JPH03153708A - Discharge of particle from fluidized bed reactor - Google Patents

Discharge of particle from fluidized bed reactor

Info

Publication number
JPH03153708A
JPH03153708A JP29445689A JP29445689A JPH03153708A JP H03153708 A JPH03153708 A JP H03153708A JP 29445689 A JP29445689 A JP 29445689A JP 29445689 A JP29445689 A JP 29445689A JP H03153708 A JPH03153708 A JP H03153708A
Authority
JP
Japan
Prior art keywords
particles
particle
discharge
fluidized bed
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29445689A
Other languages
Japanese (ja)
Inventor
Minoru Aoki
稔 青木
Yuzo Saito
斎藤 悠三
Hirozo Ijiri
井尻 博三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP29445689A priority Critical patent/JPH03153708A/en
Publication of JPH03153708A publication Critical patent/JPH03153708A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0035Periodical feeding or evacuation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To decrease the load on a gas recovery system by increasing the particle to gas ratio by intermittently operating a discharge valve of a particle settling tank in which the particles are settled so that they may always remain in the tank. CONSTITUTION:Particles are settled always under high pressure in a particle settling tank 4 having a line for receiving from a reactor 1 and a pressure leveling line 3. A discharge valve 6 provided on a discharge line 5 is intermittently operated so that particles and a small amount of, a gas may be discharged in such a manner that the volume of the particles discharged per operation of the valve 6 is 1/31/1, and the particles are discharged into a lower pressure system in such a manner that they may always remain in the tank 4 even during the operation of the valve 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流動層反応装置に係り特にオレフィン類の流動
層型気相重合装置からのポリマー粒子の抜出し方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a fluidized bed reactor, and particularly to a method for extracting polymer particles from a fluidized bed gas phase polymerization device for olefins.

〔従来の技術〕[Conventional technology]

高圧の流動層反応器からの粒子排出方法としては低圧系
との縁切弁を06 (閉) M180’ (開)と交互
に作動させる間に90°前後で系内外が縁切られず系内
外の1圧で粒子を排出する方式及び特開昭81−216
9f1号公報の如(複数個の縁切弁と、それら弁間の容
器を用いたガスロック帯域を通しての粒子を排出する方
法が知られている。
A method for discharging particles from a high-pressure fluidized bed reactor is to operate the cut-off valve with the low-pressure system alternately between 06 (closed) and M180' (open), so that the inside and outside of the system are not cut off at around 90 degrees. Method for discharging particles with one pressure and JP-A-81-216
A method of discharging particles through a gas lock zone using a plurality of edge valves and a container between the valves is known, as disclosed in Japanese Patent No. 9F1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

流動層反応器からの粒子排出を1つの縁切弁で行った場
合、流動層内は、粒子とガスが流動層を形成しているた
め粒子対ガスの比率が元々小さくさらに縁切弁までの短
管内での粒子の流れに対する抵抗もあるため、排出され
る粒子/ガスの比率は低い。
When particles are discharged from a fluidized bed reactor using one edge valve, the particles and gas in the fluidized bed form a fluidized bed, so the ratio of particles to gas is originally small, and furthermore, the ratio of particles to gas is small. There is also a resistance to the flow of particles in the short tube, so the ejected particle/gas ratio is low.

通常反応器から排出されたポリマーに随伴している未反
応上ツマーガスは、反応器に再循環されるが再び圧縮す
る必要があり、排出される粒子/ガスの比率が低くモノ
マーガス量が多いと圧縮に要するコストが大きく、流動
層反応装置での紅済性を損う。
The unreacted upper gas that normally accompanies the polymer discharged from the reactor is recycled to the reactor but must be compressed again, and if the discharged particle/gas ratio is low and the amount of monomer gas is high. The cost required for compression is large, and it impairs the performance of flushing in a fluidized bed reactor.

一方、特開昭Of −2169f3号公報の方法では粒
子/ガスの比率は高くできるが排出ラインー系列当りの
作動弁の数が多く、又縁切弁間の容器が複数であり、容
積も比較的大きく、複雑でトラブルの機会が増え又経済
的にも不利である。
On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. 2169F3 can achieve a high particle/gas ratio, but requires a large number of operating valves per discharge line, multiple containers between the edge valves, and a relatively large volume. It is large and complicated, increases the chances of trouble, and is economically disadvantageous.

本発明の課題は上記のような従来技術の問題点を解決し
、シンプルな抜出し方法によってかつ粒子/ガスの比率
も高くするシステムを提案するものである。
The object of the present invention is to solve the above-mentioned problems of the prior art and to propose a system that uses a simple extraction method and has a high particle/gas ratio.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る粒子排出方法は以上のような課題を解決す
るものであって、次のようなものである。
The particle discharge method according to the present invention solves the above-mentioned problems, and is as follows.

図1に示す如く反応器1から受入ライン2及び均圧ライ
ン3を有する粒子沈降槽4に粒子を常時高圧下で沈降静
置させておき、排出ライン5に設けた排出弁6を間欠的
に作動させて粒子及び少量のガスを排出させる。
As shown in FIG. 1, the particles are constantly allowed to settle under high pressure from the reactor 1 into a particle settling tank 4 having a receiving line 2 and a pressure equalization line 3, and the discharge valve 6 provided in the discharge line 5 is intermittently closed. Operate to emit particles and small amounts of gas.

排出弁は通常反応器内の粒子ホールド量又は粒子高さを
一定に保つように反応器のレベルコントローラーと連動
し作動間隔が調整される。
The discharge valve is normally operated in conjunction with the level controller of the reactor, and the operating interval is adjusted so as to keep the amount of particles held or the height of the particles in the reactor constant.

排出ラインの粒子/ガスの比率を上げるためには粒子沈
降槽4の容積に対して排出弁の1作動回数当りの粒子排
出容積を1/3〜l/1倍、好ましくは1/2〜l/1
.1倍として排出弁作動時においても沈降槽内に常に粒
子を残存させることにより粒子/ガスの比率を高くする
ことができる。
In order to increase the particle/gas ratio in the discharge line, the volume of particles discharged per operation of the discharge valve should be 1/3 to 1/1 times, preferably 1/2 to 1, the volume of the particle settling tank 4. /1
.. As a factor of 1, the particle/gas ratio can be increased by always leaving particles in the sedimentation tank even when the discharge valve is activated.

ただし、排出弁閉の間に沈降槽が粒子で満たされる必要
がありこのためには、流動層からの受入ラインのバイブ
径を十分に大きくするか又は同様の排出系を複数用いる
ことが望ましい。
However, it is necessary for the sedimentation tank to be filled with particles while the discharge valve is closed, and for this purpose, it is desirable to make the diameter of the vibe in the receiving line from the fluidized bed sufficiently large or to use a plurality of similar discharge systems.

一方、1個の排出弁を用いた場合は前後の差圧が大き(
作動部分が摩耗しやすいが特殊弁たとえば作動部分をメ
タルで構成される弁を用いることによって寿命を長くす
ることができる。しかしながら寿命には限界があるため
、本システムを複数系列設置し、排出弁を交互に交換す
ることによって長期連続運転も可能である。
On the other hand, when one discharge valve is used, the differential pressure before and after is large (
Although the operating parts are prone to wear, the service life can be extended by using a special valve, such as a valve whose operating part is made of metal. However, since there is a limit to the service life, long-term continuous operation is possible by installing multiple series of this system and replacing the discharge valves alternately.

又、1個の排出弁で高圧系との縁切りを行う場合弁の不
調によって中途間の状態で弁が停止し多量の粒子及び未
反応ガスが低圧系へ一挙に流出してしまうことが懸念さ
れる。
In addition, if a single discharge valve is used to disconnect from the high pressure system, there is a concern that if the valve malfunctions, the valve may stop midway and a large amount of particles and unreacted gas may flow out into the low pressure system all at once. Ru.

その対応としては弁の中途間の検知を以下の如き方法で
行うことができる。
As a countermeasure, detection in the middle of the valve can be performed in the following manner.

(1)  排出弁の作動をリミットスイッチで常時監視
し異常の有無を検知する。
(1) The operation of the discharge valve is constantly monitored using a limit switch to detect any abnormalities.

(2)低圧系での圧力の急上昇で検知する。(2) Detected by a sudden rise in pressure in a low pressure system.

(3)  排出弁以降のラインにおいて粒子が連続的に
流出していることを何らかの方法で検知する。
(3) Detect by some method that particles are continuously flowing out in the line after the discharge valve.

中途間を検知すれば排出ライン中に縁切の臼動弁を追加
することも可能である。
If the middle part is detected, it is possible to add an edge cutting valve in the discharge line.

【作  用〕[For production]

粒子沈降槽を用いることによって、排出される粒子/ガ
スの比率を高くできる理由は以下による。
The reason why the ratio of discharged particles to gas can be increased by using a particle settling tank is as follows.

即ち、流動層内部で、均一な流動層を得るためには静置
した粒子層が1.1〜1.8倍に層膨張をし、未反応器
ツマーガスが粒子間に多量に含まれている。従って、反
応器から直接粒子及びガスを抜き出すと粒子/ガスの比
率は低い。
That is, in order to obtain a uniform fluidized bed inside the fluidized bed, the particle layer that is left to stand must expand by a factor of 1.1 to 1.8, and a large amount of unreacted gas is contained between the particles. . Therefore, withdrawing particles and gas directly from the reactor results in a low particle/gas ratio.

そこで、図1の如く、未反応器1から一度沈降1容器4
に粒子を受は入れ静置させるとガス分は粒子間の空隙及
び粒子の細孔内のみに存在し、粒子/ガスの比率は高く
なる。
Therefore, as shown in FIG.
When particles are placed in a container and allowed to stand still, gas exists only in the spaces between the particles and in the pores of the particles, and the particle/gas ratio becomes high.

又、粒子沈降槽4の容積に対して排出弁の1作動回数当
りの粒子排出容積を1/3〜l/1倍好ましくはl/2
〜1/1.1倍とすることによって静置された粒子層の
みが排出され、ガス層の排出が最小限に抑えられる。
In addition, the particle discharge volume per one operation of the discharge valve is 1/3 to 1/1 times the volume of the particle settling tank 4, preferably 1/2.
By increasing the ratio to ~1/1.1, only the particle layer left still is discharged, and the discharge of the gas layer is minimized.

以上の結果、排出される粒子/ガスの比率を高くできる
As a result of the above, the ratio of emitted particles to gas can be increased.

〔実 施 例〕〔Example〕

重合器の圧カフ KG、温度60″のプロピレンガスを
用いた流動層において排出弁径25A、沈降容器6gを
用いポリプロピレン粒子を0゜5にGの低圧系へ移送さ
せる際に1作動回数当りの排出粒子二を4.8gとして
、運転を行った。
Pressure cuff of the polymerization reactor: When transferring polypropylene particles to a low pressure system of 0°5G using a fluidized bed using propylene gas at a temperature of 60" and a discharge valve diameter of 25A and a settling vessel of 6g, The operation was carried out with the amount of discharged particles 2 being 4.8 g.

その結果粒子/ガスの比率は49重量比となり沈降容器
のない場合の6重量比と比べ大幅に上昇した。
As a result, the particle/gas ratio was 49 weight ratio, which was significantly higher than the 6 weight ratio in the case without a settling vessel.

〔効  果〕〔effect〕

本発明による粒子排出方法は1系列当り比較的小さな沈
降槽と1個の排出弁によって粒子/ガスの比率は大幅に
高くなり、その結果、ガス回収系の負担を減少し流動層
型気相重合プロセスの経済性を向上させることができる
The particle evacuation method according to the present invention has a relatively small settling tank and one evacuation valve per train, resulting in a significantly higher particle/gas ratio, which reduces the burden on the gas recovery system and allows fluidized bed gas phase polymerization. The economics of the process can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す。 に重合器       2:受入ライン3:均圧ライン
     4:粒子沈降槽5:排出ライン     6
:排出弁
FIG. 1 shows an embodiment of the invention. Polymerization vessel 2: Receiving line 3: Equalization line 4: Particle sedimentation tank 5: Discharge line 6
:Discharge valve

Claims (1)

【特許請求の範囲】[Claims] 高圧の流動層反応器から、低圧系への粒子排出方法にお
いて、該流動層反応器からの受入ラインおよび均圧ライ
ンを有する粒子沈降槽を設け、該粒子沈降槽内に常時高
圧下で粒子を沈降静置させておき、該粒子沈降槽の排出
ラインに設けた排出弁を間欠的に作動させ、粒子及び少
量のガスを排出させるものであって、排出弁の1作動回
数当りの粒子排出容積を1/3〜1/1として、排出弁
作動時においても沈降槽内に常に粒子が残るようにして
排出させることを特徴とする流動層反応器からの粒子排
出方法。
In a method for discharging particles from a high-pressure fluidized bed reactor to a low-pressure system, a particle settling tank having a receiving line and a pressure equalization line from the fluidized bed reactor is provided, and the particles are constantly kept under high pressure in the particle settling tank. After the particle sedimentation tank is allowed to settle, a discharge valve installed in the discharge line of the particle settling tank is operated intermittently to discharge particles and a small amount of gas, and the particle discharge volume per one operation of the discharge valve is A method for discharging particles from a fluidized bed reactor, characterized in that particles are discharged from a fluidized bed reactor by setting the ratio to 1/3 to 1/1 so that the particles always remain in the sedimentation tank even when the discharge valve is operated.
JP29445689A 1989-11-13 1989-11-13 Discharge of particle from fluidized bed reactor Pending JPH03153708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29445689A JPH03153708A (en) 1989-11-13 1989-11-13 Discharge of particle from fluidized bed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29445689A JPH03153708A (en) 1989-11-13 1989-11-13 Discharge of particle from fluidized bed reactor

Publications (1)

Publication Number Publication Date
JPH03153708A true JPH03153708A (en) 1991-07-01

Family

ID=17808017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29445689A Pending JPH03153708A (en) 1989-11-13 1989-11-13 Discharge of particle from fluidized bed reactor

Country Status (1)

Country Link
JP (1) JPH03153708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914104B2 (en) 2002-04-19 2005-07-05 Sumitomo Chemical Company, Limited Process for polymerization of α-olefin
US7465772B2 (en) 2004-07-16 2008-12-16 Sumitomo Chemical Company, Limited Apparatus for continuous polymerization of olefin, method for transferring a polymer powder, and method for continuous polymerization of olefin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914104B2 (en) 2002-04-19 2005-07-05 Sumitomo Chemical Company, Limited Process for polymerization of α-olefin
US7465772B2 (en) 2004-07-16 2008-12-16 Sumitomo Chemical Company, Limited Apparatus for continuous polymerization of olefin, method for transferring a polymer powder, and method for continuous polymerization of olefin

Similar Documents

Publication Publication Date Title
US4621952A (en) Fluidized bed discharge process
US5381827A (en) Gas distributor for use in gas phase polymerization apparatus
AU699640B2 (en) Apparatus and process for polymerising olefin in gas phase
KR860006492A (en) Gas phase multi-stage polymerization of alpha-olefins
CN101107066B (en) Apparatus and process for the withdrawal of polymer from a gas-phase polymerization reactor
CA2662634A1 (en) Discharge system to remove solids from a vessel
US7745568B2 (en) Transfer vessel between flash tank and purge column
EP2249955B1 (en) Improved raw material efficiency method and process
US20230330565A1 (en) Method and Apparatus for Removal of Particulate Matter from a Multiphase Stream
JPH03153708A (en) Discharge of particle from fluidized bed reactor
EP0765886A1 (en) Process and apparatus for removing unpolymerized gaseous monomers from olefin polymers
CN104240774B (en) Cooling system of nuclear reactor containment structure
US2413479A (en) Conveying of materials
EP0830892A1 (en) Equipment and process for gas-phase olefin polymerisation
CA1199477A (en) Process and device for the bottom drainage of a fluid- bed polymerisation reactor
CN103025768B (en) Interlock and process
US11098137B2 (en) Process and system for vapor phase polymerization of olefin monomers
JPH10279611A (en) Vapor-phase polymerizer
KR100446890B1 (en) Process For Feeding Particulate Material To A Fluidized Bed Reactor
US4622141A (en) Method and apparatus for withdrawing a layer of material from a vessel
EP2021122A1 (en) Apparatus for producing carbon monoxide by a chemical reaction process
JP2000053707A (en) Vapor-phase polymerizer
JP3862443B2 (en) Powder extraction method in gas phase polymerization reactor
KR100311553B1 (en) Recovery device and recovery method of unreacted monomer in vinyl chloride polymerization device
CN212914597U (en) Material drying equipment