JPH03154861A - Method and device for ultrasonic flaw detection - Google Patents

Method and device for ultrasonic flaw detection

Info

Publication number
JPH03154861A
JPH03154861A JP1293933A JP29393389A JPH03154861A JP H03154861 A JPH03154861 A JP H03154861A JP 1293933 A JP1293933 A JP 1293933A JP 29393389 A JP29393389 A JP 29393389A JP H03154861 A JPH03154861 A JP H03154861A
Authority
JP
Japan
Prior art keywords
tube
probe
inspected
ultrasonic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1293933A
Other languages
Japanese (ja)
Inventor
Shoji Suyama
須山 昇司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1293933A priority Critical patent/JPH03154861A/en
Publication of JPH03154861A publication Critical patent/JPH03154861A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To easily and accurately detect a defect over the entire periphery of a thin tube by using a plate wave which has small attenuation by sending an ultrasonic longitudinal wave to the thin tube slantingly and generating the plate wave which is propagated spirally, and receiving its echo plate wave. CONSTITUTION:An ultrasonic wave transmitting probe 1 and an ultrasonic wave receiving probe 2 are arranged eccentrically with the axis of the thin tube 3 to be inspected which is in water by an equal distance to the right and left sides slantingly at the same angle to the axis in the same direction. When the ultrasonic longitudinal wave 2A is made incident on the surface of the tube 3 in two dimensions slantingly from the probe 1, the plate wave 1B which is propagated on the surface of the tube 3 spirally with small attenuation in the propagation is generated. Then the plate wave of the reflection echo wave due to the defect F1 is propagated on the surface in the opposite direction and an echo longitudinal wave 2A based on it is received by the probe 2 to detect the flaw; when the probes 1 and 2 are moved axially, the defect can easily and accurately be detected over the entire periphery of the thin pipe by using the plate which is small in attenuation quantity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子燃料の燃料被覆管、制御棒の被覆管の非
破壊検査方法や、熱交換器の伝熱管など薄肉細管の検査
方法等に適用できる超音波探傷方法および装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to nondestructive inspection methods for nuclear fuel fuel cladding tubes, control rod cladding tubes, and inspection methods for thin-walled thin tubes such as heat exchanger tubes, etc. This invention relates to an ultrasonic flaw detection method and device that can be applied to

〔従来の技術〕[Conventional technology]

小径管類の検査法として、水浸法による超音波探傷装置
が一般に利用されている。水浸法は、被検査管と超音波
を送受する探触子を水中に浸漬して、水を介して被検査
物への超音波の送受を行う方法で゛あり、探触子と被検
査物間の超音波の伝達が安定した方法として知られてお
り、小径管類の自動探傷に利用されている。
Ultrasonic flaw detection equipment using the water immersion method is generally used as an inspection method for small diameter pipes. The water immersion method is a method in which the tube to be inspected and a probe that transmits and receives ultrasonic waves are immersed in water, and the ultrasonic waves are transmitted and received to and from the inspection object through the water. It is known as a method that allows stable transmission of ultrasonic waves between objects, and is used for automatic flaw detection of small diameter pipes.

一般には次の2種類の方法が、小径管類の超音波探傷方
法として実用されている。
Generally, the following two types of methods are in practical use as ultrasonic flaw detection methods for small diameter pipes.

第6図は、被検査管の管軸方向の欠陥を検出対象とする
水浸斜角探傷方法を示したものである。
FIG. 6 shows a water immersion angle flaw detection method in which defects in the tube axis direction of the tube to be inspected are detected.

第6図において、11は送受信探触子、12は被検査管
であり、これらの周囲は水である。送受信探触子11は
図示していない超音波探傷器に連結して超音波(縦波)
の送受信を行う。この方法においては、水中にある被検
査管の管軸に対して送受信探触子の中心軸が直交し、偏
心するように配置される。この配置において、被検査管
の外表面に縦波が斜入射することにより発生(モード変
換)する横波を円周方向に伝搬させて、欠陥からの反射
(欠陥エコー)を受信することにより被検査管の欠陥を
探知する。
In FIG. 6, 11 is a transmitting/receiving probe, 12 is a tube to be inspected, and these are surrounded by water. The transmitting/receiving probe 11 is connected to an ultrasonic flaw detector (not shown) to transmit ultrasonic waves (longitudinal waves).
Send and receive. In this method, the transmitting and receiving probes are arranged so that their central axes are perpendicular to and eccentric to the tube axis of the tube to be inspected underwater. In this arrangement, the transverse waves generated by oblique incidence of longitudinal waves on the outer surface of the tube to be inspected (mode conversion) are propagated in the circumferential direction, and the reflected waves from the defects (defect echoes) are received. Detect defects in pipes.

第7図は、被検査管の円周方向の欠陥を検出対象とする
水浸斜角探傷方法であり、第7図(A)はその正面図、
第7図(B)は側面を示す。この方法においては、送受
信探触子11は被検査管12と同軸上において、管軸方
向に傾斜させて配置させる。この配置において、縦波が
斜入射することにより発生する横波を管軸方向に伝播さ
せて、欠陥からの反射波を受信することにより、被検査
管の欠陥を探知する。
Fig. 7 shows a water immersion angle flaw detection method that detects defects in the circumferential direction of the pipe to be inspected, and Fig. 7(A) is a front view thereof;
FIG. 7(B) shows a side view. In this method, the transmitting/receiving probe 11 is placed coaxially with the tube to be inspected 12 and inclined in the tube axis direction. In this arrangement, defects in the tube to be inspected are detected by propagating transverse waves generated by oblique incidence of longitudinal waves in the tube axis direction and receiving reflected waves from the defects.

なお、被検査管の全円周を全長にわたって検査するため
には、第7図(A)、(B)に示すように、被検査管の
回転と探触子の管軸方向移動を組合わせる方法、あるい
は被検査管の管軸方向移動と探触子の被検査管周りの回
転を組合せる方法などの手段が用いられる。
In addition, in order to inspect the entire circumference of the tube to be inspected over its entire length, as shown in FIGS. 7(A) and (B), rotation of the tube to be inspected and movement of the probe in the tube axis direction are combined. method, or a method that combines movement of the tube to be inspected in the tube axis direction and rotation of the probe around the tube to be inspected.

また、例えば、加圧水型原子炉の燃料集合体は、第14
図に示すような形状を有する。すなわち、燃料集合体は
被覆管37a内、すなわち薄肉の金属細管内に原子燃料
ベレット37bを充てんして成る多数の燃料棒37を、
制御棒案内管及び計装管と共に縦設して、数箇所グリッ
ド38で束ねて構成されている。第15図は、燃料集合
体の横断面を示゛したものであり、燃料集合体はこのよ
うに多数の薄肉°細管を近接して配列した構造物である
Furthermore, for example, the fuel assembly of a pressurized water reactor is
It has a shape as shown in the figure. That is, the fuel assembly consists of a large number of fuel rods 37 each having a cladding tube 37a, that is, a thin metal tube filled with nuclear fuel pellets 37b.
It is arranged vertically together with the control rod guide tube and the instrumentation tube, and is bundled with grids 38 at several locations. FIG. 15 shows a cross section of a fuel assembly, which is a structure in which a large number of thin-walled tubes are arranged closely together.

なお、燃料被覆管37aは、原子燃料ベレットを保護す
る役目を有しており、燃料の使用中にあっては割れや減
肉などの欠陥がない健全な状態を維持しなければならな
い。そのため、燃料集合体の健全状態を確認するための
検査が必要である。
The fuel cladding tube 37a has the role of protecting the nuclear fuel pellet, and must be maintained in a healthy state free from defects such as cracks and thinning while the fuel is in use. Therefore, an inspection is required to confirm the soundness of the fuel assembly.

一般に、この種薄肉の金属細管に存在する割れ、減肉な
どの欠陥を検知する手段としては、板波を利用した超音
波探傷試験が最も適する。そこで、燃料集合体として組
立てられた燃料被覆管を検査するためには、被覆管同志
が近接−して配列されているため、超音波センサが被覆
管の隙間を通過して各被覆管に接近することが可能な形
状のUTプローブでなければならない。
Generally, ultrasonic flaw detection using plate waves is the most suitable means for detecting defects such as cracks and thinning in thin-walled metal tubes of this type. Therefore, in order to inspect the fuel cladding tubes assembled as a fuel assembly, since the cladding tubes are arranged close to each other, the ultrasonic sensor passes through the gaps between the cladding tubes and approaches each cladding tube. The UT probe must be shaped so that it can

第16図は、上記の形状的条件を有する従来のUTプロ
ーブである。薄板状のセンサホルダ32の先端部に超音
波センサ31が傾斜して配設されている送・受信分離形
の板波を用いた水浸式の探傷プローブである。第17図
は、該探傷プローブの作用を説明したものであり、水中
において、被検体である薄肉金属管の頂部に超音波セン
サ部が位置するように配置して、図示していない超音波
探傷器と接続して、送信センサ44aより、超音波を発
信すると、水中を経由して超音波(縦波)43aが薄肉
金属管42に入射、する。この際、超音波ビームは、管
軸に対して傾斜(θ)シ、かつ偏心(x)しているので
、17図に示すように、モード変換した超音波(板波)
43bは、管壁をスパイラル状に伝播進行する。そこで
、薄肉金属管に割れ、減肉などの欠陥が存在すると、そ
の反射波が逆方向に伝播して戻−り縦波44b、44a
は、受信センサ41bによりとらえられ、欠陥の存在を
検知する。
FIG. 16 shows a conventional UT probe having the above-mentioned shape conditions. This is a water immersion type flaw detection probe using a plate wave with separate transmission and reception type, in which an ultrasonic sensor 31 is disposed obliquely at the tip of a thin plate-shaped sensor holder 32. FIG. 17 explains the action of the flaw detection probe, and the ultrasonic flaw detection probe (not shown) is carried out by arranging the ultrasonic sensor part at the top of the thin metal tube that is the object to be inspected underwater. When the transmission sensor 44a transmits an ultrasonic wave, the ultrasonic wave (longitudinal wave) 43a enters the thin metal tube 42 through the water. At this time, since the ultrasonic beam is inclined (θ) and eccentric (x) with respect to the tube axis, the mode-converted ultrasonic wave (plate wave) is generated as shown in Figure 17.
43b propagates through the tube wall in a spiral manner. Therefore, if there are defects such as cracks or thinning in the thin metal tube, the reflected waves propagate in the opposite direction and return longitudinal waves 44b and 44a.
is detected by the receiving sensor 41b and detects the presence of a defect.

なお、該U−Tプローブは、薄肉金、属細管の、超音波
入射面側Q2及びその裏側Q1’、Qsの欠陥を検知す
るためのものであり、薄肉金属細管′の円周上の他の領
域の欠陥を検知するためには、送信センサ41aと受信
センサ41bを鎖管の同一円周上に配置しないで、送信
センサに対して、受信センサを゛該管の管軸にずらせて
配設する必要がある。
The U-T probe is for detecting defects on the ultrasonic incident surface side Q2 and its back side Q1' and Qs of the thin metal thin tube. In order to detect defects in the region of It is necessary to set

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の水浸法による超音波探傷方法では、被検査
管の、外周面は水と接す、る必然・性があり(管端を施
栓することにより内周面は空気と接する)1、被検査管
を伝搬、していく過碌における超音波の減衰(以下、単
に減衰と言う)が大きく、探触の超音波入射点Pを被検
査管の検査対象部位に近接させなければならない。この
ため、小径管類の製造時の検査のように、被検査管の周
囲に障害物がなく、該被検査管の全域にわたって探触子
が接近可能な場合には問題はないが、プラントに組立て
られた状態にある管類を検査する場合には、第8図に示
すように被検査管の一部の外周面が支持構造物13で囲
まれたり、第9図に示すように被検査管が他の構造物1
4に非常に近接して配設される事例が少なくない。した
がって、探触子を接近させることや、その周囲を探触子
を回転させることが困難、あるいは不可能になるため、
検査不可能、あるいは検査不可能な領域ができるなどの
問題がある。
In the above-mentioned conventional ultrasonic flaw detection method using water immersion method, the outer circumferential surface of the pipe to be inspected is necessarily in contact with water (by plugging the tube end, the inner circumferential surface is in contact with air)1 , the attenuation of ultrasonic waves as they propagate through the tube to be inspected (hereinafter simply referred to as attenuation) is large, and the ultrasonic incident point P of the probe must be placed close to the inspection target part of the tube to be inspected. . For this reason, there is no problem when there are no obstacles around the pipe to be inspected and the probe can approach the entire area of the pipe, such as when inspecting small-diameter pipes during manufacturing. When inspecting assembled pipes, a part of the outer peripheral surface of the pipe to be inspected is surrounded by a support structure 13 as shown in FIG. The pipe is another structure 1
In many cases, it is placed very close to 4. Therefore, it becomes difficult or impossible to approach the probe or rotate the probe around it.
There are problems such as the formation of areas that cannot be inspected or cannot be inspected.

なお、被検査管の外周面が水と接している場合には、管
内外表面で反射を繰返Cて管壁を伝播していく横波は、
水と接する外表面における反射の際に水中で超音波のエ
ネルギが分散することにより減衰していく。したがって
、薄肉管になる程、水と接する管外表面における反射回
数が増加するので、超音波の減衰が著しく、遠くまで超
音波を伝えることが困難になる。
In addition, when the outer circumferential surface of the pipe to be inspected is in contact with water, the transverse waves that propagate through the pipe wall after being repeatedly reflected on the inner and outer surfaces of the pipe are
Ultrasonic energy is attenuated by dispersion in water when it is reflected from the outer surface that comes into contact with water. Therefore, as the tube becomes thinner, the number of reflections on the outer surface of the tube that comes into contact with water increases, and the attenuation of ultrasonic waves becomes more significant, making it difficult to transmit ultrasonic waves over long distances.

上記のように、薄肉細管を対象とする従来の水浸法によ
る超音波探傷方法では、検査対象部位に探触子を接近さ
せることが必須条件であり、この点がプラントの保守点
検ではしばしば問題となる。
As mentioned above, in the conventional water immersion ultrasonic flaw detection method for thin-walled tubes, it is essential to bring the probe close to the inspection target area, which is often a problem in plant maintenance inspections. becomes.

プラントの保守点検では、被検査管に探触子が接近困難
あるいは不可能な事例が多く、次の条件を満すような検
査方法の出現が切望されていた。
During plant maintenance and inspection, there are many cases in which it is difficult or impossible for a probe to access the pipe to be inspected, and there has been a strong desire for an inspection method that satisfies the following conditions.

(1)検査対象部位に探触子を接近させることなく、遠
隔で被検査管の肉厚内の欠陥が探知できること。
(1) Defects within the wall thickness of the pipe to be inspected can be detected remotely without bringing the probe close to the part to be inspected.

(2)被検査管の外表面を探触子を回転させることなく
゛、被検査管の外周の一面から、被検査管の全周囲の欠
陥が探知できること。
(2) Defects around the entire circumference of the tube to be inspected can be detected from one side of the outer circumference of the tube to be inspected without rotating the probe on the outer surface of the tube to be inspected.

また、上記従来の薄板形UTプローブは、燃料被覆管単
体あるいは燃料集合体の最外周の被覆管を検査する場合
には、微小な欠陥が検知できる。
Further, the conventional thin plate type UT probe described above can detect minute defects when inspecting a single fuel cladding tube or the outermost cladding tube of a fuel assembly.

ところが、該探傷プローブを燃料集合体の被覆管の隙間
に挿入して、内部の被覆管を検査しようとすると、探傷
プローブ、燃料集合体は共に水中にあるため、水中を伝
播した散乱波が受信され、欠陥の検知が不可能になる。
However, when the flaw detection probe is inserted into the gap between the cladding tubes of the fuel assembly to inspect the internal cladding tubes, since both the flaw detection probe and the fuel assembly are underwater, scattered waves propagated through the water are received. defects, making it impossible to detect defects.

すなわち、送信センサより発せられた音波(縦波)が検
査対象の被覆管表面に当った際に、一部はモード変換し
板波として被覆管の管壁を伝搬して、該管中の欠陥検知
に寄与するが、大部分は縦波として該管表面で反射して
水中を伝搬し、センサホルダの表面及び隣接する他の被
覆管表面との間で反射を繰返して散乱波として受信セン
サにとらえられる。
In other words, when the sound waves (longitudinal waves) emitted by the transmitting sensor hit the surface of the cladding tube to be inspected, some of them undergo mode conversion and propagate through the wall of the cladding tube as plate waves, causing defects in the tube. Most of the waves that contribute to detection are reflected from the pipe surface as longitudinal waves and propagate through the water, and are repeatedly reflected between the surface of the sensor holder and other adjacent cladding pipe surfaces to reach the receiving sensor as scattered waves. It can be caught.

本発明の課題は、上記従来の問題点を解消することがで
きる超音波探傷方法および装置を提供することである。
An object of the present invention is to provide an ultrasonic flaw detection method and apparatus that can solve the above conventional problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による超音波探傷方法は、水中にある被検査管の
管軸を中心として発信探触子と受信探触子を左右に等距
離偏心させ、かつ該管軸に対して両探触子を同一方向に
同一角度傾斜させて配置し、前記発信探触子より発信す
る縦波を被検査管表面に対して二次元的に斜め入射させ
、欠陥からの反射波を前記受信探触子により受信するこ
とにより、被検査管に存在する欠陥を検知することを特
徴とする。
In the ultrasonic flaw detection method according to the present invention, a transmitting probe and a receiving probe are equidistantly eccentric to the left and right with respect to the tube axis of a tube to be inspected underwater, and both probes are eccentrically centered with respect to the tube axis. They are arranged so as to be tilted in the same direction and at the same angle, and the longitudinal waves emitted from the transmitting probe are two-dimensionally obliquely incident on the surface of the tube to be inspected, and the reflected waves from the defects are received by the receiving probe. It is characterized by detecting defects existing in the tube to be inspected.

本発明による超音波探傷装置は、薄板状のセンサホルダ
の先端部に超音波センサを配設し、該センサの超音波発
振面の周囲に吸音材を装着し、吸音材を装着した薄板状
の遮音板を設け、上記センサホルダの超音波発振面と上
記遮音板の吸音材装着面を対向させ、平行かつ検査対象
の薄肉細管の外径を超える間隙でもって、プローブホル
ダに固定してなることを特徴とする。
The ultrasonic flaw detection device according to the present invention includes an ultrasonic sensor disposed at the tip of a thin plate-like sensor holder, a sound-absorbing material attached around the ultrasonic oscillation surface of the sensor, and a thin plate-like flaw detection device equipped with the sound-absorbing material. A sound insulating plate is provided, and the ultrasonic oscillation surface of the sensor holder and the sound absorbing material mounting surface of the sound insulating plate are facing each other and fixed to the probe holder in parallel with a gap that exceeds the outer diameter of the thin-walled tube to be inspected. It is characterized by

即ち、本発明においては、水中にある被検査管の管軸を
中心として周波数fの発信探触子と受信探触子を左右に
等間隔X偏心させ、かつ、該管軸に対して両探触子を同
一方向に同一角度θ傾斜させて配置し、前記発信探触子
より発信する縦波を被検査管に対して斜め入射させ、そ
こで発生するスパイラル状に伝搬する板波を利用して前
記受領探触子により反射波を受信することにより、被検
査管の欠陥を探知することを特徴とする。
That is, in the present invention, the transmitting probe and the receiving probe of the frequency f are eccentrically spaced left and right at equal intervals X with respect to the tube axis of the tube to be inspected underwater, and both probes are The probes are arranged in the same direction and tilted at the same angle θ, and the longitudinal waves emitted from the transmitting probe are made obliquely incident on the tube to be inspected, and the plate waves that are generated there and propagate in a spiral shape are utilized. The present invention is characterized in that defects in the tube to be inspected are detected by receiving reflected waves by the receiving probe.

なお、上記の周波数f、探触子の偏心量X1探触子の傾
斜角θは次のように設定する。
Note that the frequency f and the eccentricity of the probe X1 and the inclination angle θ of the probe are set as follows.

f (MHz) = (5〜20)t、 x (mm)
 = (0,1〜0.3)d 。
f (MHz) = (5~20)t, x (mm)
= (0,1~0.3)d.

θ(度)−25〜40 ここに、t:被検査管の肉厚(龍)、d:被検査管の外
径(am )。
θ (degrees) -25 to 40 where t: wall thickness of the tube to be inspected (dragon), d: outer diameter of the tube to be inspected (am).

また、本発明装置においては、薄板状のセンサホルダの
先端部に超音波センサを配設し、センサの超音波発振面
の周囲に、ゴムなどの吸音材を装着し、センサホルダと
は別に、ゴムなどの吸音材を装着した薄板状の遮音板を
設け、上記センサホルダの超音波発振面と遮音板の吸音
材装着面を対向させ、平行、かつ検査対象の薄肉細管の
外径を超える間隔でもってプローブホルダに配設するよ
うになされている。
In addition, in the device of the present invention, an ultrasonic sensor is disposed at the tip of a thin plate-like sensor holder, a sound absorbing material such as rubber is attached around the ultrasonic oscillation surface of the sensor, and separately from the sensor holder, A thin sound insulating plate equipped with a sound absorbing material such as rubber is provided, and the ultrasonic oscillating surface of the sensor holder and the sound absorbing material mounting surface of the sound insulating plate are facing each other, parallel to each other, and at a distance that exceeds the outer diameter of the thin-walled tube to be inspected. Therefore, it is arranged in the probe holder.

〔作 用〕[For production]

本発明方法によれば、被検査管の外表面に対して縦波が
二次元的に斜入射することにより、薄肉細管では管壁を
スパイラル状に伝搬していく特有の板波が発生する。該
波は、薄肉細管に縦波を二次元的に斜入射することによ
り発生する特有のモードであり、減衰が非常に少ないの
が特徴である。
According to the method of the present invention, longitudinal waves are two-dimensionally obliquely incident on the outer surface of the tube to be inspected, thereby generating unique plate waves that propagate spirally along the tube wall in thin-walled thin tubes. This wave is a unique mode generated by two-dimensional oblique incidence of a longitudinal wave into a thin-walled thin tube, and is characterized by very little attenuation.

次に、被検査管の管壁をスパイラル状に伝搬させ、その
伝播経路上に欠陥が存在すると、その反射波が板波から
縦波のモード変換の後、受信探触子に受信されて、欠陥
の探知ができる。また、発信探触子と受信探触子の間隔
を変えることにより、上記板波のスパイラル状の伝搬経
路が移動して、被検査管の全円周にある欠陥が検知でき
る。さらに、上記板波のスパイラル状の伝搬経路が数本
になるので、被検査管の円周上の数箇所が同時に検査可
能になる。なお、両探触子の数を増加すれば、被検査管
の全円周を同時に検査できるようになる。
Next, the wave is propagated in a spiral through the wall of the tube to be inspected, and if a defect exists on the propagation path, the reflected wave is received by the receiving probe after mode conversion from a plate wave to a longitudinal wave. Defects can be detected. Furthermore, by changing the distance between the transmitting probe and the receiving probe, the spiral propagation path of the plate wave moves, making it possible to detect defects around the entire circumference of the tube to be inspected. Furthermore, since there are several spiral propagation paths of the plate waves, several locations on the circumference of the tube to be inspected can be inspected simultaneously. Note that by increasing the number of both probes, the entire circumference of the tube to be inspected can be inspected at the same time.

本発゛明装置によれば、センサホルダと遮音板の間に、
検査対象の薄肉細管を挟む状態で管群内、すなわち燃料
集゛合体内部に挿入して探傷するすなわち検査対象の燃
料被覆管を隔ててその向うに遮音板を配置し、センサホ
ルダと共に遮音板を同時に管群内に挿入して検査を行う
ことにより、散乱波の伝搬経路が遮断及び散乱波が吸収
されて、受信センサがとらえる散乱波が抑制でき、板波
による被覆管による被覆管に存在する欠陥の検知が可能
となる。
According to the device of the present invention, between the sensor holder and the sound insulating plate,
A sound insulating plate is placed across the fuel cladding tube to be inspected, and the sound insulating plate is placed on the other side of the fuel cladding tube to be inspected. At the same time, by inserting it into the tube group and inspecting it, the propagation path of the scattered waves is blocked and the scattered waves are absorbed, and the scattered waves detected by the receiving sensor can be suppressed. It becomes possible to detect defects.

〔実施例〕〔Example〕

第1図は、本発明方法の一実施例を説明するための図で
あり、第1図において、1は発信探触子、2は受信探触
子、3は被検査管(薄肉細管)であり、これらは水中に
浸漬された状態にある。またFlは欠陥を示す。ここで
、被検査管3の管軸を中心として発信探触子1と受信探
触子2を左右に等距離X偏心させ、かつ該、管軸に対し
て両探触子を同一方向に同一角度θ傾斜させて配置する
FIG. 1 is a diagram for explaining one embodiment of the method of the present invention. In FIG. 1, 1 is a transmitting probe, 2 is a receiving probe, and 3 is a tube to be inspected (thin-walled tube). These are submerged in water. Further, Fl indicates a defect. Here, the transmitting probe 1 and the receiving probe 2 are eccentrically spaced by an equal distance X to the left and right about the tube axis of the tube to be inspected 3, and both probes are moved in the same direction with respect to the tube axis. It is arranged at an angle θ.

この被検査管と探触子の配置において、探触子を図示し
ていない超音波探傷器に連結して、発信探触子1より縦
波IAを発信させると、前記のように、被検査管に板波
IBが発生し、これがスパイラル状に伝播していき、被
検査管に欠陥F1が存在すると、その反射波が受信探触
子2に受信される。該板波は、薄肉管に対して縦波を二
次元的に斜入射した際に発生する特有のモードであり、
従来の斜角探傷法で用いられる横波や薄い平板で発生す
る板波と異なって減衰が非常に少ないのが特徴である。
In this arrangement of the tube to be inspected and the probe, when the probe is connected to an ultrasonic flaw detector (not shown) and the longitudinal wave IA is emitted from the transmitting probe 1, the tube to be inspected will be detected as described above. A plate wave IB is generated in the tube and propagates in a spiral manner, and if a defect F1 exists in the tube to be inspected, its reflected wave is received by the receiving probe 2. The plate wave is a unique mode that occurs when a longitudinal wave is two-dimensionally obliquely incident on a thin-walled pipe.
Unlike the transverse waves used in conventional angle-angle flaw detection and the plate waves generated in thin flat plates, it is characterized by very little attenuation.

該板波は、直径ioms、肉厚0.5+uのジルコニウ
ム製管を被検査管とすると、周波数f:3〜I MHz
 、探傷子の偏心量X : 1.5〜2+mm、傾きθ
:30〜35″の条件で効率的に発生できる。
If the tube to be inspected is a zirconium tube with a diameter of ioms and a wall thickness of 0.5+U, the plate wave has a frequency of f: 3 to I MHz.
, eccentricity of the flaw detector X: 1.5 to 2+mm, inclination θ
: Can be generated efficiently under conditions of 30 to 35''.

第4図は、被検査管の管壁をスパイラル状に伝播する板
波の伝搬経路を展開図で説明したものであり、送信探触
子1から発信された縦波が被検査管の外表面と交わる点
P(縦波の入射点)で発生した板波IBは、矢印の方向
に伝搬していき、欠陥F1に当ると反射して方向を変え
、R点に戻ってくる。R点は受信探触子2の中心軸が被
検査管の外表−面と交わる点であり、この点に達した板
波2Bは縦波2Aにモード変換して受信探触子により受
信される。なお、上記は被検査管の管壁を2回転する条
件により超音波の入射面側(0@)にある欠陥を検知す
る例を示したが、1回転の条件(S1点で検知)、ある
いは(減衰が少ないので)3回転以上させても欠陥が検
知できるし、超音波の入射面の反対側(180’、図中
のQl、02点)の欠陥も検知できる。
Figure 4 is a developed diagram explaining the propagation path of plate waves that propagate spirally through the tube wall of the tube to be inspected. The plate wave IB generated at the point P (the point of incidence of the longitudinal wave) that intersects with F1 propagates in the direction of the arrow, and when it hits the defect F1, it is reflected, changes direction, and returns to point R. Point R is the point where the central axis of the receiving probe 2 intersects with the outer surface of the tube to be inspected, and the plate wave 2B that has reached this point is mode-converted into a longitudinal wave 2A and is received by the receiving probe. . Note that the above example shows an example in which defects on the ultrasonic incident surface side (0@) are detected under the condition that the tube wall of the tube to be inspected rotates twice, but the condition of one rotation (detected at point S1) or Defects can be detected even after three or more rotations (because the attenuation is low), and defects on the opposite side (180', Ql, point 02 in the figure) of the ultrasonic wave incident surface can also be detected.

第2図は、本発明方法の第2実施例を説明するための図
であり、第1図に対して発信探触子1と受信探触子2を
被検査管3の管軸方向に沿って移動して検査する例を示
す。第5図は、その作用を展開図で示したものであり、
説明は省略するが、両探触子を距離y移動することによ
り、超音波の伝播経路が被検査管の円周上を移動するの
で、検知できる欠陥の部位が円周上を移動することにな
る。
FIG. 2 is a diagram for explaining a second embodiment of the method of the present invention, and compared to FIG. An example of moving and inspecting is shown below. Figure 5 shows the effect in a developed diagram.
Although the explanation is omitted, by moving both probes a distance of y, the propagation path of the ultrasonic wave moves on the circumference of the tube to be inspected, so the part of the defect that can be detected moves on the circumference. Become.

第3図は、本発明方法の第3実施例を説明するための図
であり、被検査管の管軸方向に沿って発信探触子1と受
信探触子2をそれぞれ4個配置して、被検査管の円周上
を41!i所同時に検査する例を示す。このように、発
信探触子1と受信探触子2を複数個配置すると、板波の
伝搬経路が数本できるので、第2実施例のように両探触
子の移動をすることなく、円周上の数箇所の欠陥が同時
に検知できるようになる。なお、さらに両探触子の個数
を増加すれば、板波の伝搬経路が無数となり、両探触子
を移動させることなく、被検査管の全円周の欠陥が検知
できる。
FIG. 3 is a diagram for explaining the third embodiment of the method of the present invention, in which four transmitting probes 1 and four receiving probes 2 are arranged along the axial direction of the tube to be inspected. , 41 on the circumference of the tube to be inspected! An example is shown in which i locations are inspected at the same time. In this way, by arranging a plurality of transmitting probes 1 and receiving probes 2, several propagation paths for the plate waves are created, so there is no need to move both probes as in the second embodiment. Defects at several locations on the circumference can be detected simultaneously. Note that if the number of both probes is further increased, the number of propagation paths of plate waves becomes innumerable, and defects around the entire circumference of the tube to be inspected can be detected without moving both probes.

第10図は、本発明装置の一実施例を示す図であり、第
10図においては、21は超音波センサであり、一方が
送信用、他方が受信用センサである。超音波センサには
、図示していないケーブルでもって超音波探傷器に接続
され、超音波の送・受信機能を有する。22は吸音材で
あり、23はセンサホルダにある。吸音材22は、天然
ゴム、シリコンゴム等の薄板状のもので、センサホルダ
23における超音波センサ1の周りを覆うように取付け
られている。
FIG. 10 is a diagram showing an embodiment of the apparatus of the present invention. In FIG. 10, 21 is an ultrasonic sensor, one of which is a transmitting sensor and the other is a receiving sensor. The ultrasonic sensor is connected to an ultrasonic flaw detector via a cable (not shown) and has an ultrasonic transmitting/receiving function. 22 is a sound absorbing material, and 23 is a sensor holder. The sound absorbing material 22 is a thin plate-like material made of natural rubber, silicone rubber, etc., and is attached to the sensor holder 23 so as to cover the ultrasonic sensor 1 .

一方、25は遮音板であり、その超音波センサ21と対
向する面には、センサホルダ23に取付けられているも
のを同じ材質の吸音材4が覆われている。26はプロー
ブホルダであり、上記センサホルダ23と遮音板25と
を一定の間隔で、かつ平行に保持する役目を有する。
On the other hand, 25 is a sound insulating plate, and its surface facing the ultrasonic sensor 21 is covered with a sound absorbing material 4 made of the same material as that attached to the sensor holder 23 . A probe holder 26 has the role of holding the sensor holder 23 and the sound insulating plate 25 parallel to each other at a constant interval.

第12図は、発明の一実施例におけるUTプローブを燃
料集合体の管群の中に挿入して燃料被覆管27aを被検
査管として検査を行っている状態を示す。
FIG. 12 shows a state in which a UT probe according to an embodiment of the invention is inserted into a group of tubes of a fuel assembly to perform an inspection using the fuel cladding tube 27a as a tube to be inspected.

第11図は本発明の第2実施例を示す図であり、本実施
例は超音波センサホルダを3組取付けたもので、3組の
センサ間で超音波の送・受信を交互にして、被検査管の
円周上の3箇所を同時に検査できるようにしたプローブ
である。本実施例はセンサ数が増加している他は、第1
実施例と同様であり、説明は省略する。
FIG. 11 is a diagram showing a second embodiment of the present invention. In this embodiment, three sets of ultrasonic sensor holders are attached, and ultrasonic waves are transmitted and received alternately between the three sets of sensors. This probe is capable of simultaneously inspecting three locations on the circumference of a tube to be inspected. In this example, the number of sensors is increased.
This is the same as the embodiment, and the explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明方法によれば、被検査管の
管壁をスパイラル状に伝搬し、減衰が非常に少ない板波
を用いるので、検査対象部位に探触子を接近させること
なく、遠隔で被検査管の欠陥が探知できる。また、被検
査管の管軸に沿って両探触子を移動することにより、被
検査管の全円周の欠陥が検知できる。したがって、プラ
ントに組込まれた状態にある薄肉細管において、探触子
の接近が不可能あるいは薄肉細管の片面にしか探触子が
接近できないような場合でも、本発明の超音波探傷方法
によれば検査が可能となる。
As explained above, according to the method of the present invention, a plate wave that propagates in a spiral through the wall of the tube to be inspected and has very little attenuation is used, so the probe can be used without bringing the probe close to the part to be inspected. Defects in the tube to be inspected can be detected remotely. Further, by moving both probes along the tube axis of the tube to be inspected, defects around the entire circumference of the tube to be inspected can be detected. Therefore, even if the probe cannot approach a thin-walled tube installed in a plant or the probe can only approach one side of the thin-walled tube, the ultrasonic flaw detection method of the present invention can be used. Inspection becomes possible.

また、探触子を複数化すれば、全円周の数箇所あるいは
全円周が同時に検査可能となり、検査が能率よくできる
Furthermore, if a plurality of probes are used, it becomes possible to simultaneously inspect several locations around the entire circumference or the entire circumference, making the inspection more efficient.

さらに、本発明装置によれば、板波を用いて管群の中に
探傷プローブを挿入して検査を行っても、散乱波が抑制
され、例えば燃料被覆管中の微細欠陥の検知が可能とな
る。すなわち、板波を用いて管群の検査を行う際に問題
となる散乱波は、送信用センサより発した超音波(縦波
)が検査対象の薄肉細管の表面P1に当って反射した後
、水中を伝搬してセンサホルダの表面及び隣接する他の
薄肉細管−の表面との間で反射を繰返して受信用センサ
にとらえられるものである。そこで、本発明装置におけ
るセンサホルダに装着した吸音材と吸音材を装着した遮
音板により、散乱波の原因となる水中を伝播する超音波
を吸収し、また伝播経路を遮断することにより散乱波が
抑制できる。
Furthermore, according to the device of the present invention, even if a flaw detection probe is inserted into a group of tubes for inspection using plate waves, scattered waves are suppressed, making it possible to detect minute defects in fuel cladding tubes, for example. Become. That is, the scattered waves that become a problem when inspecting tube groups using plate waves occur after the ultrasonic waves (longitudinal waves) emitted from the transmitting sensor hit the surface P1 of the thin-walled tube to be inspected and are reflected. It propagates through water, is repeatedly reflected between the surface of the sensor holder and the surface of other adjacent thin-walled tubes, and is captured by the receiving sensor. Therefore, the sound-absorbing material attached to the sensor holder and the sound-insulating plate equipped with the sound-absorbing material in the device of the present invention absorb the ultrasonic waves propagating in water that cause scattered waves, and also block the propagation path to prevent the scattered waves. It can be suppressed.

また、人工欠陥を付けた薄肉細管を管群中で検査した際
における探傷波形(横軸は超音波伝播時間、縦軸は反射
波の強さを示す)を比較して示す第13図に示すように
、従来のUTプローブによる探傷波形を示す第13図(
A)と、本発明装置におけるUTプローブによる探傷波
形を示す第13図(B)とを比較すると明らかなように
、本発明装置のUTプローブは、散乱波を抑制する効果
は極めて大きく、従来不可能であった多数隣接して配設
されている管群中にある薄肉細管の欠陥検知が可能とな
る。
In addition, Fig. 13 shows a comparison of the flaw detection waveforms (the horizontal axis shows the ultrasonic propagation time and the vertical axis shows the intensity of reflected waves) when thin-walled thin tubes with artificial defects were inspected in a group of tubes. As shown in Fig. 13 (
A) and Fig. 13 (B), which shows the flaw detection waveform by the UT probe in the device of the present invention, as is clear, the UT probe of the device of the present invention has an extremely large effect of suppressing scattered waves, and is superior to conventional devices. It is now possible to detect defects in thin-walled thin tubes in a group of tubes that are arranged adjacent to each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る超音波探傷方法の説
明図、第2図は本発明の第2実施例に係る超音波探傷方
法の説明図、第3図は本発明の第3実施例に係る超音波
探傷方法の説明図、第4図は本発明の第1実施例におけ
る超音波の伝搬経路の説明図、第5図は本発明の第2実
施例における超音波の伝搬経路の説明図、第6図および
第7図はそれぞれ従来の管類の超音波探傷方法の説明図
、第8図および第9図はそれぞれプラントに組込まれた
状態にある被検査管の構造図、第10図および第11図
はそれぞれ本発明における超音波探傷プローブの斜視図
、第12図は本発明における超音波プローブを使用した
管群の検査中の説明図、第13図は人工欠陥を付けた薄
肉細管を管群中で検査時の探傷波形図、第14図は加圧
水型原子炉の燃料集合体の平面図、第15図は上記燃料
集合体の断面図、第16図は従来の超音波探傷プローブ
を示す斜視図、第17図は板波を用いた薄肉細管の検査
における欠陥検知の原理説明図である。 1・・・発信探触子、2・・・受信探触子、3・・・被
検査管、21・・・超音波センサ、22.24・・・吸
音材、23・・・センサホルダ、25・・・遮音板、2
6・・・プローブホルダ。
FIG. 1 is an explanatory diagram of the ultrasonic flaw detection method according to the first embodiment of the present invention, FIG. 2 is an explanatory diagram of the ultrasonic flaw detection method according to the second embodiment of the present invention, and FIG. FIG. 4 is an explanatory diagram of the ultrasonic flaw detection method according to the third embodiment, FIG. 4 is an explanatory diagram of the ultrasonic propagation path in the first embodiment of the present invention, and FIG. 5 is an explanatory diagram of the ultrasonic propagation path in the second embodiment of the present invention. An explanatory diagram of the route, Figures 6 and 7 are respectively explanatory diagrams of the conventional ultrasonic flaw detection method for pipes, and Figures 8 and 9 are structural diagrams of the pipe to be inspected installed in a plant. , FIG. 10 and FIG. 11 are respectively perspective views of the ultrasonic flaw detection probe according to the present invention, FIG. 12 is an explanatory diagram of a tube group being inspected using the ultrasonic probe according to the present invention, and FIG. 13 is an illustration of an artificial defect being detected. Fig. 14 is a plan view of a fuel assembly for a pressurized water reactor, Fig. 15 is a cross-sectional view of the fuel assembly, and Fig. 16 is a diagram of a conventional fuel assembly. FIG. 17 is a perspective view showing the ultrasonic flaw detection probe, and is a diagram explaining the principle of defect detection in the inspection of thin-walled thin tubes using plate waves. DESCRIPTION OF SYMBOLS 1... Transmission probe, 2... Receiving probe, 3... Tube to be inspected, 21... Ultrasonic sensor, 22. 24... Sound absorbing material, 23... Sensor holder, 25...Sound insulation board, 2
6... Probe holder.

Claims (2)

【特許請求の範囲】[Claims] (1)水中にある被検査管の管軸を中心として発信探触
子と受信探触子を左右に等距離遍心させ、かつ該管軸に
対して両探触子を同一方向に同一角度傾斜させて配置し
、前記発信探触子より発信する縦波を被検査管表面に対
して二次元的に斜め入射させ、欠陥からの反射波を前記
受信探触子により受信することにより、被検査管に存在
する欠陥を検知することを特徴とする超音波探傷方法。
(1) The transmitting probe and the receiving probe are equidistantly eccentric to the left and right about the axis of the tube to be inspected underwater, and both probes are moved in the same direction and at the same angle with respect to the axis of the tube. The longitudinal wave emitted from the transmitting probe is two-dimensionally obliquely incident on the surface of the tube to be inspected, and the reflected wave from the defect is received by the receiving probe. An ultrasonic flaw detection method characterized by detecting defects existing in inspection tubes.
(2)薄板状のセンサホルダの先端部に超音波センサを
配設し、該センサの超音波発振面の周囲に吸音材を装着
し、吸音材を装着した薄板状の遮音板を設け、上記セン
サホルダの超音波発振面と上記遮音板の吸音材装着面を
対向させ、平行かつ検査対象の薄肉細管の外径を超える
間隙でもって、プローブホルダに固定してなることを特
徴とする超音波探傷装置。
(2) An ultrasonic sensor is disposed at the tip of a thin plate-shaped sensor holder, a sound absorbing material is attached around the ultrasonic oscillation surface of the sensor, a thin plate-shaped sound insulating plate is provided with the sound absorbing material attached, and the above-mentioned An ultrasonic device characterized in that the ultrasonic emitting surface of the sensor holder and the sound-absorbing material mounting surface of the sound insulating plate are fixed to the probe holder in parallel and with a gap exceeding the outer diameter of the thin-walled tube to be inspected. Flaw detection equipment.
JP1293933A 1989-11-14 1989-11-14 Method and device for ultrasonic flaw detection Pending JPH03154861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1293933A JPH03154861A (en) 1989-11-14 1989-11-14 Method and device for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1293933A JPH03154861A (en) 1989-11-14 1989-11-14 Method and device for ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPH03154861A true JPH03154861A (en) 1991-07-02

Family

ID=17801046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1293933A Pending JPH03154861A (en) 1989-11-14 1989-11-14 Method and device for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPH03154861A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0935258A1 (en) * 1998-02-09 1999-08-11 Siemens Power Corporation Method for the inspection of nuclear fuel rod for fretting and wear within a nuclear fuel assembly
EP0936630A1 (en) * 1998-02-10 1999-08-18 Siemens Power Corporation Detection of nuclear fuel rod failure
KR100272253B1 (en) * 1997-01-23 2000-12-01 윤종용 Apparatus adopting non-distruction method for testing quartz tube
JP2007232373A (en) * 2006-02-27 2007-09-13 Toshiba Corp Piping inspection device and its method
JP2008203043A (en) * 2007-02-19 2008-09-04 Global Nuclear Fuel-Japan Co Ltd Fuel rod breakage identification method by ultrasonic wave, and inspection probe
JP2010025817A (en) * 2008-07-22 2010-02-04 Kyushu Electric Power Co Inc Tube ultrasonic flaw detector by non-contact airborne-ultrasonic wave and method therefor
JP2014122794A (en) * 2012-12-20 2014-07-03 Hitachi-Ge Nuclear Energy Ltd Nondestructive inspection system and inspection method of fuel rod

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100272253B1 (en) * 1997-01-23 2000-12-01 윤종용 Apparatus adopting non-distruction method for testing quartz tube
EP0935258A1 (en) * 1998-02-09 1999-08-11 Siemens Power Corporation Method for the inspection of nuclear fuel rod for fretting and wear within a nuclear fuel assembly
EP0936630A1 (en) * 1998-02-10 1999-08-18 Siemens Power Corporation Detection of nuclear fuel rod failure
JP2007232373A (en) * 2006-02-27 2007-09-13 Toshiba Corp Piping inspection device and its method
JP4686378B2 (en) * 2006-02-27 2011-05-25 株式会社東芝 Pipe inspection device
JP2008203043A (en) * 2007-02-19 2008-09-04 Global Nuclear Fuel-Japan Co Ltd Fuel rod breakage identification method by ultrasonic wave, and inspection probe
JP2010025817A (en) * 2008-07-22 2010-02-04 Kyushu Electric Power Co Inc Tube ultrasonic flaw detector by non-contact airborne-ultrasonic wave and method therefor
JP2014122794A (en) * 2012-12-20 2014-07-03 Hitachi-Ge Nuclear Energy Ltd Nondestructive inspection system and inspection method of fuel rod

Similar Documents

Publication Publication Date Title
US5454267A (en) Multi-element ultrasonic probe for electronic scanning
US9091638B2 (en) Apparatus and method for non-destructive testing using ultrasonic phased array
US9810666B2 (en) Device and method for nondestructive inspection of tubular products, especially on site
US5767410A (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
US20050072237A1 (en) Pipeline inspection pigs
CN103977949A (en) Flexible comb-shaped guided wave phased array transducer
TW200414229A (en) Method and system for nondestructive inspection of components
US5377237A (en) Method of inspecting repaired stub tubes in boiling water nuclear reactors
EP0139867B1 (en) Near surface inspection system
US4641531A (en) Ultrasonic inspection apparatus and method for locating multiple defects in eccentric wall tubular goods
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
JPH03154861A (en) Method and device for ultrasonic flaw detection
JPS59214793A (en) Method and device for detecting failure of fuel element
CN103990592A (en) Flexible comb-shaped wave guiding transducer suitable for curved plate tubing part detecting
US3417609A (en) Ultrasonic inspection transducer
Salim et al. Visualization and modal analysis of guided waves from a defect in a pipe
KR101083108B1 (en) The inspection apparatus for nuclear fuel rod assembly
Chen et al. Ultrasonic Imaging Detection of Welding Joint Defects of Pressure Pipeline Based on Phased Array Technology
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
CN216082606U (en) Phased array probe for ultrasonic inspection of heat transfer tubes of steam generator and heat exchanger
JPH0344245B2 (en)
JPH046462A (en) Ultrasonic-wave flaw detecting method
KR100814089B1 (en) An Apparatus For Detecting Butt Joint of Pipe Using Parallel Connected Transducers And Method Thereof
JPH1164300A (en) Ultrasonic probe and ultrasonic flaw detecting apparatus
CN112684009A (en) Phased array probe for ultrasonic inspection of heat transfer tubes of steam generator and heat exchanger