JPH0315778A - Optical element made of magnetic fluid - Google Patents

Optical element made of magnetic fluid

Info

Publication number
JPH0315778A
JPH0315778A JP15106289A JP15106289A JPH0315778A JP H0315778 A JPH0315778 A JP H0315778A JP 15106289 A JP15106289 A JP 15106289A JP 15106289 A JP15106289 A JP 15106289A JP H0315778 A JPH0315778 A JP H0315778A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic fluid
particles
parallel
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15106289A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nakagi
義幸 中木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15106289A priority Critical patent/JPH0315778A/en
Publication of JPH0315778A publication Critical patent/JPH0315778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain the higher magneto-optical effect by imparting shape anisotropy to the ferromagnetic colloid particles of the solute in magnetic fluid by which the clusters formed at the time of impression of a magnetic field are more easily oriented in the form of straight chains in parallel with the impressed magnetic field. CONSTITUTION:This element is formed with the thin film of the magnetic fluid by imparting the shape anisotropy to the ferromagnetic colloid particles 1a of the solute in a solvent 2. The particles 1a disperse and orient randomly in the solvent 2 when the external magnetic field is not impressed. The particles 1a orient in parallel with the impressed magnetic field when the magnetic field 3 is impressed in parallel with the thin film of the magnetic fluid. In addition, the particles 1a are magnetized in the major axis direction and the clusters are more easily formed in the direction parallel with the magnetic field and are formed in the form of chains. The high-performance element is, therefore, obtd. without impairing the magneto-optical effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁界センサ,光メモリ等に利用される磁性
流体光学素子に関するものである.〔従来の技術〕 磁性流体薄膜に磁場を薄膜に平行に印加したとき薄膜に
垂直に透過する光に大きな磁気光学効果が生じることが
知られている.そこで、この現象を利用して磁性流体薄
膜を磁界センサ,光メモリ,光増幅器,光シャッタ等に
応用することが考えられている. 第2図に磁性流体に印加する磁場を変化させた時の磁場
流体中の強磁性コロイド粒子のふるまいを示す.図にお
いて、1は球状強磁性コロイド粒子、2は溶媒である. 第2図(a)のように磁場を印加していないとき、磁性
流体中の強磁性コロイド粒子1は他のコロイド粒子に影
響を受けず乱雑に分散.配向する.このとき薄膜に垂直
に透過する光に対して光学異方性は生じていない. 次に第2図(b)の矢印3で示されるように、薄膜に平
行に磁場を印加すると、磁場に平行方向に強磁性コロイ
ド粒子が配向し、かつ磁場に平行方向に主に直鎖状クラ
スター(コロイド粒子塊)が形威される.このとき薄膜
を垂直に透過する、波長がクラスタ一長程度の光は、ク
ラスター形威による光学異方性のために磁場に平行/垂
直な偏向面を持つ透過光に位相差を生じる.この印加磁
場に呼応した位相差変化を利用して、各種の応用がなさ
れている. 〔発明が解決しようとする課題〕 従来の磁性流体薄膜光学素子では、磁気光学効果の主因
であるクラスター形成に際して、等方的形状の強磁性コ
ロイド粒子を用いており、このため、印加磁場に平行な
直鎖状クラスター以外に、円環状クラスターやクラスタ
ー塊等の印加磁場に平行でない方向に配列するものも生
じることがあり、光学的異方性が低減し、光学素子とし
ての機能が低下するなどの問題点があった. この発明は、上記のような従来のものの問題点を解消す
るためになされたもので、磁場を印加したときに形威さ
れるクラスターは直鎖状で印加磁場に平行に配列しやす
いようにして、より大きな磁気光学効果を持つ磁性流体
光学素子を得ることを目的とする. 〔課題を解決するための手段〕 この発明に係る磁性流体薄膜光学素子は、磁性流体の溶
質である強磁性コロイド粒子に形状異方性を持たせるよ
うにしたものである. 〔作用〕 この発明においては、上述のように構戒することにより
、光学的異方性が大きく現れるクラスターのみが形威さ
れるようにしたので、光学素子としての機能を低下させ
る要素が取り除かれ、その性能が向上する. 〔実施例〕 以下、この発明の実施例を図について説明する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic fluid optical element used in magnetic field sensors, optical memories, and the like. [Prior art] It is known that when a magnetic field is applied to a magnetic fluid thin film parallel to the thin film, a large magneto-optical effect occurs in the light that passes perpendicularly to the thin film. Therefore, it is being considered to utilize this phenomenon to apply magnetic fluid thin films to magnetic field sensors, optical memories, optical amplifiers, optical shutters, etc. Figure 2 shows the behavior of ferromagnetic colloid particles in a magnetic fluid when the magnetic field applied to the magnetic fluid is varied. In the figure, 1 is a spherical ferromagnetic colloidal particle and 2 is a solvent. As shown in Fig. 2(a), when no magnetic field is applied, the ferromagnetic colloid particles 1 in the magnetic fluid are randomly dispersed without being affected by other colloid particles. Orient. At this time, no optical anisotropy occurs for light that passes perpendicularly through the thin film. Next, as shown by arrow 3 in Figure 2(b), when a magnetic field is applied parallel to the thin film, the ferromagnetic colloid particles are oriented in the direction parallel to the magnetic field, and the ferromagnetic colloid particles are mainly linear in the direction parallel to the magnetic field. Clusters (colloidal particles) take shape. At this time, the light whose wavelength is about the length of the cluster, which is perpendicularly transmitted through the thin film, causes a phase difference between the transmitted light whose polarization plane is parallel/perpendicular to the magnetic field due to the optical anisotropy caused by the cluster shape. Various applications have been made using this change in phase difference in response to an applied magnetic field. [Problems to be Solved by the Invention] Conventional magnetic fluid thin film optical elements use isotropically shaped ferromagnetic colloid particles for cluster formation, which is the main cause of the magneto-optic effect. In addition to straight-chain clusters, clusters such as annular clusters and cluster clusters that are arranged in a direction that is not parallel to the applied magnetic field may also occur, which reduces optical anisotropy and deteriorates the function as an optical element. There was a problem. This invention was made to solve the above-mentioned problems with the conventional ones, and the clusters formed when a magnetic field is applied are linear and easily arranged in parallel to the applied magnetic field. The purpose of this study is to obtain a magnetic fluid optical element with a larger magneto-optical effect. [Means for Solving the Problems] In the magnetic fluid thin film optical element according to the present invention, ferromagnetic colloid particles, which are the solute of the magnetic fluid, have shape anisotropy. [Operation] In this invention, by taking precautions as described above, only clusters exhibiting large optical anisotropy are made to appear, so that elements that degrade the function as an optical element are removed. , its performance improves. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による磁性流体光学素子を示
し、図において、1aは形状異方性を持たせた強磁性コ
ロイド粒子であり、2は溶媒である.強磁性コロイド粒
子はフエライト系物質,マグネタイト等をスパッタ法.
蒸着法,電着法,スパークエロージッン法,共沈法等で
処理することにより針状に形威される強磁性微粒子を界
面活性剤、例えばアミン類.スルホン酸塩類で覆うこと
により作製する.強磁性微粒子の大きさは10〜100
0人程度のもので、その磁化容易軸は長袖方向のもので
ある.溶媒はアルキルナフタリン.パラフィン等が用い
られるが、水溶性界面活性剤を用いた場合には水が用い
られる. この磁性流体を1〜100μm程度の厚さに透光性板で
挿んで磁性流体薄膜を作威した.次にその動作について
説明する.外部磁場が印加されていないときは、強磁性
コロイド粒子はその形状異方性の有無にかかわらず、溶
媒中で乱雑に分散,配向する.このとき光学的異方性は
生じていない(第1図(a)参照). 次に、磁性流体薄膜に平行に磁場3を印加すると、各強
磁性コロイド粒子は印加磁場と平行に配向する.かつ強
磁性コロイド粒子は長軸方向に磁化しているため、印加
磁場に直交するよりも平行方向にクラスタ一生戒がなさ
れやすい.また、全自由エネルギーまで考慮すると、形
威されるクラスターは塊状等よりも印加磁場に平行に配
列する饋状になる(第1図(b)参照).このとき、強
磁性コロイド粒子に形状異方性を与えないときより、自
由エネルギーは低い. このように、強磁性コロイド粒子が印加磁場と並列に配
向・配列しやすくなって、磁場を印加したときの光学的
異方性が従来のものよりも増加する. また、クラスターが顕著に形威されないような比較的小
さな外部磁場が印加されている際でも、強磁性コロイド
粒子がそれ自身でもつ形状異方性のために、印加された
磁場に対し決まった方向に配向しているので、クラスタ
ー形威による磁気光学効果より、より短波長側の波長領
域の磁気光学効果の改善がなされる. 第3図に、強磁性コロイド粒子が球状のものと針状(長
軸方向に磁化)のものを用いた場合での磁気光学効果の
特性図を示す.同一印加磁場に対して、強磁性コロイド
粒子に形状異方性をもたせた場合、従来例に比べて位相
差にして約1割程度の改善がな・された. 〔発明の効果〕 以上のように、この発明に係る磁性流体光学素子によれ
ば、磁性流体中の溶質である強磁性コロイド粒子に形状
異方性を持たせるようにしたので、磁気光学効果が損な
われることなく、高性能な光学素子が得られる効果があ
る.
FIG. 1 shows a magnetorheological optical element according to an embodiment of the present invention, in which 1a is a ferromagnetic colloid particle with shape anisotropy, and 2 is a solvent. Ferromagnetic colloid particles are made by sputtering ferrite-based substances, magnetite, etc.
Ferromagnetic fine particles formed into needle-like shapes by treatment with a vapor deposition method, an electrodeposition method, a spark erosion method, a co-precipitation method, etc. are treated with a surfactant, such as an amine. It is prepared by covering it with sulfonate salts. The size of ferromagnetic fine particles is 10 to 100
There are about 0 people, and the axis of easy magnetization is in the direction of long sleeves. The solvent is alkylnaphthalene. Paraffin is used, but water is used when a water-soluble surfactant is used. A thin magnetic fluid film was created by inserting this magnetic fluid into a thickness of approximately 1 to 100 μm using a translucent plate. Next, we will explain its operation. When no external magnetic field is applied, ferromagnetic colloid particles are randomly dispersed and oriented in the solvent, regardless of the presence or absence of shape anisotropy. At this time, no optical anisotropy occurs (see Figure 1(a)). Next, when a magnetic field 3 is applied parallel to the magnetic fluid thin film, each ferromagnetic colloid particle is oriented parallel to the applied magnetic field. In addition, since ferromagnetic colloidal particles are magnetized in the long axis direction, cluster formation is more likely to occur in a direction parallel to the applied magnetic field than perpendicular to it. Furthermore, if the total free energy is taken into account, the resulting clusters will be more like a feeder, which is arranged parallel to the applied magnetic field, than like a block (see Figure 1(b)). At this time, the free energy is lower than when shape anisotropy is not imparted to the ferromagnetic colloid particles. In this way, the ferromagnetic colloid particles become more easily oriented and aligned in parallel with the applied magnetic field, and the optical anisotropy when a magnetic field is applied increases compared to the conventional one. In addition, even when a relatively small external magnetic field is applied that does not cause clusters to form significantly, ferromagnetic colloidal particles can remain in a fixed direction relative to the applied magnetic field due to their own shape anisotropy. Since the magneto-optic effect is oriented in the shorter wavelength region, the magneto-optic effect in the shorter wavelength region is improved more than the magneto-optic effect due to the cluster shape. Figure 3 shows the characteristics of the magneto-optical effect when spherical and acicular (magnetized in the long axis direction) ferromagnetic colloid particles are used. When the ferromagnetic colloid particles were given shape anisotropy for the same applied magnetic field, the phase difference was improved by about 10% compared to the conventional example. [Effects of the Invention] As described above, according to the magnetic fluid optical element according to the present invention, the ferromagnetic colloid particles, which are the solutes in the magnetic fluid, are made to have shape anisotropy, so that the magneto-optical effect is improved. The effect is that a high-performance optical element can be obtained without any damage.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] (1)磁性流体を薄膜状にし、その磁気光学効果を利用
する光学素子において、 上記磁性流体中の溶質である強磁性コロイド粒子は形状
異方性を有するものであることを特徴とする磁性流体光
学素子。
(1) An optical element that utilizes the magneto-optical effect of a thin film of magnetic fluid, characterized in that the ferromagnetic colloid particles that are the solute in the magnetic fluid have shape anisotropy. optical element.
JP15106289A 1989-06-13 1989-06-13 Optical element made of magnetic fluid Pending JPH0315778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106289A JPH0315778A (en) 1989-06-13 1989-06-13 Optical element made of magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106289A JPH0315778A (en) 1989-06-13 1989-06-13 Optical element made of magnetic fluid

Publications (1)

Publication Number Publication Date
JPH0315778A true JPH0315778A (en) 1991-01-24

Family

ID=15510470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106289A Pending JPH0315778A (en) 1989-06-13 1989-06-13 Optical element made of magnetic fluid

Country Status (1)

Country Link
JP (1) JPH0315778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006039A1 (en) * 1992-09-07 1994-03-17 Docdata N.V. Polarizing filter and method for the manufacture thereof
EP0633488A1 (en) * 1993-07-05 1995-01-11 Kabushikigaisya KEIOU Magnetic fluid display, image display controlling apparatus for the magnetic fluid display, and method of making the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006039A1 (en) * 1992-09-07 1994-03-17 Docdata N.V. Polarizing filter and method for the manufacture thereof
EP0633488A1 (en) * 1993-07-05 1995-01-11 Kabushikigaisya KEIOU Magnetic fluid display, image display controlling apparatus for the magnetic fluid display, and method of making the same

Similar Documents

Publication Publication Date Title
US1955923A (en) Light valve and method of operation
US3810191A (en) Multi-stylus through field recording head
US3413141A (en) Method and apparatus for making oriented magnetic recording media
JPH0315778A (en) Optical element made of magnetic fluid
US4396886A (en) Document authentication by means of exchange-anisotropic magnetic material
US3961299A (en) Magnetic circuit having low reluctance
JPS581836A (en) Magnetic orientation system
Coren Shape demagnetizing effects in permalloy films
KR960704308A (en) CONTACT DUPLICATION TAPE DEGAUSSER
US3093818A (en) Domain rotational memory system
JPS6343811B2 (en)
Kronenberg et al. Relation between Colloid Pattern and Permanent Magnet Precipitate during the Magnetization Reversal in Alnico V
US3222205A (en) Recording tape
US3508226A (en) Controlled magnetic easy axis dispersion in magnetizable elements
SU435567A1 (en) METHOD FOR DETECTING MAGNETIC AND CRYSTAL TEXTURES
JPS5749917A (en) Epitaxial-film faraday rotator
Laptei et al. Magnetic structural properties in Alnico alloys under equilibrium conditions and under magnetization
SU830564A1 (en) Method of recording information into internal magnetic cylindrical domain storage
JPS57205827A (en) Manufacture of magnetic recording medium
JPH041928A (en) Magnetic orientation device for magnetic recording medium
JPS6212567B2 (en)
JPS62107430A (en) Vertical magnetic recording medium
GB1238866A (en)
JPS6265239A (en) Magnetic disk orienting device
GB1312434A (en) Bistable magnetic data storage element