JPH03159069A - Manufacture of electrode and electrolyte complex - Google Patents

Manufacture of electrode and electrolyte complex

Info

Publication number
JPH03159069A
JPH03159069A JP1300380A JP30038089A JPH03159069A JP H03159069 A JPH03159069 A JP H03159069A JP 1300380 A JP1300380 A JP 1300380A JP 30038089 A JP30038089 A JP 30038089A JP H03159069 A JPH03159069 A JP H03159069A
Authority
JP
Japan
Prior art keywords
electrode active
electrolyte
active material
substrate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1300380A
Other languages
Japanese (ja)
Inventor
Tomohiko Noda
智彦 野田
Shuichi Ido
秀一 井土
Hiroyoshi Yoshihisa
吉久 洋悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1300380A priority Critical patent/JPH03159069A/en
Publication of JPH03159069A publication Critical patent/JPH03159069A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain an extra-thin film electrode of high productivity, uniform thickness and good contact with an electrolyte by using a solid electrolyte as a substrate, forming a positive electrode active material on one side thereof and a negative electrode active material on the opposite side. CONSTITUTION:The fine particles of metal and a metal compound generated with a gasborne evaporation method are carried on an air flow and sprayed onto a substrate 8 with a nozzle 5, thereby forming an electrode. In this case, a solid electrolyte is used for the substrate 8 and the sturdy deposit of a positive electrode active material 10, for example, manganese dioxide is formed on one side of the electrolyte and the sturdy deposit of a negative electrode active material 11, for example, lithium is formed on the opposite side thereof. According to the aforesaid construction, it is possible to obtain an extra-thin film electrode of high productivity, uniform thickness and good contact with an electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は・フィルム状の超薄形電池に用いる電極の製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing electrodes for use in film-like ultra-thin batteries.

従来技術とその問題点 従来の薄形電池の正極としては、導電材へ結着剤、正極
作用物質を混合し、s’)状の薄膜としていた。
Prior art and its problems As a positive electrode for a conventional thin battery, a conductive material, a binder, and a positive electrode active substance are mixed to form an s'-shaped thin film.

この場合、$’)の厚さは正極作用物質の粒径または、
充填率に依存している。
In this case, the thickness of $') is the particle size of the positive electrode active material or
It depends on the filling rate.

前者はサブミクロンサイズの製造が困難であり、後者で
は充填率を上げることが困難であるという点で、10p
lN以下の厚みの薄膜正極を製造することは容品ではな
かった。
The former is difficult to manufacture in submicron size, and the latter is difficult to increase the filling rate.
It was not practical to manufacture a thin film positive electrode with a thickness of 1N or less.

又、薄形電池に用いられるイオン伝導材料としては、固
体電解質、とりわけ高分子固体電解質を用いることが製
造が簡単で液漏れがなく、自由な形状の七〜が製造可能
といった利点を持つことで有望視されている。しかしな
がら、固停電解質を用いる場合電極と電解質の接触を常
に良好に保たせるために工夫が必要である。さらに薄形
電池とりわけフレキンビリデイ−を付与させた電池にお
いては、巻き込み形円筒電池のように、電極外部や内部
から加圧力を加えることができないため、接触の問題は
六層深刻であったO 発明の目的 本発明は、上記従来の問題点に鑑みなされたものであり
、生産性に優れた、均一な厚みでしかも電解質との接触
の良好な超薄膜の電極を提供することを目的とするもの
である0 発明の構成 本発明は上記目的を達成するべく、 ガス中蒸発法で生成した金属又は金属化合物の微粒子を
気流に乗せて基板に吹きつけ電極を形成するにおいて、
基板に固体電解質を用い一方の面に正極作用物質を形成
し、反対面に負極作用物質を形成したことを特徴とする
電極/電解質複合体の製造法である。
In addition, as the ion conductive material used in thin batteries, solid electrolytes, especially solid polymer electrolytes, have the advantage of being easy to manufacture, without leakage, and can be manufactured into shapes of any shape. It is seen as promising. However, when using a solid electrolyte, it is necessary to take measures to maintain good contact between the electrode and the electrolyte. Furthermore, in thin batteries, especially batteries with flexible metallization, it is not possible to apply pressure from the outside or inside of the electrodes, unlike rolled-up cylindrical batteries, so the problem of contact is even more serious. Purpose The present invention was made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide an ultra-thin film electrode with excellent productivity, uniform thickness, and good contact with the electrolyte. 0 Structure of the Invention In order to achieve the above-mentioned object, the present invention includes the steps of forming an electrode by blowing fine particles of a metal or metal compound produced by an evaporation method in a gas onto a substrate in an air flow.
This is a method for manufacturing an electrode/electrolyte composite, characterized in that a solid electrolyte is used as a substrate, a positive electrode active substance is formed on one side, and a negative electrode active substance is formed on the opposite side.

又、正極作用物質がマンガン酸化物、バナジウム酸化物
、モリブデン酸化物、コバルト酸化物、クロム酸化物、
チタン硫化物、ニオブセレン化物、モリブデン硫化物か
ら選ばれた前記の電極/電解質複合体の製造法である。
In addition, the positive electrode active substance may be manganese oxide, vanadium oxide, molybdenum oxide, cobalt oxide, chromium oxide,
A method for producing the electrode/electrolyte composite selected from titanium sulfide, niobium selenide, and molybdenum sulfide.

又、負極作用物質がリチウム又はリチウム合金である前
記の電極/電解質複合体の製造法である。
There is also a method for producing the electrode/electrolyte composite described above, wherein the negative electrode active material is lithium or a lithium alloy.

又、リチウム合金にアtvlニウムが含まれている前記
の電極/電解質複合体の製造法である。
Also, there is a method for manufacturing the above-mentioned electrode/electrolyte composite in which the lithium alloy contains atvlnium.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

第1図は本発明の製造装置の概略図である。FIG. 1 is a schematic diagram of the manufacturing apparatus of the present invention.

第2図は本発明による電41i/電解質複合体の断面図
である。
FIG. 2 is a cross-sectional view of an electrolyte/electrolyte composite according to the present invention.

5はノズμ、6はデボジV曹ン室、7は真空ボンデ、8
は基板、9は供給ガス流入口、10は正極作用物質、1
1は負極作用物質である。
5 is the nozzle μ, 6 is the vacuum chamber, 7 is the vacuum bonder, and 8 is the vacuum bonder.
is a substrate, 9 is a supply gas inlet, 10 is a positive electrode active material, 1
1 is a negative electrode acting substance.

過塩素酸リチウム10wt%を溶解させた三官能性ポリ
エーテル(エチレンオキVドとプロピレンオキシドの共
重合体、分子量3,000)を架橋剤にヘキサメチレン
ジイソノアナートを用いて既知の方法で架橋し、高分子
固体電解質フィルム(厚み50pm>を得た。これをデ
ボジV。
Trifunctional polyether (copolymer of ethylene oxide and propylene oxide, molecular weight 3,000) in which 10 wt% of lithium perchlorate was dissolved was cross-linked by a known method using hexamethylene diisonoanate as a cross-linking agent. A solid polymer electrolyte film (thickness: 50 pm) was obtained.

ン室に設置した。It was installed in the room.

蒸発室において、坩堝の中に二酸化マンガンを入れて、
アーク誘導加熱器により加熱溶融し、気化させ微粒子化
二酸化マンガンを形成した。
In the evaporation chamber, put manganese dioxide into the crucible,
It was heated and melted using an arc induction heater and vaporized to form finely divided manganese dioxide.

供給ガス(Heガス)の圧力を100 torrとし1
デポジy−ン室の圧力を真空ポンプにより0.12to
rrとする。O,8XjQwのノズ〜を用いて、微粒子
化二酸化マンガンなデポジン冒ン室の高分子固体電解室
フィルム上にガス気流に乗せて吹きつける・これによっ
て、高分子固体電解質フイルム1に10@a巾で長さ1
9ss、厚さ10μmの二酸化マンガンの強固な堆積体
が形成された。
The pressure of the supply gas (He gas) is 100 torr, and 1
The pressure in the deposit chamber is increased to 0.12 to by a vacuum pump.
Let it be rr. Using a nozzle of O, 8XjQw, spray fine particulate manganese dioxide onto the film of the polymer solid electrolyte chamber in the deposition chamber along with the gas stream. By this, the polymer solid electrolyte film 1 is sprayed with a width of 10@a. and length 1
A strong deposit of manganese dioxide with a thickness of 9 ss and a thickness of 10 μm was formed.

次にグボジs/wン室の高分子固体電解質/二酸化マン
ガン堆積体を裏返し、坩堝の中にリチウムを入れて高周
波誘導加熱器により加熱溶解した。気化させて得られた
微粒子化リチウムを前記と同条件にてデポジV@:/室
の基板上に吹きつけ、1091m巾で長さ101111
K、厚さ10ulのリチウムの強固な堆積体を形成させ
た。
Next, the solid polymer electrolyte/manganese dioxide deposited body in the s/w chamber was turned over, and lithium was placed in the crucible and heated and melted using a high-frequency induction heater. The micronized lithium obtained by vaporization was sprayed onto the substrate in the deposit V@:/ chamber under the same conditions as above to form a substrate with a width of 1091 m and a length of 101111 m.
A solid deposit of lithium with a thickness of 10 ul was formed.

これによって得られた電極/電解質複合体に正・電極集
電体を取り付け、電池を構成した。
A positive electrode current collector was attached to the electrode/electrolyte composite thus obtained to construct a battery.

両集電停から取り出したリード線を電流計に接続し、短
絡電流を測定したところ、16#Iム/ cdであった
When the lead wires taken out from both current collectors were connected to an ammeter and the short circuit current was measured, it was 16 #Im/cd.

比較例 前記実施例の基板である高分子固体電解質に代えて、ス
テンレス箔を用いて、一方の面に二酸化マンガンの堆積
体を形成した。これに前記実施例と同様の高分子固体電
解質フィμム、リチ9ムおよび負極集電体を取り付け、
電池を形成した。ステンレス箔と負極集電体から取り出
したり−ド紛を電流計に接続し、短絡電流な測定したと
ころ、81FIA/ejであった。
Comparative Example Instead of the polymer solid electrolyte as the substrate in the previous example, a stainless steel foil was used, and a manganese dioxide deposit was formed on one surface. The same polymer solid electrolyte film, lithium 9m, and negative electrode current collector as in the above example were attached to this,
A battery was formed. When the short-circuit current was measured by taking out the stainless steel foil and the negative electrode current collector and connecting the powder to an ammeter, it was found to be 81FIA/ej.

尚、前記実施例において正極作用物質として、マンガン
酸化物を用いたがこれに代えてバナジウム酸化物、モリ
ブデン酸化物、コバルト酸化物・クロム酸化物、チタン
硫化物、ニオブセレン化物、モリブデン酸化物を用いて
も同様の結果を得た。
In the above examples, manganese oxide was used as the positive electrode active substance, but vanadium oxide, molybdenum oxide, cobalt oxide/chromium oxide, titanium sulfide, niobium selenide, and molybdenum oxide were used instead. I got similar results.

又、前記実施例において、負極作用物質として、リチウ
ムを用いたが、リチウム合企ても同様の結果を得た。
Furthermore, in the above examples, lithium was used as the negative electrode active material, but similar results were obtained when lithium was used jointly.

本発明による堆積体は、通常の溶解、凝固方法では得る
ことのできないものであり、結合剤を必要としないので
、乾式で清浄な製造法である。生産性に優れ、均一な厚
みの超薄形のtWである。
The deposited body according to the present invention cannot be obtained by ordinary melting and solidification methods and does not require a binder, so it is a dry and clean manufacturing method. It is an ultra-thin tW with excellent productivity and uniform thickness.

発明の効果 上述した如く、本発明は生産性に優れた、均一な厚みで
しかも電解質との接触の良好な、超薄膜の[lflを提
供することが出来るので、その工業的価値は極めて大で
ある。
Effects of the Invention As mentioned above, the present invention can provide an ultra-thin film with excellent productivity, uniform thickness, and good contact with the electrolyte, so its industrial value is extremely large. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造装置の概略図、第2図は本発明に
よる電極/電解質複合体の断面図である。 1・・・蒸発室     2・・・坩堝5・・・アーク
誘導加熱器 4・・・差動排気室又は高周波誘導加熱器 5・・・ノズ/I/6・・・デボジV、ン室7・・・真
空ボンデ   8・・・基板9・・・供給ガス流入口 
 1o・・・正極作用物質11・・・負極作用物質
FIG. 1 is a schematic diagram of a manufacturing apparatus of the present invention, and FIG. 2 is a sectional view of an electrode/electrolyte composite according to the present invention. 1... Evaporation chamber 2... Crucible 5... Arc induction heater 4... Differential exhaust chamber or high frequency induction heater 5... Noz/I/6... Deboji V, n chamber 7 ...Vacuum bonder 8...Substrate 9...Supply gas inlet
1o...Positive electrode active substance 11...Negative electrode active substance

Claims (4)

【特許請求の範囲】[Claims] (1)ガス中蒸発法で生成した金属又は金属化合物の微
粒子を気流に乗せて基板に吹きつけ電極を形成するにお
いて、基板に固体電解質を用い一方の面に正極作用物質
を形成し、反対面に負極作用物質を形成したことを特徴
とする電極/電解質複合体の製造法。
(1) In forming an electrode by blowing fine particles of a metal or metal compound produced by evaporation in a gas onto a substrate using an air flow, a solid electrolyte is used on the substrate, and a positive electrode active material is formed on one surface, and a positive electrode active substance is formed on the other surface. 1. A method for producing an electrode/electrolyte composite, characterized in that a negative electrode active substance is formed in.
(2)正極作用物質がマンガン酸化物、バナジウム酸化
物、モリブデン酸化物、コバルト酸化物、クロム酸化物
、チタン硫化物、ニオブセレン化物、モリブデン硫化物
から選ばれた請求項1記載の電極/電解質複合体の製造
法。
(2) The electrode/electrolyte composite according to claim 1, wherein the positive electrode active substance is selected from manganese oxide, vanadium oxide, molybdenum oxide, cobalt oxide, chromium oxide, titanium sulfide, niobium selenide, and molybdenum sulfide. How the body is manufactured.
(3)負極作用物質がリチウム又はリチウム合金である
請求項1記載の電極/電解質複合体の製造法。
(3) The method for producing an electrode/electrolyte composite according to claim 1, wherein the negative electrode active material is lithium or a lithium alloy.
(4)リチウム合金にアルミニウムが含まれている請求
項3記載の電極/電解質複合体の製造法。
(4) The method for producing an electrode/electrolyte composite according to claim 3, wherein the lithium alloy contains aluminum.
JP1300380A 1989-11-17 1989-11-17 Manufacture of electrode and electrolyte complex Pending JPH03159069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1300380A JPH03159069A (en) 1989-11-17 1989-11-17 Manufacture of electrode and electrolyte complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300380A JPH03159069A (en) 1989-11-17 1989-11-17 Manufacture of electrode and electrolyte complex

Publications (1)

Publication Number Publication Date
JPH03159069A true JPH03159069A (en) 1991-07-09

Family

ID=17884089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300380A Pending JPH03159069A (en) 1989-11-17 1989-11-17 Manufacture of electrode and electrolyte complex

Country Status (1)

Country Link
JP (1) JPH03159069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1075037A1 (en) * 1999-08-04 2001-02-07 Nissan Motor Company, Limited Multilayer battery cell and method of producing same
JP2007079149A (en) * 2005-09-14 2007-03-29 Kyocera Mita Corp Belt type fixing device for image forming apparatus
US8048568B2 (en) 2003-01-06 2011-11-01 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1075037A1 (en) * 1999-08-04 2001-02-07 Nissan Motor Company, Limited Multilayer battery cell and method of producing same
US6489053B1 (en) 1999-08-04 2002-12-03 Nissan Motor Co., Ltd. Multilayer battery cell and method of producing same
US8048568B2 (en) 2003-01-06 2011-11-01 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP2007079149A (en) * 2005-09-14 2007-03-29 Kyocera Mita Corp Belt type fixing device for image forming apparatus

Similar Documents

Publication Publication Date Title
US5290592A (en) Manufacturing method for electrode
KR100772467B1 (en) Electrodes including particles of specific sizes
KR100855842B1 (en) Negative electrode for lithium ion secondary battery, producing method therefor, and lithium ion secondary battery using the negative electrode
US20150311497A1 (en) Method for producing at least one layer of a solid -based thin-film battery, plasma powder sprayer therefor, and solid-based thin film battery
WO1989001230A1 (en) Electrolytic capacitor and production method thereof
JP4212458B2 (en) Lithium secondary battery
JP4045270B2 (en) Energy device and manufacturing method thereof
JP2005310502A (en) Manufacturing method of electrode for chemical cell, and cell
WO2004097962A1 (en) Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
JP2005183364A5 (en)
JP2008282797A (en) Collector for non-aqueous secondary battery and its manufacturing method
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JP2002042783A (en) Lithium secondary battery
JPH03159069A (en) Manufacture of electrode and electrolyte complex
KR20240032753A (en) Method of making particles containing metal and active battery material for electrode fabrication
JPS60167268A (en) Manufacture of grid for lead-acid battery
JPH11288707A (en) Primer material containing electrochemical inactive particle, electrode for battery, and their manufacture
JP4526806B2 (en) Method for producing lithium ion secondary battery
JPH03163758A (en) Manufacture of electrode/electrolyte composite
JPH03159070A (en) Manufacture of electrode and electrolyte complex
JP2007299764A5 (en)
JP3168587B2 (en) Electrode foil for electrolytic capacitor and method for producing the same
JPH03155051A (en) Manufacture of electrode/electrolyte complex
JP2701476B2 (en) Manufacturing method of lithium anode
JP2701477B2 (en) Manufacture of manganese dioxide cathode