JPH03160194A - Fan - Google Patents

Fan

Info

Publication number
JPH03160194A
JPH03160194A JP1298627A JP29862789A JPH03160194A JP H03160194 A JPH03160194 A JP H03160194A JP 1298627 A JP1298627 A JP 1298627A JP 29862789 A JP29862789 A JP 29862789A JP H03160194 A JPH03160194 A JP H03160194A
Authority
JP
Japan
Prior art keywords
fan
rotating blade
outer frame
magnetic
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1298627A
Other languages
Japanese (ja)
Inventor
Kenji Oe
健二 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1298627A priority Critical patent/JPH03160194A/en
Priority to KR1019900018522A priority patent/KR910010074A/en
Publication of JPH03160194A publication Critical patent/JPH03160194A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To miniaturize a fan by arranging magnetic bodies at the tip portions of rotary blades and providing magnetism generating means composed of plural electromagnets, at an outer frame covering the periphery of rotary blades, and arranging so that rotary blades may be rotated by means of magnetic force between both. CONSTITUTION:A fan is constituted by providing magnetic bodies 5 at the tip portions of rotary blades 6 on the one hand and plural magnetism generating means (electromagnets) 1-4 at an outer frame 7 which is provided so as to cover the periphery of these rotary blades 6, on the other hand. Rotary blades 6 are rotatably supported by means of a support shaft 9 provided at the center portion of the outer frame 7. And rotary blades 6 are arranged to be rotated by means of magnetic force which acts on between electromagnets and magnetic bodies 5, by controlling electrification to electromagnets 1-4.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、送風を目的とするファンに関し、特に小型で
、送風によって発生する騒音が小さいファンに関する. [従来技術] 従来のファンの一例を第13図に示す.従来のファンは
モータ103の軸に回転羽根102が連結され、送風さ
れる空気の流れの中心にモータ103が配置されていた
. 空気の流れを第13図(b)に矢印で示す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fan for the purpose of blowing air, and particularly to a fan that is small and generates little noise when blowing air. [Prior Art] Figure 13 shows an example of a conventional fan. In conventional fans, rotating blades 102 are connected to the shaft of a motor 103, and the motor 103 is placed at the center of the flow of air. The air flow is shown by arrows in FIG. 13(b).

[本発明か解決しようとするl!JIn点コこのため第
13図(b)に示すようにモータ】03の背面に空気が
逆流し、空スの流れが乱され、騒音の発生の原因となっ
ていた。
[This invention attempts to solve the problem!] For this reason, as shown in FIG. 13(b), air flows back to the back of the motor 03, disrupting the flow of air and causing noise.

又、ファンを小型化しようとしても回転羽根102の中
心にモータ103が配置されているので、モータ103
の大きさのためファンを小さくするには限度があった。
Furthermore, even if an attempt is made to downsize the fan, since the motor 103 is placed at the center of the rotating blades 102, the motor 103
There was a limit to how small the fan could be made due to its size.

[問題点を解決するための手段コ 第1の請求項は、回転羽根と、回転羽根の周回に沿って
設けられた外枠を有するファンに於いて、a.回転羽根
の先端部に、又は回転羽根の先端部と回転羽根の先端部
を結ぶ連結部に、磁性体を有し、 b.複数個の電磁石て構戒される磁1発生手段を外枠に
有し、 磁性体と磁気発生手段との間に働く磁気的力によって回
転羽根を回転させることを特徴とするファンである. 第2の請求項は、第1の請求項のファンに於いて、磁性
体の周回上の位置を検出する位置検出手段を有し、磁性
体の位置に対応して磁ズ発生手段の各電磁石で発生する
磁気の強さ、又は磁1の極性と強さを制御し、磁性体I
こ対して一方向の回転力を与えることを特徴とするファ
ンである.第3の請求項は、第1の請求項又は第2の請
求項のファンに於いて、複数個の電磁石として機能する
コイルを取付(ナたフレキシブルプリント基板を有し、
フレキシブルプリント基板を回転羽根の周回に沿って屈
曲させて外枠に取付番ナ、磁気発生手段として用いる、
ファンである. 第4の請求項は、第1〜第3の請求項のファンに於いて
、 a.回転羽根の先端部で、又は回転羽根の先端部と回転
羽根の先端部を結ぶ連結部で、回転羽根を支え、 b.回転羽根の回転軸に接して回転軸を支える、ペアリ
ングを有しないことを、特徴とする、ファンである。
[Means for Solving the Problems] The first claim provides a fan having a rotating blade and an outer frame provided along the circumference of the rotating blade, which includes: a. A magnetic material is provided at the tip of the rotating blade or in a connecting portion connecting the tip of the rotating blade and the tip of the rotating blade, b. This fan is characterized in that it has a magnet 1 generating means in its outer frame which is supported by a plurality of electromagnets, and its rotary blades are rotated by the magnetic force acting between the magnetic body and the magnetism generating means. A second claim is a fan according to the first claim, which includes a position detecting means for detecting the position of the magnetic body on its circumference, and each electromagnet of the magnetic generation means corresponds to the position of the magnetic body. Control the strength of the magnetism generated in the magnetic material I, or the polarity and strength of the magnetic material I.
This fan is characterized by applying rotational force in one direction to the fan. A third claim is a fan according to the first claim or the second claim, in which a plurality of coils functioning as electromagnets are installed (or the fan has a flexible printed circuit board).
A flexible printed circuit board is bent along the circumference of the rotating blade, and is attached to the outer frame and used as a magnetism generating means.
I'm a fan. A fourth claim provides the fan according to any one of the first to third claims, comprising: a. supporting the rotating blade at the tip of the rotating blade or at a connection connecting the tip of the rotating blade and the tip of the rotating blade; b. This fan is characterized in that it does not have a pairing that supports the rotating shaft in contact with the rotating shaft of the rotating blade.

[実施例コ [第1の請求項の実施例] 第1図は第1の請求項の第1の実施例のファンの分解図
であり、回転羽根6の先端部に磁性体5(第1図では複
数の磁性体の一つのみに5の符号を付している)を有し
、外枠7に1〜4の磁気発生手段を有するファンである
. 第2図は第1の請求項の第2の実施例のファンの分#図
であり、回転羽根】4の先端部と、回転羽根の先端部と
回転羽根の先端部を結ぶ連結部との両方に磁性体13(
第2図では複数の磁性体の一つのみに13の符号を付し
ている)を有し、外枠15に11と12の磁気発生手段
を有するファンである。
[Embodiment 1 [Embodiment of the first claim] FIG. 1 is an exploded view of a fan according to the first embodiment of the first claim, in which a magnetic material 5 (a first In the figure, only one of the plurality of magnetic bodies is given the reference numeral 5), and the outer frame 7 has magnetism generating means 1 to 4. FIG. 2 is a partial view of the fan according to the second embodiment of the first claim, and shows the connection between the tip of the rotating blade 4 and the connecting portion connecting the tip of the rotating blade and the tip of the rotating blade. Magnetic material 13 (
In FIG. 2, only one of the plurality of magnetic bodies is designated by the reference numeral 13), and the outer frame 15 has magnetism generating means 11 and 12.

磁性体とは、鉄片等の磁気によって吸引される物体か、
若しくは永久磁石等の自ら磁気を有する物体である. 1R3図は第1の実施例の磁気発生手段と磁性体の間に
働く磁気的力を説明する図である.第1の実施例は磁性
体として鉄片等の磁気Xこよって吸引される物体(以下
鉄片という)を用いている.第3図の磁気発生手段20
は第1図の磁気発生手段1の断面であり、21〜23は
磁気発生手段1に取付けられた電磁石である.24は第
1図の鉄片5の断面である.回転羽根の回転と共に鉄片
24は電磁石21〜23の近傍を通過する.第3図(a
)に示すように鉄片24が電磁石21の直下にある場合
は、電磁石22に電流が流され、鉄片24は電磁石22
に吸引される.従って回転羽根は回転し、鉄片も移動す
る. 第3図(b)に示すように鉄片24が電磁石21と電磁
石22の間にある期間は、電磁石22に電流が流され続
け、鉄片24は電磁石22に吸引される. 第3図(c)に示すように鉄片24か電磁石22の直下
に移動すると、電磁石22の電流は止められ、電磁石2
3に電流が流される.鉄片24は電磁石23に吸引され
る. このようにして回転羽根は回転する.電磁石の吸引力は
鉄片24が電磁石の直下に来たときにゼロになる. 上記の説明は電磁石3個と鉄片1個の例であるが、回転
羽根の先#gjこはより多くの鉄片が取付けられ、磁気
発生手段にはより多くの電磁石が含まれ、より多くの鉄
片を吸引する.又、磁気発生手段上の電磁石の配置の間
隔を全て同じとせず、全ての電磁石の吸引力が同時にゼ
ロとなるのを避け、回転羽根が受ける回転力を滑らかに
する.或いはtR3図(b)と(c)で電磁石23にも
電流を流し、全ての電磁石の吸引力が同時にゼロとなる
のを避ける. 回転羽根の全周に渡って、第1図の磁気発生手段1の電
磁石と鉄片の相対的位置関係と、磁気発生手段3の電磁
石と鉄片の相対的位置関係とを等しくし、回転羽根が磁
気発生手段1によって受ける回転力と磁気発生手段3に
よって受ける回転力を常に等しくする.同様に磁気発生
手段2によって受ける回転力と磁気発生手段4によって
受ける回転力を常に等しくする. 更に、磁気発生手段1の電磁石と鉄片の相対的位置関係
と、磁気発生手段2の電磁百と鉄片の相対的位置関係と
をずらし、1〜4の磁気発生手段によって受番ナる回転
力を清らカiにする.第4図は第2の実施例の磁気発生
手段と磁性体の間に働く磁賀的力を説明する図である.
第2の実施例は磁性体として永久磁石等の自ら磁気を有
する物体(以下磁石という)を用いている.31〜37
は磁気発生手段l1に取付けられた電磁石であり、38
と39は磁石である.31〜37の電磁石は周回にそっ
て湾曲して取付けられているが、第4図では直線状に並
べて説明する.回転羽根の回転と共に38と39の磁石
は電磁石31〜37の近傍を通過する. 尚、周回とは回転羽根が、或いは回転羽根の先端部を連
結する連結部等が、回転する曜に描く軌跡をいう. 各電磁石は磁石が通過する毎に交互にN極とS極の磁界
を発生する. 例えば電磁石34は第4図(a)では磁界はゼロである
が、磁石38が近ずくにつれて第4図(b)ではN極に
なり、第4図(d)では再びゼロに戻り、第4図(e)
ではS極になる.磁石38が通過すると第4図(g)で
再びゼロに戻る.電磁石の磁極と磁石の磁極との、吸引
力と反発力によって磁石は回転力を受け、回転羽根が回
転する. 第4図に示すように31と34の電磁石の極性の経時変
化は同じである.各電磁石には3相の電流を流すことに
よって回転羽根を回転できる.第1の請求項のファンは
、第1図と第2図の実施例に示すように外枠の内側の殆
どの部分が回転羽根に占められるという特徴がある. 磁気発生手段は回転羽根の周回の全周に設置することも
できるが、ファンの小型化のため第1図や第2図の実施
例のように周回の一部分に限ることが望ましい. [第2の請求項の実施例コ 第3図の電磁石22や第4図の電磁石34は、鉄片24
や磁石38の磁性体の位置に応じて、磁界を発生したり
、磁界の極性を変える.このために電磁石に対する磁性
体の相対的な位置を検出する位置検出手段を有し、磁性
体の位置に対応して磁気発生手段の各電磁石で発生する
磁気を制御する.第2の請求項はこの駆動方法に関する
.位置検出手段書こは幾つかの方法が有る.位置検出手
段の第lの例は、a.回転羽根に、又は回転羽根の先端
部と回転羽根の先端部を結ぶ連結部に、光を反射する反
射面を飛び石状に設け、b.外枠に光線の発光手段と受
光手段を設ける方法である. 外枠の発光手段から発射した光線が反射面から反射され
るのを受光手段で検出し、回転羽根の回転角度を求めて
磁性体の位置を検出する.受光手段が1個の場合は反射
面は回転羽根又は連結部の全周に渡って設ける必要があ
る.受光手段が2個以上の場合は反射面は半周以下に設
ける.磁性体の表面をニッケルメッキ等で鏡面化するこ
とにより、反射面と磁性体を共用することができる。
A magnetic material is an object that is attracted by magnetism, such as a piece of iron, or
Or it is an object that has its own magnetism, such as a permanent magnet. Figure 1R3 is a diagram explaining the magnetic force acting between the magnetism generating means and the magnetic body in the first embodiment. The first embodiment uses an object (hereinafter referred to as an iron piece) that is attracted by the magnetic X, such as an iron piece, as the magnetic material. Magnetism generating means 20 in FIG.
is a cross section of the magnetism generating means 1 shown in FIG. 1, and 21 to 23 are electromagnets attached to the magnetism generating means 1. 24 is a cross section of the iron piece 5 in FIG. As the rotating blade rotates, the iron piece 24 passes near the electromagnets 21 to 23. Figure 3 (a
), when the iron piece 24 is directly under the electromagnet 21, current is passed through the electromagnet 22, and the iron piece 24
is attracted to. Therefore, the rotating blade rotates and the iron piece also moves. As shown in FIG. 3(b), while the iron piece 24 is between the electromagnets 21 and 22, current continues to flow through the electromagnet 22, and the iron piece 24 is attracted to the electromagnet 22. As shown in FIG. 3(c), when the iron piece 24 is moved directly under the electromagnet 22, the current in the electromagnet 22 is stopped and the electromagnet 2
A current is applied to 3. The iron piece 24 is attracted to the electromagnet 23. In this way, the rotating blade rotates. The attractive force of the electromagnet becomes zero when the iron piece 24 comes directly under the electromagnet. The above explanation is an example of three electromagnets and one iron piece, but more iron pieces are attached to the tip of the rotating blade, more electromagnets are included in the magnetic generation means, and more iron pieces are attached to the tip of the rotating blade. Aspirate. In addition, the spacing between the electromagnets on the magnetic generation means is not all the same, so that the attractive force of all the electromagnets does not become zero at the same time, and the rotational force applied to the rotating blades is smoothed. Alternatively, in tR3 diagrams (b) and (c), current is also applied to the electromagnet 23 to avoid the attraction forces of all electromagnets from becoming zero at the same time. Over the entire circumference of the rotary blade, the relative positional relationship between the electromagnet and the iron piece of the magnetism generating means 1 shown in FIG. The rotational force received by the generation means 1 and the rotational force received by the magnetic generation means 3 are always made equal. Similarly, the rotational force received by the magnetism generation means 2 and the rotational force received by the magnetism generation means 4 are always made equal. Furthermore, the relative positional relationship between the electromagnet and the iron piece of the magnetism generating means 1 and the relative positional relationship between the electromagnet and the iron piece of the magnetism generating means 2 are shifted, so that the magnetic generating means 1 to 4 generate rotational forces of different numbers. Make it pure. FIG. 4 is a diagram illustrating the magnetic force acting between the magnetism generating means and the magnetic body in the second embodiment.
The second embodiment uses an object (hereinafter referred to as a magnet) that has its own magnetism, such as a permanent magnet, as the magnetic material. 31-37
is an electromagnet attached to the magnetism generating means l1, and 38
and 39 are magnets. The electromagnets 31 to 37 are installed curved along the circumference, but in FIG. 4, they are arranged in a straight line for explanation. As the rotating blade rotates, magnets 38 and 39 pass near electromagnets 31 to 37. Note that "circling" refers to the locus drawn by the rotating blades or by the connecting parts connecting the tips of the rotating blades during rotation. Each electromagnet generates magnetic fields with N and S poles alternately each time the magnet passes. For example, the magnetic field of the electromagnet 34 is zero in FIG. 4(a), but as the magnet 38 approaches, it becomes N pole in FIG. 4(b), returns to zero in FIG. 4(d), and Figure (e)
Then it becomes the S pole. When the magnet 38 passes, it returns to zero again in Figure 4 (g). The magnet receives rotational force due to the attractive and repulsive forces between the magnetic poles of the electromagnet and the magnetic poles of the magnet, causing the rotating blades to rotate. As shown in Figure 4, the polarity changes over time of electromagnets 31 and 34 are the same. The rotating blades can be rotated by passing three-phase current through each electromagnet. The fan according to the first aspect is characterized in that most of the inside of the outer frame is occupied by rotating blades, as shown in the embodiments of FIGS. 1 and 2. Although the magnetism generating means can be installed all around the rotation of the rotating blade, it is preferable to limit it to a part of the rotation as in the embodiments shown in FIGS. 1 and 2 in order to miniaturize the fan. [Embodiment of the second claim] The electromagnet 22 in FIG. 3 and the electromagnet 34 in FIG.
It generates a magnetic field and changes the polarity of the magnetic field depending on the position of the magnetic material of the magnet 38. For this purpose, it has a position detection means for detecting the relative position of the magnetic body with respect to the electromagnet, and controls the magnetism generated by each electromagnet of the magnetism generating means in accordance with the position of the magnetic body. The second claim relates to this driving method. There are several methods for writing the position detection means. A first example of the position detection means includes a. A reflective surface that reflects light is provided in the shape of a stepping stone on the rotary blade or in a connecting portion connecting the tip of the rotary blade and the tip of the rotary blade, b. This is a method in which a light emitting means and a light receiving means are provided in the outer frame. The light beam emitted from the light emitting means in the outer frame is reflected from the reflective surface by the light receiving means, and the rotation angle of the rotating blade is determined to detect the position of the magnetic body. If there is only one light receiving means, the reflective surface must be provided all around the rotating blade or connecting part. If there are two or more light-receiving means, the reflective surface is provided at less than half the circumference. By mirror-finishing the surface of the magnetic material with nickel plating or the like, the reflective surface and the magnetic material can be used in common.

第2の例は、a.回転羽根に、又は回転羽根の先端部と
回転羽根の先端部を結ぶ連結部に、光を遮断する手段を
飛び石伏に設け、b.外枠に光線の発光手段と受光手段
を段ける方法である.外枠の発光手段カ)ら発射した光
線が遮断手段によって遮断され、受光手段で検出不可能
になることによって回転羽根の回転角度を求めて、磁性
体の位置を検出する. 第3の例は、a.回転羽根に、又は回転羽根の先端部と
回転羽根の先端部を結ぶ連結部に、位置検出用の磁性体
を飛び石状に設け、b.外枠にホール素子等の磁気感応
素子を段Cナる方法である.磁気感応素子によって位置
検出用の磁性体の位置を検出し、回転羽根の回転角度を
求めて第1の請求項の回転駆動用の磁性体の位置を求め
る。位置検出用の磁性体と、回転駆動用の磁性体を共用
することも可能である。
A second example is a. A means for blocking light is provided on the rotating blade or at a connecting portion connecting the tip of the rotating blade and the tip of the rotating blade, b. This is a method in which the light emitting means and the light receiving means are arranged in the outer frame. The light beam emitted from the light emitting means in the outer frame is blocked by the blocking means and cannot be detected by the light receiving means, thereby determining the rotation angle of the rotary blade and detecting the position of the magnetic body. A third example is a. A magnetic body for position detection is provided in the shape of a stepping stone on the rotating blade or in a connecting portion connecting the tip of the rotating blade and the tip of the rotating blade, b. This is a method of installing magnetically sensitive elements such as Hall elements in stages on the outer frame. The position of the magnetic body for position detection is detected by a magnetic sensing element, and the rotation angle of the rotary blade is determined to determine the position of the magnetic body for rotational drive according to the first aspect. It is also possible to use a magnetic material for position detection and a magnetic material for rotational drive.

位置検出手段で磁性体の位置を求めたなら、磁性体が回
転方向に回転力を得るように電磁石の極性と強さを制御
する. 磁性体が鉄片のように極性の無い場合は、磁性体の位置
を検出したなら、鉄片の回転方向に位置する電磁石を磁
化させ、鉄片と電磁石との吸引力で回転力を与える. 磁性体が磁石のように極性の有る場合は、磁性体の位置
を検出したなら、磁石の回転方向に位置する電磁石を磁
石の極性と反対の極性に磁化させ、磁石と電磁石との失
引力で回転力を与える.或いは磁石の回転方向と反対方
向に位置する電磁石を磁石と同じ極性に磁化させ、磁石
と電磁石との反発力で回転力を与える. 磁性体の位置と電磁石に流す電流の位相の関係によって
回転羽根の回転駆動力を制御できる.或いは電磁石に流
す電流の大きさで回転駆動力を増減できる. [第3の請求項の実施例] 第1の請求項のファンは小型化できるという点が特長で
あるか、そのためには磁i発生手段を小さくする必要が
有り、従来のようにコイルを単品で外枠に取付Cナたり
、コイルを板状のプリント基板に実装して力)ら外粋に
取付ける方法では小型化に限度があった。
Once the position of the magnetic body is determined by the position detection means, the polarity and strength of the electromagnet are controlled so that the magnetic body obtains a rotational force in the direction of rotation. If the magnetic material has no polarity, such as a piece of iron, once the position of the magnetic body is detected, an electromagnet located in the direction of rotation of the piece of iron is magnetized, and rotational force is applied by the attractive force between the piece of iron and the electromagnet. If the magnetic material has polarity, such as a magnet, once the position of the magnetic material is detected, the electromagnet located in the direction of rotation of the magnet is magnetized to the opposite polarity to the polarity of the magnet, and the gravitational force between the magnet and the electromagnet is used. Gives rotational force. Alternatively, an electromagnet located in the opposite direction to the magnet's rotational direction is magnetized to the same polarity as the magnet, and the repulsive force between the magnet and electromagnet provides rotational force. The rotational driving force of the rotary vane can be controlled by the relationship between the position of the magnetic body and the phase of the current flowing through the electromagnet. Alternatively, the rotational driving force can be increased or decreased by changing the magnitude of the current flowing through the electromagnet. [Embodiment of the third claim] Is the fan of the first claim characterized by being able to be made smaller?For that purpose, it is necessary to make the magnetic i generating means smaller, and the coil cannot be used as a single piece as in the past. There was a limit to miniaturization by mounting the coil on the outer frame or mounting the coil on a plate-shaped printed circuit board and attaching it externally.

第3の請求項のファンは、フレキシブルプリント基板上
に電磁石を実装した第1の請求項のファンであり、ファ
ンの組立と製造が容易となり、ファンを小型化できる. 更に、フレキシブルプリント基板上に電磁石の駆動回路
や、位置検出手段のセンサ回路を実装することにより、
より小型化できる. フレヰシプルプリント基板とは、屈曲可能な紙状の形態
の材質上に導電材で電気配線を形威した電気部品で、そ
の上にコイル等の電気部品を半田付Cナできる. 第5図はフレキシブルプリント基板(以下基板という)
41上に、磁性体43に巻いたコイル42を半田付けし
た状態を示す.磁性体43は残留磁気の小さい材質が選
ばれる.基板41上にはコイル42に電流を流すための
電気配線が形戒され第6図はこの基板41を外枠45に
取付けた状態を示す.基板4lを巻付けるために回転羽
根の周回沿いに設けられた璧面46に、基板41を巻付
ける.J!i面46にはコイル42を挿入するための穴
が開いている.巻付け後、基板41を壁面46に押付け
るための固定片47を取付け、璧面46と基板4lと固
定片47を接着剤で固着する.第7図は組立後の、璧面
46と基板41と固定片47の断面である.磁性体43
は壁面46の穴を頁通し、回転羽根に接近する. コイル42は、回転羽根上に取付のられた回転駆動用の
磁性体に強い磁界を通すために、回転羽根へ接近する必
要がある.一方、フイル42と回転羽根上の磁性体との
間で繰り返し働く吸引力と反発力に対して十分な強度を
保つ必要がある.このため、第8図に示すような方法が
ある.第8図(a)の方法は、コイル51を補強するた
め璧面52の穴を貫通させていない.第8図(b)の方
法は、壁面54の穴を磁性体55て閉じている. 第8図(c)の方法は、突起のある磁性体58で璧面5
7の穴を閉じ、磁性体58の突起を中空のコイル56の
中に挿入している. ′lJ!.7図は壁面46に穴を開け、コイル42と磁
性体43を穴に挿入する方法であるが、第9図は壁面6
2に窪みを設け、コイル42と磁性体43を窪みに落し
込むようにした方法である.第9図の方法は固定片6l
を最初から外枠と一緒に一体成形できるので、組立が簡
単になる. 尚、第6図で基板41の巻始めと@終わりの端を重ね、
両者の電気回路を半田付け又はかしめで短絡する.この
方法によって、電磁石に流す電流は基板41の巻始め側
からと巻終わり側から流れるので基板の電流許容値が2
倍になる.[第4の請求項の実施例] 第1図のファンでは、回転羽根の回転軸を支える支持用
軸9が外枠に取付けられ、支持用軸9と回転羽根6の回
転軸がベアリングを介して接し、支持用軸9で回転羽根
6を支えていた。
The fan according to the third claim is the fan according to the first claim in which an electromagnet is mounted on a flexible printed circuit board, and the fan can be easily assembled and manufactured, and the fan can be miniaturized. Furthermore, by mounting the electromagnet drive circuit and the sensor circuit of the position detection means on the flexible printed circuit board,
It can be made more compact. A flexible printed circuit board is an electrical component in which electrical wiring is formed using a conductive material on a bendable paper-like material, onto which electrical components such as coils can be soldered. Figure 5 shows a flexible printed circuit board (hereinafter referred to as the board)
41 is shown with a coil 42 wound around a magnetic material 43 soldered. The magnetic material 43 is selected from a material with low residual magnetism. Electric wiring for passing current through the coil 42 is formed on the board 41, and FIG. 6 shows the state in which this board 41 is attached to the outer frame 45. The substrate 41 is wound around a wall 46 provided along the circumference of the rotary blade in order to wrap the substrate 4l. J! The i-plane 46 has a hole for inserting the coil 42. After wrapping, a fixing piece 47 for pressing the substrate 41 against the wall surface 46 is attached, and the wall surface 46, the substrate 4l, and the fixing piece 47 are fixed with adhesive. FIG. 7 is a cross section of the wall surface 46, the substrate 41, and the fixing piece 47 after assembly. Magnetic material 43
passes through the hole in the wall 46 and approaches the rotating blade. The coil 42 needs to be close to the rotary blade in order to pass a strong magnetic field through the rotational drive magnetic material mounted on the rotary blade. On the other hand, it is necessary to maintain sufficient strength against the attraction and repulsion forces that repeatedly act between the film 42 and the magnetic material on the rotating blade. For this reason, there is a method shown in Figure 8. In the method shown in FIG. 8(a), in order to reinforce the coil 51, the hole in the wall surface 52 is not penetrated. In the method shown in FIG. 8(b), the hole in the wall surface 54 is closed using a magnetic material 55. The method shown in FIG. 8(c) uses a magnetic material 58 with protrusions to
The hole 7 is closed and the protrusion of the magnetic material 58 is inserted into the hollow coil 56. 'lJ! .. 7 shows a method of making a hole in the wall surface 46 and inserting the coil 42 and magnetic material 43 into the hole, while FIG. 9 shows a method of making a hole in the wall surface 6.
In this method, a recess is provided in 2, and the coil 42 and magnetic body 43 are dropped into the recess. The method shown in Figure 9 is for the fixed piece 6l.
Since it can be integrally molded with the outer frame from the beginning, assembly is easy. In addition, in Fig. 6, overlap the beginning and end ends of the board 41,
Short-circuit both electrical circuits by soldering or caulking. With this method, the current flowing through the electromagnet flows from the winding start side and the winding end side of the board 41, so the current allowable value of the board is 2.
It will double. [Embodiment of the fourth claim] In the fan shown in FIG. 1, the support shaft 9 that supports the rotation shaft of the rotor blade is attached to the outer frame, and the support shaft 9 and the rotation shaft of the rotor blade 6 are connected via bearings. The rotating blades 6 were supported by a support shaft 9.

第4の請求項のファンは、回転羽根の先端部で、又は回
転羽根の先端部と回転羽根の先端部を結ぶ連結部(以下
連結部という)で、回転羽根を支えることにより、第1
図の支持用軸9と、支持用軸9と回転羽根の回転軸の間
のベアリングと、を削除したファンである. 回転羽根の軸に取付けられていたベアリングを削除する
ことにより、回転羽根のほぼ全面が送風のための羽根で
占められ、送風される空気の乱れが小さくなり、ファン
を小型にできる.回転羽根の先端部と外枠は、又は連結
部と外枠は、ペアリングボールを介して接する.第4の
請求項の第1の実施例を第10図に、第1の実施例のベ
アリングの部分の断面を第11図に示す.第10図では
ベアリングの部分の一部を欠けて表している. 回転羽根75は3枚の回転羽根を連結する円周部76と
結合しており、円周部76が、71、72、73で構成
されるベアリングで外枠77と接している. 7Iはベアリングの固定部分で外枠77に固定される.
72はベアリングの可動部分て円周部76に固定される
.73はベアリングボールである。
The fan according to the fourth aspect of the present invention provides the first support by supporting the rotating blade at the tip of the rotating blade or at a connecting portion (hereinafter referred to as a connecting portion) connecting the tip of the rotating blade and the tip of the rotating blade.
This is a fan in which the support shaft 9 shown in the figure and the bearing between the support shaft 9 and the rotating shaft of the rotating blade are removed. By removing the bearing attached to the shaft of the rotating blade, almost the entire surface of the rotating blade is occupied by the blades for blowing air, which reduces turbulence in the blown air and allows the fan to be made smaller. The tip of the rotary blade and the outer frame, or the connecting part and the outer frame, contact each other via a pairing ball. A first embodiment of the fourth claim is shown in FIG. 10, and a cross section of the bearing portion of the first embodiment is shown in FIG. In Figure 10, a portion of the bearing is shown partially cut away. The rotating blade 75 is connected to a circumferential portion 76 that connects the three rotating blades, and the circumferential portion 76 is in contact with an outer frame 77 through a bearing made up of 71, 72, and 73. 7I is fixed to the outer frame 77 at the fixed part of the bearing.
72 is the movable part of the bearing and is fixed to the circumferential part 76. 73 is a bearing ball.

回転羽根の中央部は外枠で支えられていない。The center part of the rotating blade is not supported by the outer frame.

第11図で、コイル42で発生する磁気がベアリングボ
ール73に影響を与えないよう1こ、磁気遮蔽用の78
と79の金具が取付Cナてある.第10図の実施例では
ベアリングボール73(第10図では複数のベアリング
ボールの内、1個のみに73の符号を付している)は全
周lこ渡って配置しているが、全周の内、回転羽根を支
え得る数箇所の一部分に配置することもできる.第12
図はその実施例で、ベアリングボール83を外枠87の
4隅に各々4個ずつ配置した例である.又、回転羽根の
中心部は回転軸の機能の必要がないので第12図に示す
ように中心部を削除してもよい.回転羽根85は円周部
86に結合されて支えられる. [発明の効果] 第1の請求項は回転羽根の中央にモータがなく、空気の
流れを遮るのは回転羽根の釉受と紬受を支える格子のみ
である.このため空気の流れが従来のファンに比べ乱さ
れない.又、回転羽根の中心にモータがないのでファン
を小型化できる.第2の請求項は、第1の請求項のファ
ンを”駆動するための方法であり、第2の請求項の実I
N?こよりファンの回転羽根は回転力を得る. 第3の請求項は、小型の電磁石を第1の請求項のファン
に取付客ナるのに有効な方法であり、第3の請求項の実
施により、ファンを小型化し、製造を88Jこすること
ができる. 第4の請求項は、回転羽根の中心の軸受を不要とする発
明で、ファンを小型化できる.従来、電子装置のプリン
ト基板上の電子部品を空冷するために、ファンをきょう
体に取付けていた.本発明によってファンを小型化すれ
ば、プリント基板に直接ファンを取付けることもできる
.プリント基板の局所の空冷なら、風量も少なくて良い
ため、騒音も小さくなる. プリント基板にファンを直接取付けるにはファンの底部
に取付けと電源供給のための端子を設ける.
In FIG. 11, a magnetic shield 78 is installed to prevent the magnetism generated by the coil 42 from affecting the bearing ball 73.
and 79 metal fittings are installed. In the embodiment shown in FIG. 10, bearing balls 73 (in FIG. 10, only one of the plurality of bearing balls is designated with the reference numeral 73) are arranged all around the circumference. It can also be placed in a portion of several locations that can support the rotating blades. 12th
The figure shows an example in which four bearing balls 83 are arranged at each of the four corners of an outer frame 87. Also, since the center part of the rotating blade does not need to function as a rotating shaft, the center part may be deleted as shown in FIG. The rotating blade 85 is connected to and supported by the circumferential portion 86. [Effects of the Invention] According to the first claim, there is no motor in the center of the rotating blade, and only the lattice supporting the glaze holder and the pongee holder of the rotating blade blocks the flow of air. As a result, the airflow is less disturbed than with conventional fans. Also, since there is no motor at the center of the rotating blades, the fan can be made smaller. The second claim is a method for driving the fan of the first claim, and the second claim is a method for driving the fan of the first claim,
N? The rotating blades of the fan obtain rotational force from this. The third claim is an effective method for attaching a small electromagnet to the fan of the first claim. be able to. The fourth claim is an invention that eliminates the need for a bearing at the center of the rotating blade, thereby making it possible to downsize the fan. Conventionally, a fan was attached to the housing of an electronic device to air-cool the electronic components on the printed circuit board. By miniaturizing the fan according to the present invention, it is also possible to attach the fan directly to the printed circuit board. Local air cooling of printed circuit boards requires less airflow, which reduces noise. To mount the fan directly on the printed circuit board, provide terminals for mounting and power supply on the bottom of the fan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の請求項の第1の実施例のファンの分解図
、第2図は第1の請求項の第2の実施例のファンの分解
図、第3図は第1の請求項の第1の実施例の磁気的力を
説明する図、第4図は第1の請求項の第2の実施例の磁
気的力を説明する図、第5図は第3の請求項のフレキシ
ブルプリント基板上にコイルを取付けた図、第6図は第
3の請求項のフレキシブルプリント基板を外枠に取付け
た図、第7図は第3の請求項の組立後の壁面の断面図、
第8図は第3の請求項の外枠の壁面の例の断面図、@9
図は第3の請求項の7レヰシプルプリント基板の壁面へ
の取付番ナ例のj}1視図、第10図は第4の請求項の
第1の実施例、第11図は第4の請求項の第1の実施例
の断面図、第12図は第4の請求項の第2の実施例、第
13図は従来のファンの正面図と断面図である. 1〜4−一磁気発生手段   5−一磁性体6−一回転
羽根 7一一外枠 9−一支持用軸11、12−一磁気
発生手段 13−一磁性体14−一回転羽根     
 15−一外枠20−一磁気発生手段  21〜23−
一電磁石24−一鉄片      31〜37一一電磁
石38、39−一磁石 41−−フレキシブルプリント基板 42−−コイル       43−一磁性体45−一
外枠 46−一璧面 47−一固定片51、53、56
−−コイル 52、54、57一一壁面 55、58一一磁性体 61−一固定片       62−一壁面71−−ベ
アリングの固定部分 72−−ベアリングの可動部分 73−−ベアリングボール  74−一磁性体75−一
回転羽根      76−一円周部77−一外枠  
   78、79−一金具81−−ベアリングの固定部
分 82−−ベアリングの可動部分 83−−ペアリングボール  85−一回転羽根86−
一円m部       87−一外枠101−一外枠 
 102−一回転羽根103−−モータ 104−〜モ
ータの回転軸菓5図 第 4 回 第7図 /’1 寥3図 鷺4S 鷺 ? 図 纂9旧 第121力 偵) 第 l3 図 10′+
FIG. 1 is an exploded view of the fan of the first embodiment of the first claim, FIG. 2 is an exploded view of the fan of the second embodiment of the first claim, and FIG. 3 is the exploded view of the fan of the second embodiment of the first claim. FIG. 4 is a diagram explaining the magnetic force of the second embodiment of the first claim, and FIG. 5 is a diagram explaining the magnetic force of the second embodiment of the first claim. FIG. 6 is a diagram showing the coil mounted on the flexible printed circuit board, FIG. 6 is a diagram showing the flexible printed circuit board according to the third claim attached to the outer frame, and FIG. 7 is a sectional view of the wall surface after assembly according to the third claim.
FIG. 8 is a sectional view of an example of the wall surface of the outer frame according to the third claim, @9
The figure is a perspective view of an example of mounting the 7 principle printed circuit board on the wall surface of the third claim, FIG. 10 is a first embodiment of the fourth claim, and FIG. 11 is a FIG. 12 is a sectional view of a first embodiment of the fourth claim, FIG. 12 is a second embodiment of the fourth claim, and FIG. 13 is a front view and a sectional view of a conventional fan. 1 to 4-1 magnetism generating means 5-1 magnetic body 6-1 rotating blade 7-1 outer frame 9-1 supporting shaft 11, 12-1 magnetism generating means 13-1 magnetic body 14-1 rotating blade
15--outer frame 20--magnetism generating means 21-23-
1 electromagnet 24-1 iron piece 31-37 1-electromagnet 38, 39-1 magnet 41--flexible printed circuit board 42--coil 43-1 magnetic body 45-1 outer frame 46-1 surface 47-1 fixed piece 51, 53, 56
--Coils 52, 54, 57--Wall surfaces 55, 58--Magnetic body 61--Fixed piece 62--Wall surface 71--Fixed portion of bearing 72--Movable portion of bearing 73--Bearing ball 74--Magnetic Body 75 - One rotation blade 76 - One circumferential part 77 - One outer frame
78, 79 - One metal fitting 81 - Fixed part of the bearing 82 - Movable part of the bearing 83 - Pairing ball 85 - One rotating blade 86 -
1 yen m part 87-1 outer frame 101-1 outer frame
102-One rotation blade 103--Motor 104--Rotating motor 5 Figure 4th Figure 7/'1 Figure 3 Heron 4S Heron? Figure 13 Figure 10'+

Claims (4)

【特許請求の範囲】[Claims] (1)回転羽根と、回転羽根の周回に沿って設けられた
外枠を有するファンに於いて、 a、回転羽根の先端部に、又は回転羽根の先端部と回転
羽根の先端部を結ぶ連結部に、磁性体を有し、 b、複数個の電磁石で構成される磁気発生手段を外枠に
有し、 磁性体と磁気発生手段との間に働く磁気的力によって回
転羽根を回転させることを特徴とするファン。
(1) In a fan having a rotating blade and an outer frame provided along the circumference of the rotating blade, a. A connection connecting the tip of the rotating blade or the tip of the rotating blade and the tip of the rotating blade; (a) has a magnetic material in the outer frame, and (b) has a magnetism generating means composed of a plurality of electromagnets in the outer frame, and rotates the rotary blade by the magnetic force acting between the magnetic material and the magnetism generating means. A fan featuring.
(2)請求項(1)のファンに於いて、磁性体の周回上
の位置を検出する位置検出手段を有し、磁性体の位置に
対応して磁気発生手段の各電磁石で発生する磁気の強さ
、又は磁気の極性と強さを制御し、磁性体に対して一方
向の回転力を与えることを特徴とするファン。
(2) In the fan according to claim (1), the fan has a position detecting means for detecting the position of the magnetic body on its orbit, and the magnetic field generated by each electromagnet of the magnetic field generating means is detected in accordance with the position of the magnetic body. A fan characterized by controlling the strength, or the polarity and strength of magnetism, and applying rotational force in one direction to a magnetic body.
(3)請求項(1)又は請求項(2)のファンに於いて
、複数個の電磁石として機能するコイルを取付けたフレ
キシブルプリント基板を有し、フレキシブルプリント基
板を回転羽根の周回に沿って屈曲させて外枠に取付け、
磁気発生手段として用いる、ファン。
(3) The fan according to claim (1) or claim (2), which has a flexible printed circuit board to which a plurality of coils functioning as electromagnets are attached, and the flexible printed circuit board is bent along the circumference of the rotating blade. and attach it to the outer frame,
A fan used as a means of generating magnetism.
(4)請求項(1)〜(3)のファンに於いて、a、回
転羽根の先端部で、又は回転羽根の先端部と回転羽根の
先端部を結ぶ連結部で、回転羽根を支え、 b、回転羽根の回転軸に接して回転軸を支える、ベアリ
ングを有しないことを、特徴とする、ファン。
(4) In the fan of claims (1) to (3), a. the rotating blade is supported by the tip of the rotating blade or by a connecting portion connecting the tip of the rotating blade and the tip of the rotating blade; b. A fan characterized by not having a bearing that supports the rotating shaft in contact with the rotating shaft of the rotating blade.
JP1298627A 1989-11-15 1989-11-15 Fan Pending JPH03160194A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1298627A JPH03160194A (en) 1989-11-15 1989-11-15 Fan
KR1019900018522A KR910010074A (en) 1989-11-15 1990-11-14 Fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298627A JPH03160194A (en) 1989-11-15 1989-11-15 Fan

Publications (1)

Publication Number Publication Date
JPH03160194A true JPH03160194A (en) 1991-07-10

Family

ID=17862182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298627A Pending JPH03160194A (en) 1989-11-15 1989-11-15 Fan

Country Status (2)

Country Link
JP (1) JPH03160194A (en)
KR (1) KR910010074A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393208B1 (en) * 2000-08-14 2002-05-21 Daniel M. Nosenchuck Compressor with integrated impeller and motor
WO2014077275A1 (en) * 2012-11-19 2014-05-22 株式会社神戸製鋼所 Device for measuring dynamic characteristics of centrifugal-type rotary machine, and centrifugal-type rotary machine
CN105526196A (en) * 2015-12-03 2016-04-27 苏州永和诚风机工业有限公司 Noise reduction fan

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393208B1 (en) * 2000-08-14 2002-05-21 Daniel M. Nosenchuck Compressor with integrated impeller and motor
WO2014077275A1 (en) * 2012-11-19 2014-05-22 株式会社神戸製鋼所 Device for measuring dynamic characteristics of centrifugal-type rotary machine, and centrifugal-type rotary machine
US9964435B2 (en) 2012-11-19 2018-05-08 Kobe Steel, Ltd. Dynamic characteristic measurement device of centrifugal rotation machine, and centrifugal rotation machine
US10677644B2 (en) 2012-11-19 2020-06-09 Kobe Steel, Ltd. Dynamic characteristic measurement device of centrifugal rotation machine, and centrifugal rotation machine
CN105526196A (en) * 2015-12-03 2016-04-27 苏州永和诚风机工业有限公司 Noise reduction fan

Also Published As

Publication number Publication date
KR910010074A (en) 1991-06-28

Similar Documents

Publication Publication Date Title
KR900003886Y1 (en) Fan motor
TWI396363B (en) Brushless motor, brushless fan motor and electronic machine using brushless fan motor
US6608411B2 (en) Direct current brushless motor
JPH089591A (en) Fan motor
US5097170A (en) Brushless d.c. electric motor
JPH07213041A (en) Single-phase brushless motor
US4958099A (en) Brushless motor
KR20150032117A (en) Stepping motor and System thereof
JPH03160194A (en) Fan
JP3238539B2 (en) Light control device
JP2785034B2 (en) Disc type brushless motor
JP2007104740A (en) Brushless motor
JP2515945B2 (en) Swing brushless actuator
JP3095147B2 (en) motor
JP3009066U (en) Axial air gap type DC brushless single-phase axial fan motor
JPH0510905B2 (en)
JP2575353B2 (en) DC motor
JP2955757B2 (en) Disc type brushless motor
JP4574760B2 (en) Camera motor
KR100716204B1 (en) Actuator
JP3118053B2 (en) DC motor with frequency generator
JP2000050605A (en) Axial gap type brushless axial-flow fan motor
KR900001849Y1 (en) Motor fan
KR900003888Y1 (en) Brushless fan motor
JPS60141156A (en) Brushless motor for controlling and energizing drive coil with induced output of coil in magnetic field as position sensing signal