JPH0316164A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0316164A
JPH0316164A JP1290499A JP29049989A JPH0316164A JP H0316164 A JPH0316164 A JP H0316164A JP 1290499 A JP1290499 A JP 1290499A JP 29049989 A JP29049989 A JP 29049989A JP H0316164 A JPH0316164 A JP H0316164A
Authority
JP
Japan
Prior art keywords
semiconductor device
potential
conductor
low
low resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1290499A
Other languages
Japanese (ja)
Other versions
JP2864576B2 (en
Inventor
Yasushige Furuya
安成 降矢
Kazuko Moriya
守屋 和子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to GB9301741A priority Critical patent/GB2262187A/en
Priority to PCT/JP1989/001180 priority patent/WO1990005995A1/en
Priority to GB9015141A priority patent/GB2232530B/en
Priority to KR1019900701560A priority patent/KR900702572A/en
Publication of JPH0316164A publication Critical patent/JPH0316164A/en
Priority to US07/965,545 priority patent/US5428242A/en
Priority to GB9301742A priority patent/GB2262188B/en
Priority to HK105997A priority patent/HK105997A/en
Priority to HK120897A priority patent/HK120897A/en
Application granted granted Critical
Publication of JP2864576B2 publication Critical patent/JP2864576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enhance a stability and an accuracy as a resistance element by a method wherein a peripheral structure pattern of the resistance element is added a little in such a way that at least one side out of the upper and lower sides and the right and left sides of the resistance elements is covered with a low-resistance conductor. CONSTITUTION:A diffusion resistance formed by a low-concentration diffusion operation or by an ion implantation operation or a resistance element 2 formed of polycrystalline silicon is covered with at least one low-resistance conductor 1; this low-resistance conductor 1 is kept at a definite potential with reference to a power supply. More than a halt of a plane area of the resistance element 2 is covered with the conductor 1 whose resistance is lower than that of the resistance element 2. Thereby, an electromagnetic field is shut off from impurity ions or adjacent signal lines which cause a change in a resistance value. Thereby, the resistance by the low-concentration diffusion operation and the polycrystalline silicon 2 can keep the resistance value stably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に於ける高精度な低抗素子の構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a highly accurate low resistance element in a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、多結晶シリコンで低抗素子、特に高低抗素子を半
導体基板上に形成した構造図を第3図に示す。半導体基
板3の上に酸化膜である絶縁膜9をはさみ多結晶シリコ
ン2が形成され、コンタクト5、7を介してアルミニウ
ム電極線4、6と接続されている。そして多結晶シリコ
ン2の上部には絶縁膜10があり、その上部はアルミニ
ウム配線による信号線又は何も信号線がなく酸化保護膜
があるのみであった。
FIG. 3 shows a structural diagram of a conventional structure in which a low resistance element, particularly a high resistance element, is formed on a semiconductor substrate using polycrystalline silicon. Polycrystalline silicon 2 is formed on a semiconductor substrate 3 with an insulating film 9, which is an oxide film, interposed therebetween, and is connected to aluminum electrode lines 4 and 6 via contacts 5 and 7. There was an insulating film 10 on top of the polycrystalline silicon 2, and on the top there was a signal line made of aluminum wiring or no signal line at all, only an oxidized protective film.

さらに、従来低濃度の拡散層又はイオン打ち込みによる
拡散層で形成される低抗素子を半導体基板上に形成した
構造図を第4図に示す。半導体基板13の表面部に形成
された拡散抵抗12はコンタクト15、17を介してア
ルミニウム電極線14、16と接続されている。そして
拡散抵抗の上部には酸化膜である絶縁膜があり、その上
部は多結晶シリコンやアルミニウムによる他の信号配線
が、又は何も信号配線がなく酸化保護膜があるのみであ
った。
Further, FIG. 4 shows a structural diagram in which a low resistance element, which is conventionally formed by a low concentration diffusion layer or a diffusion layer formed by ion implantation, is formed on a semiconductor substrate. Diffused resistor 12 formed on the surface of semiconductor substrate 13 is connected to aluminum electrode lines 14 and 16 via contacts 15 and 17. There is an insulating film which is an oxide film on top of the diffused resistor, and on top of that there is another signal wiring made of polycrystalline silicon or aluminum, or there is no signal wiring at all, only an oxide protective film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第4図に示す従来の構造では、低抗素子の拡散
面と酸化膜の界面に蓄積した電荷や低抗素子上を通過す
る信号配線からの電界のために低抗素子表面に空乏層を
生ずる。この空乏層は低抗素子の抵抗値を上昇させる方
向に働く。この空乏層の厚みが低抗素子の拡散の深さに
対して無視できない水準になると、低抗素子の値を大き
く変動させることになる。イオン打ち込みで形成される
1μ以下の拡散深さでシート抵抗6〜9 KΩ/口以上
の低抗素子では、この現象が顕著で、抵抗値が数%から
数10%変動することがあった。
However, in the conventional structure shown in Figure 4, there is a depletion layer on the surface of the low resistance element due to charges accumulated at the interface between the diffusion surface of the low resistance element and the oxide film and an electric field from the signal wiring passing over the low resistance element. will occur. This depletion layer works to increase the resistance value of the low resistance element. When the thickness of this depletion layer reaches a level that cannot be ignored with respect to the diffusion depth of the low resistance element, the value of the low resistance element will vary greatly. This phenomenon is noticeable in low-resistance elements formed by ion implantation with a diffusion depth of 1 μm or less and a sheet resistance of 6 to 9 KΩ/hole or more, and the resistance value sometimes fluctuates from several percent to several tens of percent.

また同様に、第3図に示すような構造に高抵抗多結晶シ
リコンを使用した場合、酸化膜で保護されているだけの
ため、不純物イオンが多結晶シリコン上に進入した場合
、その電界により、多結晶シリコンの抵抗値が大きく変
動することがあった。
Similarly, when high-resistance polycrystalline silicon is used in the structure shown in Figure 3, it is only protected by an oxide film, so when impurity ions enter the polycrystalline silicon, the electric field causes The resistance value of polycrystalline silicon sometimes fluctuated greatly.

又半導体素子は特性上、光に対してエネルギー準位が変
化する為、半導体装置に可視光、赤外線、紫外線等が照
射されると、抵抗値が変化してしまうという問題点も有
していた。
Additionally, due to the characteristics of semiconductor devices, the energy level changes in response to light, so when a semiconductor device is irradiated with visible light, infrared rays, ultraviolet rays, etc., the resistance value changes. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の構或は、低濃度拡散あるいは、イ
オン打込みで形成される拡散抵抗もしくは多結晶シリコ
ンで形成される低抗素子の少なくとも一個を低抵抗導体
で覆い、この低抵抗導体は電源に対して、一定電位に保
たれていることを特徴とする。
In the structure of the semiconductor device of the present invention, at least one of the diffused resistors formed by low concentration diffusion or ion implantation or the low resistance elements formed of polycrystalline silicon is covered with a low resistance conductor, and the low resistance conductor is connected to the power source. It is characterized by being kept at a constant potential.

〔作 用〕[For production]

本発明の上記構成によれば、低濃度拡散あるいはイオン
打込みでtM或される抵抗、又は高抵抗多結晶シリコン
の少なくとも上方を一定電位に接続された低抗素子より
低抵抗の導体で低抗素子の平面面積の半分以上を覆うこ
とにより、抵抗値の変動の原因となる、不純物イオンや
近接信号線からのttsta界を遮断するので、低濃度
拡散の抵抗、多結晶シリコンが抵抗値を安定に保つこと
ができるのである。
According to the above configuration of the present invention, a low resistance element is formed using a conductor having a lower resistance than a low resistance element which is connected to a constant potential at least above the resistance which is reduced by tM by low concentration diffusion or ion implantation, or the high resistance polycrystalline silicon. By covering more than half of the plane area of the resistor, it blocks the ttsta field from impurity ions and nearby signal lines that cause resistance fluctuations, so the low-concentration diffused resistor and polycrystalline silicon stabilize the resistance value. It is possible to maintain it.

又、光が照射されることによる抵抗値の変動も防止する
ことができる。
Further, fluctuations in resistance value due to irradiation with light can also be prevented.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。第1図は本
発明の基本構成となる多桔晶シリコンによる低抗素子の
構造図である。2は多結晶シリコンを用いた低抗素子で
、その両端はコンタクト5、7を経由して電極4、6へ
引き出されている。電極4、6の材料はアルミニウムで
ある。そして多桔晶シリコン2の上部に酸化膜をはさみ
、低抵抗導体1を形成し、一定電位(低電源電位vss
s、又は高電源電位VDD、その中間電位でもよい)を
与えておく。尚、本発明に於ける酸化膜とは絶縁膜を意
図する。
Embodiments of the present invention will be described based on the drawings. FIG. 1 is a structural diagram of a low resistance element made of polycrystalline silicon, which is the basic structure of the present invention. 2 is a low resistance element using polycrystalline silicon, and both ends thereof are led out to electrodes 4 and 6 via contacts 5 and 7. The material of the electrodes 4 and 6 is aluminum. Then, an oxide film is sandwiched on top of the polycrystalline silicon 2 to form a low resistance conductor 1, and a constant potential (low power supply potential vss
s, or a high power supply potential VDD, or an intermediate potential thereof). Note that the oxide film in the present invention is intended to be an insulating film.

この様な構造の低抗素子は次の様な利点がある。A low resistance element with such a structure has the following advantages.

まず低抵抗導体1の上部に配置される信号線、及び外界
からのノイズが低抗素子へ飛び込むのを防止することが
できる。つまり低抗素子の周囲に存在する浮遊容量、/
V遊インダクタンス等から伝わる電気・磁気ノイズは、
低抵抗導体の静電しやへい効果により取り除かれる。よ
って低抗素子は、半導体装置の動作中でもノイズにより
電流一電圧特性(即ち抵抗値)が変化することなく、安
定した精度の高い素子として使われる。
First, it is possible to prevent noise from the signal line disposed above the low resistance conductor 1 and the outside world from jumping into the low resistance element. In other words, the stray capacitance that exists around the low resistance element, /
Electrical/magnetic noise transmitted from V free inductance etc.
removed by the electrostatic shielding effect of low-resistance conductors. Therefore, the low resistance element can be used as a stable and highly accurate element without changing its current-voltage characteristics (ie, resistance value) due to noise even during operation of the semiconductor device.

次に、製造工程中及び完或後に低抗素子へ外部から入り
込む+イオン、一イオンの進入を防止することができる
。つまり低抵抗導体の電位より+側に帯電しているイオ
ンは反発させ低抗素子から遠ざけ、一側に帯電している
イオンは低抵抗導体へ引きよせる。すると、半導体装置
の電源をいれている間は、低抗素子近傍のイオン分布は
一定となり、外部イオンによる電界影響を防ぐことがで
きる。
Next, it is possible to prevent positive ions and negative ions from entering the low resistance element from the outside during and after the manufacturing process. In other words, ions that are charged to the positive side of the potential of the low-resistance conductor are repelled and away from the low-resistance element, while ions that are charged to one side are attracted to the low-resistance conductor. Then, while the semiconductor device is powered on, the ion distribution in the vicinity of the low resistance element becomes constant, and it is possible to prevent the influence of the electric field due to external ions.

よって経年変化により抵抗値が変動することを防止する
ことが可能となる。
Therefore, it is possible to prevent the resistance value from changing due to aging.

さらに低抵抗導体は、外部から低抗素子へ照射される光
を遮断することが可能である。高抵抗多粘晶シリコン抵
抗は半導体である為、可視光、赤外線、紫外線等の光エ
ネルギーにより、電子エネルギーが遷移し、結果的に低
抗素子としての特性が変化してしまう。そこで低抵抗導
体という物理的保護材で覆うことにより上記の様な問題
点はなくなり安定した低抗素子となる。
Furthermore, the low-resistance conductor can block light irradiated from the outside to the low-resistance element. Since a high-resistance multiviscosity silicon resistor is a semiconductor, its electronic energy changes due to light energy such as visible light, infrared rays, and ultraviolet rays, resulting in changes in its characteristics as a low-resistance element. Therefore, by covering it with a physical protective material such as a low resistance conductor, the above-mentioned problems can be eliminated and a stable low resistance element can be obtained.

以上、外界からの影響で低抗素子特性が変動することを
防止する利点をあげてきたが、反対に低抗素子自体から
発生するノイズ、電界・磁界を周囲へおよぼさないとい
う利点もある。とくに高速で動作する回路の場合、低抗
素子を流れる電荷も急激に変動する為、熱雑音を大きく
なり、この低抗素子から放出される不要幅射は無視でき
なくなり、この様は場合、有効である。
Above, we have mentioned the advantage of preventing the characteristics of the low resistance element from changing due to the influence of the outside world, but on the other hand, there is also the advantage of preventing the noise, electric field, and magnetic field generated from the low resistance element itself from being spread to the surrounding area. . Particularly in the case of circuits that operate at high speeds, the charge flowing through the low-resistance element also fluctuates rapidly, increasing thermal noise and making it impossible to ignore unnecessary radiation emitted from the low-resistance element. It is.

抵抗の材料としては、P型多結晶シリコン、N型多結晶
シリコンの他にイオン打ち込みしないか、イオン打ち込
み量を少なくした高抵抗の多結晶シリコン(ハイレジと
呼ぶ)、又はシリコンに限らず他の半導体、及び半導体
一金属化合物においても、本発明は同じ効果を持つ。
In addition to P-type polycrystalline silicon and N-type polycrystalline silicon, resistor materials include high-resistance polycrystalline silicon with no ion implantation or with a reduced amount of ion implantation (called high resistance), or other materials other than silicon. The present invention has the same effect on semiconductors and semiconductor-metallic compounds.

低抵抗導体の材質としては、アルミニウム●タングステ
ン・モリブデンはどの金属が一般的であるが、多結晶シ
リコンでも効果はある。さらにカリウムひ素系の化合物
・超電導材料でも可能である。
Common metals for low resistance conductors include aluminum, tungsten, and molybdenum, but polycrystalline silicon is also effective. Furthermore, potassium arsenic compounds and superconducting materials are also possible.

本発明は構造が簡単である為、応用範囲が極めて広い。Since the present invention has a simple structure, it has an extremely wide range of applications.

その中から低抗素子の構造に関する応用例に焦点を絞り
、実施例をあげてゆく。
Among them, we will focus on application examples related to the structure of low resistance elements and give examples.

第5図は半導体基板表面に形成された選択的酸化膜(以
下LOCOSと呼ぶ)上に本発明の多結晶シリコン抵抗
を形成した図である。基板55上にLOCOS53を形
成し、その上に酸化119!52を介して多結晶シリコ
ン抵抗50を形成する。さらに酸化11156をはさみ
アルミニウムの導体51で抵抗50を覆い、アルミニウ
ム導体51には電源VSS54を接続しておく。LOC
OSの上部に低抗素子を形成することの利点は、LOC
OS膜が厚い為、多結晶シリコンの真下に寄生トランジ
スタができにくい、基板との距離が遠くなる為、低抗素
子と基板の間の浮遊容量が少なくなる。抵抗直下のビン
ホールによりリークが防止しやすい等があげられる。第
5図は低抵抗導体で覆うことにより、低抗素子としての
安定性、高猜度性、信頼性がさらに高まる。
FIG. 5 is a diagram showing a polycrystalline silicon resistor of the present invention formed on a selective oxide film (hereinafter referred to as LOCOS) formed on the surface of a semiconductor substrate. A LOCOS 53 is formed on a substrate 55, and a polycrystalline silicon resistor 50 is formed thereon through oxidation 119!52. Further, the resistor 50 is covered with an aluminum conductor 51 sandwiching oxide 11156, and a power supply VSS 54 is connected to the aluminum conductor 51. LOC
The advantage of forming a low resistance element on top of the OS is that the LOC
Because the OS film is thick, it is difficult to form a parasitic transistor directly under the polycrystalline silicon, and because the distance from the substrate is long, the stray capacitance between the low resistance element and the substrate is reduced. The bottle hole directly under the resistor makes it easy to prevent leaks. FIG. 5 shows that by covering with a low-resistance conductor, stability, high precision, and reliability as a low-resistance element are further improved.

第6図はLOCOSの直下に高濃度拡散領域を設けた応
用例の図である。トランジスタの耐圧を上げる為にLO
COSの下に高濃度拡散領域(ストッパー)を設ける。
FIG. 6 is a diagram of an application example in which a high concentration diffusion region is provided directly under the LOCOS. LO to increase the withstand voltage of the transistor
A high concentration diffusion region (stopper) is provided below the COS.

第6図はPチャンネル領域などで、濃いN″″ストッパ
ー65を設け、基板66よりVDD電位を与える。LO
COS64の上に多結晶シリコン抵抗60を形成し、そ
の上部をアルミニウム導体61で覆い、その電位をVD
D67とする。この構成にすると抵抗60はVDDに保
たれるアルミニウム導体61とN“ストッパー65によ
って上下からシールドされる。よって低抗素子としての
特性も安定しかつトランジスタの耐圧も上がるという二
重の効果がある。Nチャンネル領域では、LOCOS下
のP−ウェルにP1ストッパーを設け、このP+ストッ
パー及びアルミニウム導体にvSSを与えれば全く同じ
効果がmられる。
In FIG. 6, a thick N″″ stopper 65 is provided in the P channel region, and a VDD potential is applied from the substrate 66. L.O.
A polycrystalline silicon resistor 60 is formed on the COS 64, its upper part is covered with an aluminum conductor 61, and its potential is set to VD.
Let it be D67. With this configuration, the resistor 60 is shielded from above and below by the aluminum conductor 61 maintained at VDD and the N'' stopper 65.Therefore, it has the double effect of stabilizing its characteristics as a low resistance element and increasing the withstand voltage of the transistor. In the N-channel region, exactly the same effect can be achieved by providing a P1 stopper in the P-well below the LOCOS and applying vSS to this P+ stopper and the aluminum conductor.

第7図(a)は、抵抗と同じ材料て抵抗周辺をシールド
した実施同の平面図で、第7図(b)はA−B線の断面
図である。本発明のシールド効果をより高めるには、低
抗素子と同じ高さ(層)にもシールド材を形成すること
が望ましい。そこで、多結晶シリコン低抗素子70の周
囲に多結晶シリコン77を配置し、それらを全て覆うV
SSに接続されたアルミニウム導体75を形成し、アル
ミニウム導体75と多結晶シリコン77はできる限りコ
ンタクト76、78を設ける。こうすることにより多結
晶シリコン70の抵抗値は下がり、低抵抗導体に対して
シールド効果を発揮する。図中73、74は、コンタク
ト71、72を介して多桔晶シリコン70に接続される
アルミニウム導体75を同層のアルミニウム電極線であ
る。
FIG. 7(a) is a plan view of the same structure in which the periphery of the resistor is shielded using the same material as the resistor, and FIG. 7(b) is a sectional view taken along line AB. In order to further enhance the shielding effect of the present invention, it is desirable to form the shield material at the same height (layer) as the low resistance element. Therefore, polycrystalline silicon 77 is placed around the polycrystalline silicon low resistance element 70, and V
An aluminum conductor 75 connected to SS is formed, and contacts 76 and 78 are provided between the aluminum conductor 75 and the polycrystalline silicon 77 as much as possible. By doing so, the resistance value of the polycrystalline silicon 70 is lowered, and a shielding effect is exhibited for the low resistance conductor. In the figure, reference numerals 73 and 74 indicate aluminum electrode lines in the same layer as the aluminum conductor 75 connected to the polycrystalline silicon 70 via contacts 71 and 72.

第8図は低抗素子の下層にシールド層を形成した構造図
である。半導体基板83の上に酸化膜86をはさみ、導
体82を形成し、電位をVSS85とする。この導体8
2は通常第1多結晶シリコンが用いられる。そして酸化
膜をはさみ、第2多結晶シリコンによる低抗素子80が
形成され、さらに酸化膜をはさみ、VSS84へ電位を
とられたアルミニウム導体81が低抗素子80の上部を
覆う。この構造にすれば、低抗素子80をその上下層か
らシールドする為、安定した低抗素子が得られるという
効果は高い。ここで第1多結晶シリコンはアルミニウム
より高抵抗であるため第1多結晶シリコンとvSS電源
を接続する為のコンタクトを多くとる程、前記効果が大
きくなることはいうまでもない。特に導体が多結晶シリ
コンの場合、低抗素子を挾んで対向する多結晶シリコン
の両端部の2個所に少なくとも電源コンタクトを配置す
る等して、多結晶シリコン導体の各部分の電位をできる
だけ均一にするようにすれば、低抗素子に対する効果は
より一層向上する。
FIG. 8 is a structural diagram in which a shield layer is formed below a low resistance element. An oxide film 86 is sandwiched over a semiconductor substrate 83, a conductor 82 is formed, and the potential is set to VSS85. This conductor 8
2 is usually made of first polycrystalline silicon. A low-resistance element 80 made of second polycrystalline silicon is formed with the oxide film sandwiched therebetween, and an aluminum conductor 81 , which is connected to the potential VSS 84 , covers the upper part of the low-resistance element 80 , sandwiching the oxide film therebetween. With this structure, since the low resistance element 80 is shielded from its upper and lower layers, a stable low resistance element can be obtained, which is highly effective. Here, since the first polycrystalline silicon has a higher resistance than aluminum, it goes without saying that the more contacts for connecting the first polycrystalline silicon and the vSS power supply, the greater the above effect becomes. In particular, if the conductor is polycrystalline silicon, the potential of each part of the polycrystalline silicon conductor should be made as uniform as possible by placing at least two power contacts at both ends of the polycrystalline silicon, which face each other with a low resistance element in between. If this is done, the effect on the low resistance element will be further improved.

第9図(a)は第1図の構造に於いて、低抵抗導体の電
位をVDD90にとった低抗素子の構造図である。シー
ルド効果という点からするとVSSでもVDDでも変わ
りない。
FIG. 9(a) is a structural diagram of a low resistance element having the structure shown in FIG. 1, but with the potential of the low resistance conductor set to VDD90. From the point of view of shielding effectiveness, there is no difference between VSS and VDD.

第9図(b)は同じく低抵抗導体への印加電位をトラン
ジスタの出力電圧から取り出してVDD,VSSの中間
電位とする場合の一側図である。MOSトランジスタ9
1、92、93、94のトランジスタ駆動能力を各々β
,,、β,2、β、,、βN2、トランジスタしきい値
を各々vTP1、VTP2、VTNI 、VTN2とす
ると信号96の電位はvoo−v2”VTP2  −v
TP,となる。よって出力電圧は、VDDを基中とする
と、 Volt↑ 一v2 シールド効果を上げるためには、中間電位の出力インピ
ーダンスを低くする必要があるので、第9図(b)では
、v2電位のボルテージフロアとして差動対を利用し、
出力97を得ている。
Similarly, FIG. 9(b) is a side view when the potential applied to the low resistance conductor is extracted from the output voltage of the transistor and set to an intermediate potential between VDD and VSS. MOS transistor 9
1, 92, 93, and 94 are β
,,,β,2,β,,,βN2,If the transistor threshold values are vTP1, VTP2, VTNI, and VTN2, respectively, the potential of the signal 96 is voo-v2''VTP2-v
TP, becomes. Therefore, when the output voltage is based on VDD, Volt↑ - v2 In order to increase the shielding effect, it is necessary to lower the output impedance at the intermediate potential, so in Fig. 9(b), the voltage floor of the v2 potential is Using a differential pair as
An output of 97 is obtained.

さらにシールドされる低抗素子の温度特性に合わせて、
シールド導体の電位を変化させてやれば、シールド低抗
素子を変動させる原因の一つである空乏層の効果を補償
することができる。例えば第9図(b)において、トラ
ンジスタ94のゲート入力を直接ボルテージフォロアの
十端子に人力すれば、P型のシールドされる低抗素子の
空乏層効果を補償することができる。
Furthermore, according to the temperature characteristics of the low resistance element to be shielded,
By changing the potential of the shield conductor, it is possible to compensate for the effect of the depletion layer, which is one of the causes of fluctuations in the shield low resistance element. For example, in FIG. 9(b), if the gate input of the transistor 94 is directly connected to the voltage follower terminal, the depletion layer effect of the P-type shielded low resistance element can be compensated for.

第10図は中間タップ付低抗素子の応用回路図である。FIG. 10 is an application circuit diagram of a low resistance element with an intermediate tap.

抵抗を2分割して、その中間点からの出力オペアンプ1
07を通して取り出す回路で、正確に2分割された低抗
素子へ本発明を適用している。
Divide the resistor into two and output operational amplifier 1 from the midpoint.
The present invention is applied to a low-resistance element that is accurately divided into two in the circuit taken out through 07.

VDD100とVSS105にコンタクト102、10
4を介して接続された多結晶シリコン抵抗101には、
その構造上の中間点にコンタクト103が設けられ、コ
ンタクトから取り出す信号106の電位はVDD/2に
なるようにしてある。
Contacts 102 and 10 to VDD100 and VSS105
The polycrystalline silicon resistor 101 connected through 4 has a
A contact 103 is provided at a midpoint in the structure, and the potential of a signal 106 taken out from the contact is set to VDD/2.

この多結晶シリコン抵抗101の上部をvSSへ接続さ
れたアルミニウム導体109で覆うことにより、抵抗値
が周囲のノイズや電磁界からシールドされ、部分的に抵
抗値が変動してしまうのを防d二する。よって出力Vo
l0gには正確にVDD/2が出力される。
By covering the upper part of this polycrystalline silicon resistor 101 with an aluminum conductor 109 connected to vSS, the resistance value is shielded from surrounding noise and electromagnetic fields, and partial fluctuations in the resistance value are prevented. do. Therefore, the output Vo
Accurately VDD/2 is output to l0g.

第11図は第10図と目的は同じで、2本の低抗素子を
用いる場合の応用回路図である。VDD110とvSS
111の間に直列接続された2本の多結晶シリコン抵抗
114と115があり、その2本をつなぐ信号116は
オペアンプ117へ人力され、信号116の電位がその
まま出力電圧Voll8となって出力される。
FIG. 11 has the same purpose as FIG. 10, and is an applied circuit diagram when two low resistance elements are used. VDD110 and vSS
There are two polycrystalline silicon resistors 114 and 115 connected in series between 111, and a signal 116 connecting the two is input to an operational amplifier 117, and the potential of signal 116 is output as is as output voltage Vol8. .

2 とする為には、抵抗115と116の構造を全く同じに
しておき、かつ周囲からのノイズ、電磁界による影響を
防ぐ為、抵抗115と116の上層アルミニウム導体1
13と112で覆い、同一の電位111を与えておく。
2, the resistors 115 and 116 have exactly the same structure, and in order to prevent the influence of noise and electromagnetic fields from the surroundings, the upper layer aluminum conductor 1 of the resistors 115 and 116 is
13 and 112, and apply the same potential 111.

こうすることによりV。には安定した電圧が出力される
By doing this, V. A stable voltage is output.

この構成による抵抗分割は極めて応用範囲が広く、3本
、4本を直列接続しておけば、VDD/3、VDD/4
も簡単に得られる。
Resistor division with this configuration has an extremely wide range of applications, and if three or four resistors are connected in series, VDD/3, VDD/4
can also be obtained easily.

又、スタンダードセル方式による半導体集積装置内のレ
イアウト侍、予め低抗素子とそれを覆うアルミニウム等
の導体を1つのセルとして登録しておけば、簡単に自動
配置、配線処理が可能である。
Furthermore, if a low resistance element and a conductor such as aluminum covering it are registered in advance as one cell in the layout of a semiconductor integrated device using the standard cell method, automatic placement and wiring processing can be easily performed.

以上、多結晶ポリシリコン抵抗を用いた本発明の構造で
は、アルミニウム配線1番の場合を例にあげて来たが、
もちろん2層、3層配線の半導体装置でも応用できる。
Above, in the structure of the present invention using a polycrystalline polysilicon resistor, the case of aluminum wiring No. 1 has been given as an example.
Of course, it can also be applied to semiconductor devices with two-layer or three-layer wiring.

第12図はアルミ2層以上の構造図である。基板121
の上に酸化膜122をはさみ多結晶シリコン抵抗120
があり、電極124、125を通して低抗素子として動
作する。電極124、125は第1アルミニウム配線層
である。さらに酸化IllI123、126をはさんで
、第2アルミニウム配線層127があり、多結晶シリコ
ン抵抗120の上部を覆っており、かつVSS電位を与
えられている。この場合、低抗素子120とシールド材
127の距離が、アルミニウム1層配線の時より離れる
為、多少シールドの効果は減るが、低抗素子のコンタク
トをさけてシールド材のパターン設計をしなくて済むの
で、その分、設計は容易となる。
FIG. 12 is a structural diagram of two or more layers of aluminum. Substrate 121
A polycrystalline silicon resistor 120 with an oxide film 122 sandwiched thereon.
It operates as a low resistance element through electrodes 124 and 125. Electrodes 124 and 125 are first aluminum wiring layers. Further, there is a second aluminum interconnection layer 127 sandwiching the oxidized IllI 123 and 126, covering the upper part of the polycrystalline silicon resistor 120, and applying the VSS potential. In this case, the distance between the low resistance element 120 and the shielding material 127 is greater than that in the case of single-layer aluminum wiring, so the shielding effect is somewhat reduced, but the pattern of the shielding material must be designed to avoid contact with the low resistance element. Therefore, the design becomes easier.

これまでの実施例は多結晶シリコンを抵抗素材として使
う場合であったが、半導体基板に埋め込まれた拡散抵抗
の場合でも、本発明のシールド効果により抵抗の安定化
という技術は応用できる。
Although the embodiments described so far have used polycrystalline silicon as the resistance material, the technique of stabilizing the resistance by the shielding effect of the present invention can also be applied to the case of a diffused resistance embedded in a semiconductor substrate.

第2図は本発明を拡散抵抗へ応用した時の基本構造図で
ある。拡散抵抗12の両端にコンタクト15、17を設
け、アルミニウム配線14、16を電極とする。そして
拡散抵抗の上部を酸化膜をはさんでアルミニウム導体1
1で覆い、vssq醒18を与えておく。この構造によ
りアルミニウム導体11はシールド材となり、外界から
の電磁波ノイズや光、イオン、よごれを電気的かつ物理
的に遮蔽するので、拡散抵抗の安定化、高精度化の効果
がある。
FIG. 2 is a basic structural diagram when the present invention is applied to a diffused resistor. Contacts 15 and 17 are provided at both ends of the diffused resistor 12, and aluminum interconnections 14 and 16 are used as electrodes. Then, connect the aluminum conductor 1 to the top of the diffused resistor with an oxide film in between.
Cover with 1 and give vssq 18. With this structure, the aluminum conductor 11 serves as a shielding material and electrically and physically shields electromagnetic noise, light, ions, and dirt from the outside world, thereby stabilizing the diffusion resistance and improving precision.

拡散抵抗の材質としてはN−JJ板中に形成するP−ウ
エル抵抗、P−基板中に形成するウエル抵抗などの低濃
度拡散抵抗や、イオン打ち込みで形成するP+抵抗、N
4抵抗などの高濃度拡散抵抗などに本発明は適用できる
The materials for the diffused resistors include low-concentration diffused resistors such as P-well resistors formed in N-JJ boards, well resistors formed in P- substrates, P+ resistors formed by ion implantation, and N
The present invention can be applied to high concentration diffused resistors such as 4 resistors.

又低抵抗導体の材質としては、アルミニウムや多結晶シ
リコンの他、金属一半導体化合物、超電導物質などが適
用できる。
Further, as the material of the low resistance conductor, in addition to aluminum and polycrystalline silicon, metal-semiconductor compounds, superconducting substances, etc. can be used.

拡散抵抗とシールド材料の組み合わせも多くのものが可
能て、その中から抵抗の構造に黒点を絞り実施例をあげ
てゆく。
Many combinations of diffused resistors and shielding materials are possible, and we will focus on the resistor structure and give examples.

第13図は拡散抵抗の周囲を同じ拡散材料で覆った場合
の構造図である。第13図(a)は平面図、第13図(
b)はA−B線の断面図である。
FIG. 13 is a structural diagram when the periphery of the diffused resistor is covered with the same diffusion material. Figure 13(a) is a plan view, Figure 13(a) is a plan view;
b) is a sectional view taken along line AB.

拡散抵抗130が半導体基板139の浅い部分形成され
ており、その周111(tJIi方向)に同し拡散材?
.1 1 3 7を形成し、拡散抵抗130の上部を酸
化膜をはさんで覆うアルミニウム導体135は拡散材料
137とコンタクと136、138を介して接続され、
さらに電源vSSへ電位を与えられる。
The diffused resistor 130 is formed in a shallow part of the semiconductor substrate 139, and the same diffused material is formed around the periphery 111 (tJIi direction).
.. 1 1 3 7 and covers the upper part of the diffused resistor 130 with an oxide film in between, the aluminum conductor 135 is connected to the diffused material 137 through contacts 136 and 138,
Furthermore, a potential is applied to the power supply vSS.

この構造により周囲のトランジスタのソース・ドレイン
・又は拡散抵抗からの電磁界ノイズを遮蔽する効果が高
まる。図中133、134は拡散抵抗130ヘコンタク
ト131、132を介して接続される135と同じ層の
アルミニウム電極線である。
This structure increases the effect of shielding electromagnetic field noise from the source/drain of surrounding transistors or diffused resistance. In the figure, 133 and 134 are aluminum electrode lines in the same layer as 135, which are connected to the diffused resistor 130 via contacts 131 and 132.

第14図は拡散抵抗の下層部にシールド導体を形成した
場合の構造図である。p−基板143にN“埋め込み層
142があり、144、145は高不純物濃度のN型エ
ビタキシャル層で、コンタクト146によりVDDへ電
位をとられている。
FIG. 14 is a structural diagram when a shield conductor is formed in the lower layer of the diffused resistor. There is an N" buried layer 142 in the p-substrate 143, and 144 and 145 are N-type epitaxial layers with high impurity concentration, and the potential is taken to VDD by a contact 146.

140はP+拡散抵抗で、酸化膜147をはさみ、の上
部をアルミニウム導体141で覆われており、アルミ導
体141の電位もVDDとなっている。
Reference numeral 140 denotes a P+ diffused resistor, which has an oxide film 147 sandwiched therebetween and whose upper part is covered with an aluminum conductor 141, and the potential of the aluminum conductor 141 is also VDD.

この構造の拡散低抗素子は、上下・左右からシールドさ
れる為、抵抗としての安定性、精度が極めて高い。
The diffused low resistance element with this structure is shielded from the top, bottom, left and right, so it has extremely high stability and accuracy as a resistor.

この様に第13図、第14図の実施例では低抗素子の横
方向及び下方向に対するシールド効果がある為、半導体
集積装置に光やα線が照射された時に発生する電流路近
くのトランジスタのスイッチングによる基板電流の影響
を防ぐという大きな効果も有している。
In this way, in the embodiments shown in FIGS. 13 and 14, since the low resistance element has a shielding effect in the lateral and downward directions, the transistors near the current path generated when the semiconductor integrated device is irradiated with light or alpha rays. It also has the great effect of preventing the effects of substrate current due to switching.

第15図(a)は拡散抵抗の周囲をストッパーで囲んだ
場合の平面図で、第15図(b)はそのA−B線の断面
図である。N一基板で形成したp−ウエル159表面に
作られたN型拡散抵抗150の周囲にPゝストッパー1
57を形成し、コンタクト156、158によりアルミ
ニウム導体155からvSS電位を与える。この構造に
よれば、周囲からの電磁ノイズをシールドして防止する
他、ラッチアップ防止効果もある。
FIG. 15(a) is a plan view when the diffused resistor is surrounded by a stopper, and FIG. 15(b) is a sectional view taken along the line A-B. A P-stopper 1 is placed around the N-type diffused resistor 150 formed on the surface of the P-well 159 formed of the N-substrate.
57, and contacts 156, 158 provide a vSS potential from aluminum conductor 155. This structure not only shields and prevents electromagnetic noise from the surroundings, but also has the effect of preventing latch-up.

この反転型半導体の場合、N一基板の上にP型拡散抵抗
を形成し、その周囲をNゝストッパーで囲い、N+スト
ッパー及び拡散抵抗2のアルミニウム導体にはVDDを
与えることにより、やはり電磁ノイズシールド及びラッ
チアップ防止という効果がある。尚、図中、153、1
54はアルミニウム導体と同層のアルミニウム電極線で
あり、コンタクト151、152を介して抵抗150に
接続される。
In the case of this inverted semiconductor, a P-type diffused resistor is formed on the N-substrate, surrounded by an N-stopper, and VDD is applied to the N+ stopper and the aluminum conductor of the diffused resistor 2, which also prevents electromagnetic noise. It has the effect of shielding and preventing latch-up. In addition, in the figure, 153, 1
Reference numeral 54 denotes an aluminum electrode wire in the same layer as the aluminum conductor, and is connected to the resistor 150 via contacts 151 and 152.

これまで述べて来た拡散抵抗の周囲を一定電位を与えら
れた導体で覆うということによる静電遮蔽効果は、多結
晶シリコン抵抗の場合と同様前記一定電位の電源として
、VSSSVDD,又はその中間電αでもかまわない。
The electrostatic shielding effect of covering the diffused resistor with a conductor given a constant potential as described above can be achieved by using VSSSVDD or its intermediate voltage as the constant potential power source, as in the case of polycrystalline silicon resistors. α is also fine.

また、拡散抵抗に中間タップを設け、1本の拡散低抗素
子を分圧して使用する場合も、その周囲を一定電位に接
続された導体で覆うことにより、低抗素子の安定性が高
まるという効果がある。
Furthermore, even when a diffused resistor is provided with an intermediate tap and a single diffused low-resistance element is used as a voltage divider, the stability of the low-resistance element is improved by surrounding it with a conductor connected to a constant potential. effective.

さらに複数の拡散低抗素子を用いる場合も前述と同様、
本発明が適用できる。
Furthermore, when using multiple diffused low resistance elements, as described above,
The present invention is applicable.

第16図は、本発明のシールド抵抗が高周波回路のディ
レイラインとして使えることを示す等価回路である。抵
抗160〜163の周囲は一定電位の導体で囲んである
ので、コンデンサ164〜167は常に安定な容量値を
得ることができ、またシールドされているので、抵抗値
の安定性も良い。信号はvi側の抵抗端子から人力し、
出力にvou7側の抵抗端子から取り出す。
FIG. 16 is an equivalent circuit showing that the shield resistor of the present invention can be used as a delay line in a high frequency circuit. Since the resistors 160 to 163 are surrounded by a conductor having a constant potential, the capacitors 164 to 167 can always obtain a stable capacitance value, and since they are shielded, the stability of the resistance value is also good. The signal is input manually from the resistance terminal on the vi side,
Take out the output from the resistor terminal on the vou7 side.

以上述べてきた様に、本発明はその応用範囲が極めて広
い。
As described above, the present invention has an extremely wide range of applications.

回路技術の中で最も基本的な受動素子である低抗素子の
精度を上げるということは、あらゆる電子回路の中で使
われる。特に抵抗の絶対値の精度が必要な発振回路、A
/D変換回路、センサー回路、及び複数の低抗素子の相
対的な値(抵抗比)の猜度が必要なD/A変換回路、電
圧検出回路、発振停止検出回路、さらに高抵抗としてで
きる限りリーク電流を抑止が必要なスタチックRAM,
EPROMSF2 PROMなどの電子デバイスを半導
体集積装置上に形成する場合、本発明は極めて利用しや
すいものである。
Improving the accuracy of low resistance elements, which are the most basic passive elements in circuit technology, is used in all electronic circuits. Oscillation circuits that especially require precision in the absolute value of resistance, A
/D conversion circuits, sensor circuits, D/A conversion circuits that require precision in the relative values (resistance ratios) of multiple low resistance elements, voltage detection circuits, oscillation stop detection circuits, and leakage as much as possible with high resistance. Static RAM that requires current suppression,
The present invention is extremely easy to use when forming electronic devices such as EPROMSF2 PROMs on semiconductor integrated devices.

さらに本発明の低抗素子をシールド導体で覆うという技
術は、容量、トランジスタ、等の周囲をシールド導体で
覆うということにも応川可能で、容量、トランジスタの
安定性を上げることができる。
Furthermore, the technique of covering the low resistance element of the present invention with a shield conductor can also be applied to covering the periphery of a capacitor, transistor, etc. with a shield conductor, and the stability of the capacitor or transistor can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明は、既存の製造工程を用いて、低抗素子の周辺構
造パターンを少し付加するだけという簡単な横或で、低
抗素子としての安定性、情度が向上する為、その応用範
囲が極めて広い。
The present invention improves the stability and performance of a low resistance element by simply adding a small amount of peripheral structure pattern to the low resistance element using the existing manufacturing process, so its range of application is wide. Extremely spacious.

低抗素子の安定性、精度が向上するとは、低抗素子とし
ての絶対値、あるいは複数の低抗素子を用いた時の相対
抵抗比に関して、周囲の電磁界ノイズの影響を受けにく
くなるということである。
Improving the stability and accuracy of a low resistance element means that the absolute value of the low resistance element, or the relative resistance ratio when multiple low resistance elements are used, is less susceptible to the effects of surrounding electromagnetic field noise. It is.

また低抗素子の表面(一般には酸化膜)1@位がフロー
ティングにならない様にする為、イオン等の影響を受け
にくくなり、抵抗値の経年変動を防止できる。
Furthermore, since the surface (generally an oxide film) of the low resistance element is prevented from floating, it is less susceptible to the effects of ions, etc., and changes in resistance value over time can be prevented.

さらに光により低抗素子特性が変動することが防止でき
る。
Furthermore, it is possible to prevent the characteristics of the low resistance element from changing due to light.

そして低抗素子自体から発生する電磁界ノイズを軽減す
ることができる。
In addition, electromagnetic field noise generated from the low resistance element itself can be reduced.

また低濃度拡散により精度の良い高低抗素子が実現でき
る為、必要面積が少なくなり、結果的に半導体集積装置
を高集積化できる。
Furthermore, since a highly accurate high-low resistance element can be realized by low-concentration diffusion, the required area is reduced, and as a result, a semiconductor integrated device can be highly integrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の多結晶シリコンによる低抗素子の構造
図。 第2図は本発明の拡散低抗素子の構造図。 第3図は従来の多結晶シリコンによる低抗素子の構造図
。 第4図は従来の拡散低抗素子の構造図。 第5図はLOCOS上に形成した本発明の多結晶シリコ
ン抵抗の構造図。 第6図はLOCOS下にストッパーを設けた時の本発明
の多結晶シリコン抵抗の構造図。 第7図(a)は、周辺を低抗素子と同じ材料で囲んだ本
発明の多結晶シリコン抵抗の平面図、第7.図(b)は
その断面図。 第8図は低抗素子の上下層を導体で覆った本発明の多結
晶シリコン抵抗の構造図。 第9図(a)は低抗素子を覆う導体の電位をVDDにし
た、本発明の多結晶シリコン抵抗の構造図、第9図(b
)は導体の電位をトランジスタの出力とした時の一回路
例を示す図。 第10図は中間タップで出力電圧を抵抗分割する時の本
発明による低抗素子の応用回路図。 第11図は、複数の低抗素子で出力電圧を抵抗分割する
時の本発明による低抗素子の応用回路図。 第12図は二層金属配線による本発明の多結晶ボリシリ
コン抵抗の断面図。 第13図(a)周辺を抵抗と同じ材料で覆った本発明に
よる拡散抵抗の平面図、第13図(b)はその断面図。 第14図は抵抗の上下層をシールド導体で覆った本発明
の拡散低抗素子の断面図。 第15図(a)は周辺をストッパーで囲った本発明の拡
散低抗素子の平面図、第15図(b)はその断面図。 第16図はシールド導体で覆われた本発明の低抗素子を
高周波回路のディレイラインとして使用した場合の等価
回路図。 5 3 ◆ ● ・ LOCOS 6 5 ・ ●・ストッパー 以  上
FIG. 1 is a structural diagram of a low resistance element made of polycrystalline silicon according to the present invention. FIG. 2 is a structural diagram of the diffused low resistance element of the present invention. Figure 3 is a structural diagram of a conventional low resistance element made of polycrystalline silicon. Figure 4 is a structural diagram of a conventional diffused low resistance element. FIG. 5 is a structural diagram of a polycrystalline silicon resistor of the present invention formed on LOCOS. FIG. 6 is a structural diagram of the polycrystalline silicon resistor of the present invention when a stopper is provided below the LOCOS. FIG. 7(a) is a plan view of a polycrystalline silicon resistor of the present invention whose periphery is surrounded by the same material as the low resistance element. Figure (b) is a cross-sectional view. FIG. 8 is a structural diagram of a polycrystalline silicon resistor of the present invention in which the upper and lower layers of a low resistance element are covered with conductors. FIG. 9(a) is a structural diagram of the polycrystalline silicon resistor of the present invention in which the potential of the conductor covering the low resistance element is set to VDD, and FIG. 9(b)
) is a diagram showing an example of a circuit when the potential of a conductor is used as the output of a transistor. FIG. 10 is an application circuit diagram of the low resistance element according to the present invention when resistively dividing the output voltage by an intermediate tap. FIG. 11 is an application circuit diagram of the low resistance element according to the present invention when the output voltage is resistance-divided by a plurality of low resistance elements. FIG. 12 is a cross-sectional view of the polycrystalline polysilicon resistor of the present invention with two-layer metal wiring. FIG. 13(a) is a plan view of a diffused resistor according to the present invention whose periphery is covered with the same material as the resistor, and FIG. 13(b) is a cross-sectional view thereof. FIG. 14 is a sectional view of a diffused low resistance element of the present invention in which the upper and lower layers of a resistor are covered with shield conductors. FIG. 15(a) is a plan view of a diffused low resistance element of the present invention surrounded by a stopper, and FIG. 15(b) is a sectional view thereof. FIG. 16 is an equivalent circuit diagram when the low resistance element of the present invention covered with a shield conductor is used as a delay line of a high frequency circuit. 5 3 ◆ ● ・ LOCOS 6 5 ・ ●・Stopper or more

Claims (30)

【特許請求の範囲】[Claims] (1)多結晶シリコンで形成される抵抗素子の上下、左
右少なくとも1辺を低抵抗導体で覆い、前記低抵抗導体
は電源に対して一定電位に保たれていることを特徴とす
る半導体装置。
(1) A semiconductor device characterized in that a resistive element made of polycrystalline silicon is covered with a low-resistance conductor on at least one of the upper, lower, left and right sides, and the low-resistance conductor is maintained at a constant potential with respect to a power source.
(2)半導体基板に形成された選択的酸化膜(以下LO
COS)の上部に前記多結晶シリコンを形成したことを
特徴とする請求項1記載の半導体装置。
(2) Selective oxide film (hereinafter referred to as LO) formed on the semiconductor substrate
2. The semiconductor device according to claim 1, wherein the polycrystalline silicon is formed on top of a COS.
(3)半導体基板に形成された前記LOCOSの下に高
濃度拡散領域を設け一定の電位を与えたことを特徴とす
る請求項2記載の半導体装置。
(3) The semiconductor device according to claim 2, wherein a high concentration diffusion region is provided under the LOCOS formed on the semiconductor substrate and a constant potential is applied thereto.
(4)前記多結晶シリコンで形成される抵抗素子と同一
の層に前記導体を形成し、前記導体を一定電位に保つこ
とを特徴とする請求項1記載の半導体装置。
(4) The semiconductor device according to claim 1, wherein the conductor is formed in the same layer as the resistance element formed of polycrystalline silicon, and the conductor is maintained at a constant potential.
(5)前記多結晶シリコンで形成された抵抗素子の上部
を前記低抵抗導体で覆い、前記低抵抗導体を一定電位に
保つことを特徴とする請求項1記載の半導体装置。
(5) The semiconductor device according to claim 1, wherein an upper part of the resistance element made of polycrystalline silicon is covered with the low resistance conductor, and the low resistance conductor is maintained at a constant potential.
(6)前記多結晶シリコンで形成される抵抗素子の下部
を前記低抵抗導体で覆い、前記低抵抗導体を一定電位に
保つことを特徴とする請求項1記載の半導体装置。
(6) The semiconductor device according to claim 1, wherein a lower part of the resistance element formed of polycrystalline silicon is covered with the low resistance conductor, and the low resistance conductor is maintained at a constant potential.
(7)前記低抵抗導体の電位を半導体装置の高電位(V
DD)としたことを特徴とする請求項1記載の半導体装
置。
(7) The potential of the low resistance conductor is set to the high potential of the semiconductor device (V
2. The semiconductor device according to claim 1, wherein the semiconductor device is a semiconductor device (DD).
(8)前記低抵抗導体の電位を半導体装置の低電位(V
SS)としたことを特徴とする請求項1記載の半導体装
置。
(8) The potential of the low resistance conductor is set to the low potential of the semiconductor device (V
2. The semiconductor device according to claim 1, wherein the semiconductor device is SS).
(9)前記低抵抗導体の電位を半導体装置の高電位と低
電位の中間電位とすることを特徴とする請求項1記載の
半導体装置。
(9) The semiconductor device according to claim 1, wherein the potential of the low resistance conductor is set to an intermediate potential between a high potential and a low potential of the semiconductor device.
(10)前記低抵抗導体の外周を前記抵抗素子の外周と
同一又は大きくし、前記抵抗素子の上部又は下部へ形成
したことを特徴とする請求項1記載の半導体装置。
(10) The semiconductor device according to claim 1, wherein the outer periphery of the low resistance conductor is the same as or larger than the outer periphery of the resistance element, and is formed above or below the resistance element.
(11)前記抵抗素子の両端に位置するコンタクト部を
除く領域について、その上部又は下部を前記低抵抗導体
で覆うことを特徴とした請求項1記載の半導体装置。
(11) The semiconductor device according to claim 1, wherein an upper or lower portion of a region other than a contact portion located at both ends of the resistor element is covered with the low-resistance conductor.
(12)前記抵抗素子の少なくとも一端を定電源電位(
VDD又はVSS又は中間電位)として動作させ、前記
低抵抗導体の電位を前記定電源電位としたことを特徴と
する請求項1記載の半導体装置。
(12) Connect at least one end of the resistive element to a constant power supply potential (
2. The semiconductor device according to claim 1, wherein the semiconductor device is operated at a voltage of VDD, VSS, or an intermediate potential, and the potential of the low resistance conductor is set as the constant power supply potential.
(13)前記抵抗素子の材質を、イオンの打ち込み量を
微量にした高抵抗多結晶シリコンとしたことを特徴とす
る請求項1記載の半導体装置。
(13) The semiconductor device according to claim 1, wherein the material of the resistance element is high-resistance polycrystalline silicon into which a small amount of ions are implanted.
(14)一つの前記抵抗素子に中間タップ(コンタクト
)を複数設け、複数の抵抗素子として使用して、この複
数の抵抗素子の上部又は下部を共通の一定電位を持つ前
記低抵抗導体で覆うことを特徴とする請求項1記載の半
導体装置。
(14) Providing a plurality of intermediate taps (contacts) on one resistor element, using it as a plurality of resistor elements, and covering the upper or lower part of the plurality of resistor elements with the low-resistance conductor having a common constant potential. The semiconductor device according to claim 1, characterized in that:
(15)複数の前記抵抗素子を同一の材料で形成し、隣
接して配置し、この複数の抵抗素子の上部又は下部を共
通の電位を持つ前記低抵抗導体で覆うことを特徴とする
請求項1記載の半導体装置。
(15) A plurality of the resistance elements are formed of the same material, are arranged adjacent to each other, and upper or lower parts of the plurality of resistance elements are covered with the low resistance conductor having a common potential. 1. The semiconductor device according to 1.
(16)拡散抵抗で形成される抵抗素子の少なくとも一
辺を低抵抗導体で覆い、この低抵抗導体は電源に対して
一定に保たれていることを特徴とする半導体装置。
(16) A semiconductor device characterized in that at least one side of a resistance element formed of a diffused resistor is covered with a low resistance conductor, and the low resistance conductor is kept constant with respect to a power source.
(17)前記抵抗素子の少なくとも一辺に沿って、前記
低抗素子と同一材料の前記導体を配置し、この導体に一
定電位を与えたことを特徴とする請求項16記載の半導
体装置。
(17) The semiconductor device according to claim 16, wherein the conductor made of the same material as the low resistance element is arranged along at least one side of the resistance element, and a constant potential is applied to the conductor.
(18)前記抵抗素子の少なくとも一辺に沿って、高濃
度の拡散領域を設け、この拡散領域に一定の電圧を与え
ことを特徴とする請求項16記載の半導体装置。
(18) The semiconductor device according to claim 16, characterized in that a highly doped diffusion region is provided along at least one side of the resistance element, and a constant voltage is applied to the diffusion region.
(19)前記抵抗素子の上部を前記低抵抗導体で覆い、
この低抵抗導体に一定電位を与えたことを特徴とする請
求項16記載の半導体装置。
(19) covering the upper part of the resistance element with the low resistance conductor;
17. The semiconductor device according to claim 16, wherein a constant potential is applied to the low resistance conductor.
(20)前記抵抗素子の下部を前記低抵抗導体で覆い、
この低抵抗導体に一定電位を与えたことを特徴とする請
求項16記載の半導体装置。
(20) covering a lower part of the resistance element with the low resistance conductor;
17. The semiconductor device according to claim 16, wherein a constant potential is applied to the low resistance conductor.
(21)前記低抵抗導体の電位を高電位(VDD)とし
たことを特徴とする請求項16記載の半導体装置。
(21) The semiconductor device according to claim 16, wherein the potential of the low resistance conductor is set to a high potential (VDD).
(22)前記低抵抗導体の電位を低電位(VSS)とし
たことを特徴とする請求項16記載の半導体装置。
(22) The semiconductor device according to claim 16, wherein the potential of the low resistance conductor is set to a low potential (VSS).
(23)前記低抵抗導体の電位を高電位と低電位の中間
電位とすることを特徴とする請求項16記載の半導体装
置。
(23) The semiconductor device according to claim 16, wherein the potential of the low resistance conductor is set to an intermediate potential between a high potential and a low potential.
(24)前記低抵抗導体の外周を前記抵抗素子の外周と
同一又は大きくして、前記抵抗素子の上部又は下部へ形
成したことを特徴とする請求項16記載の半導体装置。
(24) The semiconductor device according to claim 16, wherein the outer periphery of the low resistance conductor is the same as or larger than the outer periphery of the resistance element, and is formed above or below the resistance element.
(25)前記抵抗素子の両端に位置するコンタクト部を
除く領域について、その上部又は下部へ前記低抵抗導体
を形成したことを特徴とする請求項16記載の半導体装
置。
(25) The semiconductor device according to claim 16, wherein the low resistance conductor is formed above or below a region other than a contact portion located at both ends of the resistance element.
(26)前記抵抗素子の少なくとも一端を定電源電位(
VDD又はVSS又は中間電位)として使用し、前記低
抵抗導体の電位を前記定電源電位としたことを特徴とす
る請求項16記載の半導体装置。
(26) Connect at least one end of the resistance element to a constant power supply potential (
17. The semiconductor device according to claim 16, wherein the potential of the low resistance conductor is used as the constant power supply potential.
(27)1つの前記抵抗素子に中間タップ(コンタクト
)を複数設け、複数の抵抗素子として使用して、この複
数の抵抗素子の上部又は下部へ共通の一定電位を持つ前
記低抵抗導体を形成することを特徴とする請求項16記
載の半導体装置。
(27) One resistor element is provided with a plurality of intermediate taps (contacts) and used as a plurality of resistor elements, and the low resistance conductor having a common constant potential is formed above or below the plurality of resistor elements. 17. The semiconductor device according to claim 16.
(28)複数の前記抵抗素子を同一の材料で形成し隣接
して配置し、この複数の抵抗素子の上部又は下部が共通
の一定電位を持つ前記低抵抗導体を形成することを特徴
とする請求項16記載の半導体装置。
(28) A claim characterized in that a plurality of the resistance elements are formed of the same material and arranged adjacent to each other, and the upper or lower parts of the plurality of resistance elements form the low resistance conductor having a common constant potential. 17. The semiconductor device according to item 16.
(29)前記拡散抵抗を、低濃度拡散で形成することを
特徴とする請求項16記載の半導体装置。
(29) The semiconductor device according to claim 16, wherein the diffused resistor is formed by low concentration diffusion.
(30)前記拡散抵抗をイオン打ち込みで形成すること
を特徴とする請求項16記載の半導体装置。
(30) The semiconductor device according to claim 16, wherein the diffused resistor is formed by ion implantation.
JP1290499A 1988-11-22 1989-11-08 Semiconductor device Expired - Lifetime JP2864576B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
GB9301741A GB2262187A (en) 1988-11-22 1989-11-21 Semiconductor resistors
PCT/JP1989/001180 WO1990005995A1 (en) 1988-11-22 1989-11-21 Semiconductor device
GB9015141A GB2232530B (en) 1988-11-22 1989-11-21 A high precision semiconductor resistor device
KR1019900701560A KR900702572A (en) 1988-11-22 1990-07-20 Semiconductor device
US07/965,545 US5428242A (en) 1988-11-22 1992-10-23 Semiconductor devices with shielding for resistance elements
GB9301742A GB2262188B (en) 1988-11-22 1993-01-29 A high precision semiconductor resistor device
HK105997A HK105997A (en) 1988-11-22 1997-06-26 A high precision semiconductor resistor device
HK120897A HK120897A (en) 1988-11-22 1997-06-26 A high precision semiconductor resistor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP29508388 1988-11-22
JP63-295083 1988-11-22
JP8109489 1989-03-31
JP1-81094 1989-03-31

Publications (2)

Publication Number Publication Date
JPH0316164A true JPH0316164A (en) 1991-01-24
JP2864576B2 JP2864576B2 (en) 1999-03-03

Family

ID=26422135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290499A Expired - Lifetime JP2864576B2 (en) 1988-11-22 1989-11-08 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2864576B2 (en)
KR (1) KR900702572A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903033A (en) * 1996-11-29 1999-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including resistance element with superior noise immunity
JP2004273685A (en) * 2003-03-07 2004-09-30 Taiyo Yuden Co Ltd High frequency module
JP2006049581A (en) * 2004-08-04 2006-02-16 Seiko Instruments Inc Resistance circuit
JP2006269573A (en) * 2005-03-23 2006-10-05 Seiko Instruments Inc Semiconductor device
JP2007085901A (en) * 2005-09-22 2007-04-05 Yazaki Corp Voltage-dividing circuit
US7439146B1 (en) * 2000-08-30 2008-10-21 Agere Systems Inc. Field plated resistor with enhanced routing area thereover
KR100880506B1 (en) * 2002-03-19 2009-01-28 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Shield structure for semiconductor integrated circuit
WO2016056212A1 (en) * 2014-10-07 2016-04-14 株式会社デンソー Semiconductor device and manufacturing method therefor
JP2016076692A (en) * 2014-10-07 2016-05-12 株式会社デンソー Semiconductor device and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5903033A (en) * 1996-11-29 1999-05-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including resistance element with superior noise immunity
KR100286782B1 (en) * 1996-11-29 2001-04-16 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device including resistance element with superior noise immunity
US7439146B1 (en) * 2000-08-30 2008-10-21 Agere Systems Inc. Field plated resistor with enhanced routing area thereover
KR100880506B1 (en) * 2002-03-19 2009-01-28 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Shield structure for semiconductor integrated circuit
JP2004273685A (en) * 2003-03-07 2004-09-30 Taiyo Yuden Co Ltd High frequency module
JP2006049581A (en) * 2004-08-04 2006-02-16 Seiko Instruments Inc Resistance circuit
JP4723827B2 (en) * 2004-08-04 2011-07-13 セイコーインスツル株式会社 Resistance circuit
JP2006269573A (en) * 2005-03-23 2006-10-05 Seiko Instruments Inc Semiconductor device
JP2007085901A (en) * 2005-09-22 2007-04-05 Yazaki Corp Voltage-dividing circuit
WO2016056212A1 (en) * 2014-10-07 2016-04-14 株式会社デンソー Semiconductor device and manufacturing method therefor
JP2016076692A (en) * 2014-10-07 2016-05-12 株式会社デンソー Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2864576B2 (en) 1999-03-03
KR900702572A (en) 1990-12-07

Similar Documents

Publication Publication Date Title
US4908682A (en) Power MOSFET having a current sensing element of high accuracy
US5428242A (en) Semiconductor devices with shielding for resistance elements
US6046476A (en) SOI input protection circuit
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
US5063429A (en) High density input/output cell arrangement for integrated circuits
US4143391A (en) Integrated circuit device
EP0170268A2 (en) Complementary MOS integrated circuit having means for preventing latch-up phenomenon
JPH0316164A (en) Semiconductor device
EP0814508A1 (en) Semiconductor device having element with high breakdown voltage
KR860000159B1 (en) Semi-conductor memory
US5548152A (en) Semiconductor device with parallel-connected diodes
US5424565A (en) Semiconductor detector
US8823137B2 (en) Semiconductor device
EP0037103B1 (en) Semiconductor device
KR910000229B1 (en) Semiconductor integrated circuit device having a protected circuit and a method for manufacturing thereof
US6552393B2 (en) Power MOS transistor having increased drain current path
US6489658B2 (en) MOS-transistor for a photo cell
KR900002886B1 (en) Semiconductor memory
WO1990005995A1 (en) Semiconductor device
JP2684712B2 (en) Field effect transistor
JP2840239B2 (en) Master slice type semiconductor device
US11789168B2 (en) Ionizing radiation detector
US20220415717A1 (en) Structure for detecting/monitoring process charging damage due to metal and isolation well charging
JPH0817206B2 (en) Semiconductor device
US5936290A (en) Semiconductor device having an insulated gate field effect transistor and a well spaced from the channel region of the insulated gate field effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

EXPY Cancellation because of completion of term