alpha-olefin block copolymer
JPH0692455B2 (en) Olefin polymerization catalyst
JPS5856362B2 (en) Production method of titanium trichloride catalyst
JPH0471924B2 (en)
JPS62135509A (en) Production of propylene block copolymer
JPH02138310A (en) Preparation of polyolefin resin composition