JPH03153531A - Production for molding optical element - Google Patents

Production for molding optical element

Info

Publication number
JPH03153531A
JPH03153531A JP29190789A JP29190789A JPH03153531A JP H03153531 A JPH03153531 A JP H03153531A JP 29190789 A JP29190789 A JP 29190789A JP 29190789 A JP29190789 A JP 29190789A JP H03153531 A JPH03153531 A JP H03153531A
Authority
JP
Japan
Prior art keywords
mold
glass
molding
mold member
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29190789A
Other languages
Japanese (ja)
Other versions
JP2644597B2 (en
Inventor
Tetsuo Kuwabara
鉄夫 桑原
Kiyoshi Yamamoto
潔 山本
Masaaki Yokota
正明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1291907A priority Critical patent/JP2644597B2/en
Priority to US07/446,779 priority patent/US5032159A/en
Publication of JPH03153531A publication Critical patent/JPH03153531A/en
Application granted granted Critical
Publication of JP2644597B2 publication Critical patent/JP2644597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent fusion of a mold and a glass molded article by regulating the pressure atmosphere to the gaseous mixture of nonoxidative gas and gaseous hydrocarbon in the case of pressure-molding glass material with a mold member made of oxidation resistant high-temp. high-hardness material. CONSTITUTION:Glass material and a mold member described hereunder are heated at the prescribed temp. and glass member is inserted between a top force and a bottom force and pressure-molded. The mold member has the top force and the bottom force which mold the high-precision optical face of an optical element and is made of oxidation resistant, high-temp. high-hardness material. In this case, before performing pressure-operation of the top force and the bottom force, the working atmosphere is regulated to the gaseous mixture of nonoxidative gas and gaseous hydrocarbon. Thereby for example, such a reaction is reduced wherein Co and WC contained in sintered hard alloy of the mold member reduce lead oxide contained in glass. Further substance having mold release effect can be interposed the surface of the mold and the surface of glass. Furthermore lead contained in glass is allowed to react with carbon contained in the above-mentioned gaseous mixture and the reaction of the mold and glass can be inhibited. Therefore fusion of the mold and the glass molded article is prevented even in the mold made of ceramic sintered material.

Description

【発明の詳細な説明】 [産業上の利用分野] 1)本発明は、レンズ、プリズム等のガラスよりなる光
学素子を、ガラス素材のプレス成形により製造する光学
素子成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] 1) The present invention relates to an optical element molding method for manufacturing optical elements made of glass, such as lenses and prisms, by press molding a glass material.

〔従来の技術] 研磨工程を必要としないでガラス素材のプレス成形によ
ってレンズを製造する技術は従来のレンズの製造におい
て必要とされた複雑な工程をな(し、簡単且つ安価にレ
ンズを製造することを可能とし、近来、レンズのみなら
ずプリズムその他のガラスよりなる光学素子の製造に使
用されるようになってきた。
[Prior art] The technology of manufacturing lenses by press-molding glass materials without requiring a polishing process eliminates the complicated processes required in conventional lens manufacturing, and makes it possible to manufacture lenses simply and inexpensively. Recently, it has come to be used for manufacturing not only lenses but also prisms and other optical elements made of glass.

このようなガラスの光学素子のプレス成形に使用される
型材に要求される性質としては、硬さが挙げられる。従
来、この種の型材として、金属、セラミックス及びそれ
らをコーティングした材料等、数多くの提案がされてい
る。いくつかの例を挙げるならば、特開昭49−511
12には13Crマルテンサイト鋼が、特開昭52−4
5613にはSiC及びSt、N4が提案されている。
Hardness is one of the properties required of the mold material used for press molding of such glass optical elements. Conventionally, many proposals have been made as this type of mold material, such as metals, ceramics, and materials coated with these materials. To give some examples, JP-A-49-511
12 is made of 13Cr martensitic steel, JP-A-52-4
5613, SiC, St, and N4 are proposed.

2)実公昭42−8123・ガラスを成形する装置(f
f tA&主張1961年12月28 5etNo、1
62743、アメリカ、出願人ゼネラル・プレフイジョ
ン・インコーホレーテッド)の公報には不活性雰囲気を
有する密封室、この室内におかれ内部に空所を有する金
属型、前記空所内におかれたガラス物質、ガラスを流動
させ空所を充たさせるために前記ガラス物質に熱を加え
る装置の組合わせからなるガラスの物質成型装置。
2) Utility Model Publication No. 42-8123 - Equipment for forming glass (f
f tA & Assertion December 28, 1961 5et No. 1
62743, USA, applicant General Precision Incorporated) describes a sealed chamber having an inert atmosphere, a metal mold placed in the chamber and having a cavity inside, and a glass material placed in the cavity. , a device for applying heat to said glass material to cause the glass to flow and fill the void.

型の金属はガラスの膨張係数よりも低い膨張係数を有す
る登録請求範囲記載の装置。
6. The device of claim 1, wherein the metal of the mold has a coefficient of expansion lower than that of the glass.

不活性雰囲気を有する密封室、この完に支持され内部に
空所を有する金属部の型、一端が前記の空所と接続する
前記型上に滑動自在にとりつけられた空所におかれた時
連続的な圧力を加える。プランジャー、前記空所内のガ
ラスを加熱する加熱装置の組合わせからなるガラス物質
を成形する装置。
When placed in a sealed chamber having an inert atmosphere, a mold of this fully supported metal part having a cavity therein, the cavity being slidably mounted on said mold with one end connected to said cavity; Apply continuous pressure. A device for forming glass material consisting of a combination of a plunger and a heating device for heating the glass in said cavity.

前記加熱装置は前記密封室の外部におかれ8導によって
ガラスを加熱し、前記の金属型を包むヒートシンク装置
を含む前項記載の装置の開示がある。
The heating device is disposed outside the sealed chamber and heats the glass using 8 conductors, and the device described in the previous section includes a heat sink device that wraps the metal mold.

3)USP3833347、USP3900328(特
公昭54−38126号)の明細書には、特開昭61−
26528号 ガラス状炭素鋳型が適当な室の中に置かれ、そして次の
工程が続<;(a)鋳型のキャビティにガラス塊を挿入
し、(b)室を排気し、(C)比較的低い温度で該鋳型
組体を脱気し、(d)室を非酸化性にするようにその雰
囲気を飼葉し、(e)鋳型温度を上げてガラス塊を熱軟
化し、(f)鋳型に圧力を加え、(g)鋳型を冷却して
ガラスをガラス変換点(Glasstransform
ation  point)以下の温度とし、(h)鋳
型から圧力を取り除き、(i)鋳型温度をさらに下げ、
そして(j)仕上がったレンズを取り出す。
3) In the specifications of USP 3833347 and USP 3900328 (Japanese Patent Publication No. 54-38126),
The No. 26528 glassy carbon mold is placed in a suitable chamber, and the following steps continue: (a) inserting the glass gob into the mold cavity; (b) evacuating the chamber; and (C) relatively degassing the mold assembly at a low temperature; (d) foddering the atmosphere to make the chamber non-oxidizing; (e) raising the mold temperature to thermally soften the glass gob; and (f) placing the glass in the mold. Apply pressure and (g) cool the mold to bring the glass to the glass transformation point.
(h) removing pressure from the mold; (i) further lowering the mold temperature;
Then (j) take out the finished lens.

製法の記載がある。There is a description of the manufacturing method.

本発明の課題とするガラスプレス成形は高温加熱のガラ
ス素材を高温加熱した型部材に挿入してプレス成形して
その後冷却、して光学素子を製造するために型部材の熱
衝撃に原因する熱疲労や酸化を生じ型寿命が短かい点又
型の成形面をクリーニングしなければならない。又、ガ
ラスと型材の反応によるガラス表面のくもり(mist
)を生じる。
Glass press molding, which is the subject of the present invention, involves inserting a high-temperature heated glass material into a high-temperature heated mold member, press-forming it, and then cooling it to manufacture an optical element. The life of the mold is short due to fatigue and oxidation, and the molding surface of the mold must be cleaned. In addition, the glass surface becomes cloudy due to the reaction between the glass and the mold material.
) occurs.

上述の対策のためにプレス成形面の成形型をセラミック
形成したもの特開昭61−31321、型の表面を炭化
タングステン、貴金属の合金等を用いた特公昭61−3
2263 (USPat  4481023)がある。
In order to solve the above-mentioned problems, JP-A-61-31321 has a press molding surface made of ceramic, and JP-A-61-3 has a mold surface made of tungsten carbide, noble metal alloy, etc.
2263 (US Pat 4481023).

又、高温加熱したガラスと型との離型性の改善のために
所望成形物にプレス成形するため所定形状の成形面が形
成された光学ガラス素子成形用金型において、上記成形
面にAINからなる被着膜を形成したことを特徴とする
光学ガラス素子成形用金型。
In addition, in a mold for molding an optical glass element in which a molding surface of a predetermined shape is formed for press-molding into a desired molded product in order to improve the mold releasability between the glass heated at high temperature and the mold, the molding surface is coated with AIN from AIN to the molding surface. 1. A mold for molding an optical glass element, characterized in that a deposited film is formed thereon.

上記金型をNI基合金、Fe基耐熱合金あるいはWC−
Co系合金のいずれかの金属材料により形成した光学ガ
ラス素子成形用金型。又、上記金型をAINあるいは5
L3N4のいずれかを主成文とするセラミック材料によ
り形成した光学ガラス素子成形用金型として特開昭61
−197430号公報がある。
The above mold is made of NI-based alloy, Fe-based heat-resistant alloy or WC-
A mold for molding an optical glass element made of any metal material such as a Co-based alloy. Also, the above mold is AIN or 5
Unexamined Japanese Patent Application Publication No. 1983-1987 as a mold for molding an optical glass element formed from a ceramic material containing any of L3N4 as the main composition.
There is a publication No.-197430.

[発明が解決しようとする課題] しかし、13Crマルテンサイト鋼は酸化しやすく、さ
らに高温でFeが硝子中に拡散して硝子が着色する欠点
をもつ。SiC,513N4は一般的には酸化されにく
いとされているが、高温ではやはり酸化がおこり表面に
Sio2の膜が形成される為硝子を融着を起こし、さら
に高硬度の為型自体の加工性が悪い。
[Problems to be Solved by the Invention] However, 13Cr martensitic steel is easily oxidized, and has the disadvantage that Fe diffuses into the glass at high temperatures, causing the glass to become colored. Although SiC and 513N4 are generally considered to be difficult to oxidize, oxidation still occurs at high temperatures, forming a Sio2 film on the surface, which causes glass to fuse, and furthermore, due to its high hardness, it becomes difficult to form the mold itself. It's bad.

超硬合金(タングステンカーバイド)を型材料としてプ
レス成形すると高温加熱によるプレス成形のためにガラ
ス表面と型部材表面とが反応を起こし離型の際に型部材
表面にガラス反応物が付着する現象が生じた。本発明者
等はこの反応現象が次のようなことを見いだした。超硬
合金は炭化タングステンをコバルトCOをバインダーと
して結合されている。超硬合金とガラスを高温加熱して
プレス成形すると超硬合金表面のコバルトとガラスに含
まれる鉛が次のように反応する。
When press-molding cemented carbide (tungsten carbide) as a mold material, the glass surface and the mold member surface react due to the high-temperature heating press molding, resulting in a phenomenon in which glass reactants adhere to the mold member surface during mold release. occured. The present inventors have discovered that this reaction phenomenon is as follows. The cemented carbide is made of tungsten carbide bonded with cobalt CO as a binder. When cemented carbide and glass are heated to high temperatures and press-formed, the cobalt on the surface of the cemented carbide and the lead contained in the glass react as follows.

c o + P b O→C00x + P b又、炭
化タングステンWCとガラスに含まれる鉛は WC+PbO→WOx+Pb+CO+CO2のように反
応する。
c o + P b O→C00x + P b Furthermore, tungsten carbide WC and lead contained in glass react as follows: WC+PbO→WOx+Pb+CO+CO2.

この結果、ガラス中の鉛が析出し型部材とガラスの間に
生成物を生じて離型の際に前述のくもり(mist)の
ような現象を生じる。型部材表面がセラミックス材料で
ある場合にはセラミックスとガラス中の酸化鉛との反応
は極微少である。
As a result, the lead in the glass precipitates and forms a product between the mold member and the glass, causing a phenomenon such as the above-mentioned mist upon demolding. When the surface of the mold member is made of a ceramic material, the reaction between the ceramic and the lead oxide in the glass is extremely small.

従って上述の超硬合金の場合のような反応による生成物
は非常に少ない。
Therefore, there are very few reaction products as in the case of the cemented carbide mentioned above.

しかし、その代りに、型部材表面とガラス成形体表面の
密着力が大きくなる。この密着力は離型の時のガラス強
度より大きいためにガラス成形体表面の破壊作用を伴い
ガラス成形体の割れ現像を引き起こすことになる。
However, in return, the adhesion between the mold member surface and the glass molded object surface increases. Since this adhesion force is greater than the strength of the glass at the time of mold release, it causes a destructive effect on the surface of the glass molded product and causes cracks to develop in the glass molded product.

本発明の第1の課題は、型部材材料として用いることの
できる製造方法を提案する。
A first object of the present invention is to propose a manufacturing method that can be used as a mold member material.

より具体的には、超硬合金のコバルトと炭化タングステ
ンが直接ガラス中の酸化鉛を還元する反応を軽減し、か
つ離型効果のある物質を型部材表面とガラス表面の間に
介在させることにより、融着がなく、型の表面劣化の少
ない光学素子製造方法を提案する。
More specifically, the cobalt and tungsten carbide in the cemented carbide directly reduce the reaction of reducing lead oxide in the glass, and also by interposing a substance with a mold release effect between the mold member surface and the glass surface. We propose a method for manufacturing optical elements that does not require fusion and causes less surface deterioration of the mold.

更に本発明は型部材表面とガラス素材との間にガラス中
の鉛と積極的に反応する物質を微量介在させることによ
り型部材とガラス素材間の直接的反応を阻止する製造方
法を提案する。
Furthermore, the present invention proposes a manufacturing method in which direct reaction between the mold member and the glass material is prevented by interposing a small amount of a substance that positively reacts with lead in the glass between the mold member surface and the glass material.

上述の発明において、本発明者等は型部材とガラス素材
を高温加熱して加圧成形する際に、加圧成形する雰囲気
を炭化水素を含むガス(具体的には非酸化性ガスと炭化
水素ガスとの混合ガス)で充満させて、該ガス中の炭素
とガラス中の鉛との間に、 C+ P  b O−” P  b + CO+ CO
2の反応を引き起こすことにより型部材とガラスとの反
応を阻止する製造方法を提案する。
In the above-mentioned invention, the present inventors changed the pressure-forming atmosphere to a gas containing a hydrocarbon (specifically, a non-oxidizing gas and a hydrocarbon) when the mold member and the glass material are heated to high temperature and pressure-formed. C+ P b O-" P b + CO + CO between the carbon in the gas and the lead in the glass
We propose a manufacturing method that prevents the reaction between the mold member and the glass by causing the reaction described in 2.

又、本発明者は成形装置、特に成形装置に含まれるガラ
スプレス成形のために必要な諸工程、例えば型部材、ガ
ラス素材の搬入、加熱、冷却、成形品取出、等の工程の
操作に必要な機構の高温高熱による熱応力、又、加熱−
冷却の繰り返しのための疲労等の諸問題のために好まし
い雰囲気例えば成形工程全体を窒素ガス等の不活性ガス
で充満するプロセスを用いる場合の適用例を提案する。
In addition, the present inventor has developed a molding apparatus, particularly the various processes necessary for glass press molding included in the molding apparatus, such as loading mold members and glass materials, heating, cooling, and taking out molded products. Thermal stress and heating due to high temperature of the mechanism
An application example is proposed where a process is used in which the entire molding process is filled with an inert gas such as nitrogen gas, which is preferable due to problems such as fatigue due to repeated cooling.

更に本発明者等はガラス中の鉛と反応生成物を生じない
型部材であるセラミックス焼結材を用い、該セラミック
ス焼結材の型部材とガラス素材との間に炭素を含むガス
を介在させることにより該ガス中炭素とガラス中鉛との
反応を起こすことにより、セラミックス系型部材による
密着力の増強にともなうガラス成形体の割れ現象を回避
できる製造方法を提案する。
Furthermore, the present inventors used a ceramic sintered material, which is a mold member that does not produce reaction products with lead in glass, and interposed a carbon-containing gas between the mold member of the ceramic sintered material and the glass material. We propose a manufacturing method that can avoid the cracking phenomenon of the glass molded body due to the reinforcement of adhesion by the ceramic mold member by causing a reaction between the carbon in the gas and the lead in the glass.

実施例の説明 本発明を実施例により具体的に説明する。Description of examples The present invention will be specifically explained with reference to Examples.

実施例1 l−1)本発明の成形方法に用いる成形装置の例を第1
図に示す。
Example 1 l-1) An example of a molding apparatus used in the molding method of the present invention is shown in the first example.
As shown in the figure.

第1図中、1は真空槽本体、2はそのフタ、3は光学素
子を成形する為の上型、4はその下型、5は上型3を図
示ビスで固定する上型保持部材である。6は円筒状胴型
を示し、内部中空部に上型3を嵌合保持し、下型4を摺
動嵌合する。該胴壁6は型ホルダ−7内に収納されてお
り、前記上型保持部材5をビス止め結合する。8は前記
上型3、下型4、胴壁6を加熱するためのヒーターであ
り、該ヒーター8は前記型ホルダ−7の外周に回巻保持
されてヒーター電源8Aに接続しコントローラーIAに
よって加熱制御を受ける。9は下型4を押圧する棒部材
であり、その上端は下型4に連結し、胴壁6の中空部、
型ホルダ−7の底部貫通孔、及び型ホルダーの保持板7
Aの貫通孔をそれぞれ貫通し、下端はエラーシリンダー
10のピストンに結合していて、エラーシリンダー10
の作動に応じて上昇・下降動作を行う。
In Fig. 1, 1 is the main body of the vacuum chamber, 2 is the lid, 3 is the upper mold for molding the optical element, 4 is the lower mold, and 5 is the upper mold holding member for fixing the upper mold 3 with the screws shown. be. Reference numeral 6 indicates a cylindrical body mold, into which an upper mold 3 is fitted and held, and a lower mold 4 is slidably fitted therein. The body wall 6 is housed in a mold holder 7, and is connected to the upper mold holding member 5 by screws. Reference numeral 8 denotes a heater for heating the upper mold 3, lower mold 4, and body wall 6. The heater 8 is wound around the outer circumference of the mold holder 7, is connected to a heater power source 8A, and is heated by a controller IA. Take control. Reference numeral 9 denotes a rod member that presses the lower mold 4, the upper end of which is connected to the lower mold 4, and the hollow part of the body wall 6,
Bottom through hole of mold holder 7 and retaining plate 7 of mold holder
The lower end is connected to the piston of the error cylinder 10, and the error cylinder 10 is connected to the piston of the error cylinder 10.
It moves up and down depending on the operation.

11は油回転ポンプで接続管によって真空槽本体1の結
合孔に接続している。12・13・14は圧力調整用バ
ルブ、15はA r + CH4混合ガス流入用パイプ
、16はバルブであり該混合ガスはガス供給源15Aか
ら供給される。17は前記混合ガスを排出するリークパ
イプ、18はバルブ、17Aは排出用ポンプである。
Reference numeral 11 denotes an oil rotary pump, which is connected to a connecting hole in the vacuum chamber body 1 through a connecting pipe. 12, 13, and 14 are pressure regulating valves, 15 is a pipe for inflowing A r + CH4 mixed gas, and 16 is a valve, and the mixed gas is supplied from a gas supply source 15A. 17 is a leak pipe for discharging the mixed gas, 18 is a valve, and 17A is a discharge pump.

19は温度センサーを示し、該センサー19は上型3、
下型4で形成するキャビティ内に入れた不図示のガラス
成形体の加熱又は冷却温度を測定するために、胴壁6に
設けた測定用孔内に挿入し、該温度センサー19の出力
は第2図に示す温度曲線を得るためにヒータ8の駆動信
号19Aとなる。
19 indicates a temperature sensor, and this sensor 19 is connected to the upper mold 3,
In order to measure the heating or cooling temperature of a glass molded body (not shown) placed in the cavity formed by the lower mold 4, the temperature sensor 19 is inserted into a measurement hole provided in the body wall 6, and the output of the temperature sensor 19 is measured as follows. In order to obtain the temperature curve shown in FIG. 2, a drive signal 19A for the heater 8 is generated.

20は前記第2図の成形温度曲線に沿って温度制御する
ための水冷バイブを示す。
Reference numeral 20 indicates a water-cooled vibrator for controlling the temperature along the molding temperature curve shown in FIG. 2.

21・21は支持部材である。21 and 21 are supporting members.

第1図Bは第1図Aの前記各手段を作動するブロック図
を示し、コントローラーIAからの信号によって後述す
る動作が行われる。
FIG. 1B shows a block diagram for operating each of the above-mentioned means in FIG. 1A, and the operations described below are performed by signals from the controller IA.

1−2)混合ガスについて 非酸化性ガスとしては、例えばNe、Ar等の不活性ガ
ス、N、ガスが挙げられる。炭化水素ガスとしては、例
えばCH4、C2Ha 、C3Haが挙げられる。また
、混合ガス中の炭化水素ガスの濃度は0.5〜4重量%
であることが好ましい、炭化水素ガスが0.5重量%未
溝であるとガラスと成形用型の密着力が増すことによる
融着が起こり易くなる傾向があり、4TL量%を越える
とガラスの強度が低下することによると思われる割れが
起こり易くなる傾向がある。
1-2) Regarding mixed gases Examples of non-oxidizing gases include inert gases such as Ne and Ar, N, and gases. Examples of the hydrocarbon gas include CH4, C2Ha, and C3Ha. In addition, the concentration of hydrocarbon gas in the mixed gas is 0.5 to 4% by weight.
If the amount of hydrocarbon gas is 0.5% by weight without grooves, there is a tendency for fusion to occur due to increased adhesion between the glass and the mold, and if it exceeds 4 TL amount, the glass There is a tendency for cracks to occur more easily, which is thought to be due to a decrease in strength.

1−3)上型・下型・胴壁について 前記発明の課題の項で述べたように、ガラスに含まれる
鉛と型材料の材料成分との反応を起こさない型材料を検
討した。型材料に要求されることは耐酸化性に優れるこ
と、及びガラスの高温度成形からして高温度で高硬度を
維持できる材料が望ましく窒化物、炭化物、硼化物、酸
化物等がある。又、本発明で製造する成形対象として光
学素子、代表例としてカメラ用レンズが掲げられるが、
そのうち特に非球面レンズが好適である。
1-3) Regarding the upper mold, lower mold, and body wall, as described in the above section of the problem of the invention, a mold material that does not cause a reaction between the lead contained in the glass and the material components of the mold material was investigated. The mold material is required to have excellent oxidation resistance, and because of the high temperature molding of glass, it is desirable to use a material that can maintain high hardness at high temperatures, such as nitrides, carbides, borides, and oxides. In addition, optical elements can be molded according to the present invention, and a typical example is a camera lens.
Among these, an aspherical lens is particularly suitable.

カメラレンズ特にズームレンズの光学系において非球面
レンズを光学系に組み込むと光学系のしンズ枚数と減数
でき、レンズ鏡筒の小型軽量化に大ぎく寄与できるから
である。
This is because if an aspherical lens is incorporated into the optical system of a camera lens, particularly a zoom lens, the number of lenses in the optical system can be reduced, and this can greatly contribute to making the lens barrel smaller and lighter.

この非球面レンズを成形する型部材の成形面は当然非球
面形状となるが、型部材の非球面形状は加工の困難をと
もなう。本発明者は型材料として超硬合金とセラミック
ス焼結材(Si、N、。
The molding surface of the mold member for molding this aspherical lens naturally has an aspherical shape, but the aspherical shape of the molding member is difficult to process. The present inventor used cemented carbide and ceramic sintered materials (Si, N, etc.) as mold materials.

SiC等)及びTiCと金属の焼結体でするサーメット
について検討した。
We investigated cermets made of sintered bodies of SiC, etc.) and TiC and metals.

更に前記型部材特に、上型と下型に膜物質を被覆した。Further, the mold members, particularly the upper mold and the lower mold, were coated with a membrane material.

膜材としては窒化物(BN、AIN。Nitride (BN, AIN) is used as the film material.

St、N4 、TiN、TaN、Zr、Ne等)炭化物
としてSiC,TaC,HfC等、又酸化物としてCr
y、、AIO,等がある。
St, N4, TiN, TaN, Zr, Ne, etc.) SiC, TaC, HfC, etc. as carbides, and Cr as oxides.
y, , AIO, etc.

1−4)次にレンズを製作する工程を述べる型部材とし
て超硬合金を選び、所定の形状に上型・下型及び胴壁を
加工してレンズ成形面を0.01μm程度の表面粗さの
精度に鏡面研磨する。次にスパッタリング法により上型
と下型のレンズ成形面にSiCの被膜を形成する。膜厚
は160μmとした。このように用意した型部材を第1
図Aの装置に取り付ける。次にフリント系光学硝子(S
F14)を所定の量に調整し、球状にした硝子素材を型
のキャビティー内に置包、これを装置内に設置する。
1-4) Next, describe the process of manufacturing a lens.Cemented carbide is selected as a mold member, and the upper mold, lower mold, and body wall are processed into a predetermined shape, and the lens molding surface is made to a surface roughness of about 0.01 μm. Mirror polished to a precision of Next, a SiC film is formed on the lens molding surfaces of the upper and lower molds by sputtering. The film thickness was 160 μm. The mold member prepared in this way is
Attach to the device shown in Figure A. Next, flint-based optical glass (S
F14) is adjusted to a predetermined amount, a spherical glass material is placed in the cavity of the mold, and this is installed in the device.

ガラス素材を没入した型を装置内に設置してから真空槽
1のフタ2を閉じ、水冷バイブ20に水を流し、ヒータ
ー8に電流を通す。この時Ar+CH4混合ガス用バル
ブ16及び18は閉じ、排気系バルブ12.13.14
も閉じている。尚油回転ポンプ11は常に回転している
After installing the mold filled with the glass material in the device, the lid 2 of the vacuum chamber 1 is closed, water is allowed to flow through the water-cooled vibrator 20, and an electric current is passed through the heater 8. At this time, the Ar+CH4 mixed gas valves 16 and 18 are closed, and the exhaust system valves 12, 13, and 14 are closed.
is also closed. Note that the oil rotary pump 11 is constantly rotating.

成形室全体をA r + CH4混合ガスの雰囲気とす
るために、バルブ12を開は排気をはじめ10−2T 
o r r以下になったらバルブ■2を閉じ、バルブ1
6を開いて(Ar+1%(重量%、以下同じ)CH4)
ガスをボンベより真空槽内に導入する。所定温度になフ
たらエアシリンダ1゜を作動させて100kg/crn
”の圧力で5分間加圧する。圧力を除去した後、冷却温
度を一り℃/mtnで転位点以下になるまで冷却し、そ
の後は一り0℃/ m i n以上の速度で冷却を行い
、200℃以下に下がったらバルブ16を閉じ、リーグ
バルブ13を開いて真空槽1内に空気を導入する。それ
からフタ2を開は上型おさえをはずして成形物を取り出
す。
In order to create an atmosphere of Ar + CH4 mixed gas in the entire molding chamber, the valve 12 was opened at 10-2T, including exhaust.
o r When the temperature drops below r, close valve ■2 and close valve 1.
Open 6 (Ar + 1% (weight%, same below) CH4)
Gas is introduced into the vacuum chamber from a cylinder. Once the temperature reaches the specified temperature, operate the air cylinder 1° to produce 100kg/crn.
'' for 5 minutes. After removing the pressure, cool at a cooling temperature of 1°C/mtn until it becomes below the dislocation point, and then cool at a rate of 1°C/m or more. When the temperature drops below 200° C., close the valve 16 and open the league valve 13 to introduce air into the vacuum chamber 1. Then, open the lid 2, remove the upper mold holder, and take out the molded product.

上=己のようにして、フリント系光学硝子5F14(軟
化点5p=588℃、転位点Tg=485℃)を使用し
て、レンズを成形した。この時の成形条件すなわち時間
−温度関係図を第2図に示す。
Above: A lens was molded using flint optical glass 5F14 (softening point 5p = 588°C, dislocation point Tg = 485°C) as described above. FIG. 2 shows the molding conditions at this time, that is, a time-temperature relationship diagram.

このようにして行った成形において、型とガラスの融着
は発生せず、良好な成形面が得られた。
In the molding performed in this manner, no fusion occurred between the mold and the glass, and a good molding surface was obtained.

即ち、本実施例において、成形室内の雰囲気ガスのAr
+CH,混合ガス中のカーボンがガラス中の鉛と C+  P  b  O= P  b  + CO+ 
 CO2の反応をすることにより型部材とガラスの融着
を防げることができた。
That is, in this example, the atmospheric gas in the molding chamber was
+CH, carbon in the mixed gas and lead in the glass C+ P b O= P b + CO+
By reacting with CO2, it was possible to prevent the mold member and the glass from fusion.

また、成形雰囲気を(Ar+4%CH4)ガス、(Ar
+5%CH4)ガスに代えた以外は上記と同様にしてガ
ラス素材5F11を使用してレンズを成形した。(Ar
+4%CH4)ガスの場合、型とガラスの融着は起ぎず
、良好な成形面が得られた。(Ar+5%CH,)ガス
の場合、若干の融着が起きていた。
In addition, the molding atmosphere was changed to (Ar+4%CH4) gas, (Ar
A lens was molded using the glass material 5F11 in the same manner as above except that the +5% CH4) gas was used. (Ar
+4% CH4) gas, no fusion of the mold and glass occurred and a good molding surface was obtained. In the case of (Ar+5% CH,) gas, some fusion occurred.

次に、上記成形雰囲気におけるガラスと型と密着力の測
定、上記で得られたレンズの透過率の測定を行った。
Next, the adhesion between the glass and the mold in the above molding atmosphere was measured, and the transmittance of the lens obtained above was measured.

1−5)(密着力の測定) Ar+CH41%、Ar+CH44% Ar+CH,5%、比較としてN、、Ar雰囲気での密
着力を測定した。その結果を第3図に示す。
1-5) (Measurement of adhesion force) Adhesion force was measured in Ar+CH41%, Ar+CH44%, Ar+CH, 5%, and N, Ar atmosphere for comparison. The results are shown in FIG.

第3図から明らかな様に、N、中、Ar中に較べて非酸
化性ガスArと炭化水素ガスCH4の混合ガス中ではガ
ラスと型との密着力が小さいことがわかる。従ってk 
Ar十CH4ガス雰囲気では前記レンズ成形で述べた優
れた離型性が得られることになる。なおN2ガス中53
0℃の密着力が510℃より低下しているのは、融着に
よりガラスの剥れが生じたためである。また、Ar+C
H4ガス雰囲気においてはOH4濃度が高い程密着力は
減少するものの、5%ではガラスの強度低下によると思
われる割れが発生することもあり、好ましい濃度範囲は
0.5〜4%である。
As is clear from FIG. 3, the adhesive force between the glass and the mold is smaller in a mixed gas of non-oxidizing gas Ar and hydrocarbon gas CH4 than in N, medium, or Ar. Therefore k
In the Ar+CH4 gas atmosphere, the excellent mold releasability described in the above lens molding can be obtained. In addition, 53 in N2 gas
The reason why the adhesion strength at 0°C is lower than that at 510°C is because the glass peeled off due to fusion. Also, Ar+C
In an H4 gas atmosphere, the higher the OH4 concentration, the lower the adhesion, but at 5%, cracks may occur, which may be due to a decrease in the strength of the glass, so the preferred concentration range is 0.5 to 4%.

密着力測定に用いた装置を第4図に示す。FIG. 4 shows the device used for adhesion measurement.

第4図中、31は真空槽、32は水冷管、33.34は
架台、35は真空ポンプ、36は給気管、37は真空排
気管、38はリーク管、39.40,41.42はバル
ブ、43はエアーシリンダー 44はロードセル、45
はロッド、46.47は熱電対、48は断熱体、49は
ヒーター、50は架台、51は上型保持リング、52は
供試材の上型、53は胴壁、54は硝子素材、55は下
型、56は台座、57は架台を示す。
In Fig. 4, 31 is a vacuum chamber, 32 is a water cooling pipe, 33.34 is a stand, 35 is a vacuum pump, 36 is an air supply pipe, 37 is a vacuum exhaust pipe, 38 is a leak pipe, 39.40, 41.42 are Valve, 43 is air cylinder 44 is load cell, 45
is a rod, 46.47 is a thermocouple, 48 is a heat insulator, 49 is a heater, 50 is a stand, 51 is an upper die holding ring, 52 is an upper die of the sample material, 53 is a body wall, 54 is a glass material, 55 56 is a lower die, 56 is a pedestal, and 57 is a pedestal.

次に、密着力測定の手順を述べる。Next, the procedure for measuring adhesion will be described.

第4図に示すように、フリント系のガラス素材(SF1
4)54を下型55の上に載せ、供試材の上型52をロ
ッド45の下面に上型保持リング51で装着する。真空
ポンプ35は常に回転している。給気用バルブ39、リ
ークバルブ42)排気系バルブ40.41が閉じた状態
から、バルブ40を開は真空槽内の排気を開始する。真
空槽内が10−’Torr以下になったらバルブ40を
閉じ、バルブ36を開いてボンベより(Ar+1%CH
4)ガスを真空槽内に導入する。次に、水冷管32に水
を流し、ヒーター49に電流を通す。
As shown in Figure 4, flint-based glass material (SF1
4) Place the mold 54 on the lower mold 55, and attach the upper mold 52 of the sample material to the lower surface of the rod 45 with the upper mold holding ring 51. The vacuum pump 35 is constantly rotating. Air supply valve 39, leak valve 42) When the exhaust system valves 40 and 41 are closed, opening the valve 40 starts exhausting the inside of the vacuum chamber. When the inside of the vacuum chamber becomes 10-'Torr or less, close the valve 40, open the valve 36, and release (Ar + 1% CH) from the cylinder.
4) Introducing gas into the vacuum chamber. Next, water is caused to flow through the water cooling pipe 32 and an electric current is passed through the heater 49.

上型、下型の温度が530℃になったらエアシリンダー
43を作動させロッド45を下降させ10 k g /
 c rdの圧力で5分間加圧する。加圧後の状態を第
5図に示す。第5図中、58は成形体を示す0次に、エ
アシリンダーを作動させ圧力を除去した後ロッドを徐々
に上昇させる。この時成形体58と上型の離型に要する
力をロードセル44により測定する。
When the temperature of the upper mold and lower mold reaches 530°C, the air cylinder 43 is activated and the rod 45 is lowered to produce 10 kg/
Pressurize for 5 minutes at a pressure of c rd. The state after pressurization is shown in FIG. In FIG. 5, reference numeral 58 indicates a molded body. After the pressure is removed by operating the air cylinder, the rod is gradually raised. At this time, the force required to release the molded body 58 from the upper mold is measured by the load cell 44.

1−8)(透過率の測定) 前記レンズ成形で得られた3種のレンズについて透過率
を日立製作所製自記記録分光光度計340により測定し
た。その結果を第6図に示す、d線(587,56mm
)における透過率は(Ar+1%CH4)ガス、(Ar
+4%CH4)ガス、(Ar+5%CH4)ガスのいず
れかの場合にも約86%でガラス素材5F14と同じで
あり、成形による劣化はなかった。これは成形時にガラ
ス中の酸化鉛の還元が全ど起きていないことを示すもの
である。
1-8) (Measurement of transmittance) The transmittance of the three types of lenses obtained by the above lens molding was measured using a self-recording spectrophotometer 340 manufactured by Hitachi, Ltd. The results are shown in Figure 6.
) is (Ar+1%CH4) gas, (Ar
In the case of either +4% CH4) gas or (Ar+5% CH4) gas, it was about 86%, the same as the glass material 5F14, and there was no deterioration due to molding. This indicates that the reduction of lead oxide in the glass did not occur at all during molding.

透過率測定条件: 送り速度+3m1n/19l90−850n波長域) スリット幅:2nm 縦  倍  率:100% 測定モード:UV−VIS(紫外−可視)セ ン サ:
フオトマル 】−7)変形例 前述第1の実施例は第1図Aに示す成形室内をAr+C
)(4の混合ガスで充満する例を示したが、該成形室内
の雰囲気を窒素ガス等の不活性ガスで満し、上型と下型
の成形面、又はガラス素材の表面にA r + CHa
混合ガスを付着させて上記成形条件で成形することによ
り、前記Ar+CH4混合ガスによる融着防止効果を得
られた。
Transmittance measurement conditions: Feed rate + 3m1n/19l90-850n wavelength range) Slit width: 2nm Vertical magnification: 100% Measurement mode: UV-VIS (ultraviolet-visible) sensor:
-7) Modification In the first embodiment described above, the inside of the molding chamber shown in FIG.
) (Although the example of filling with the mixed gas in step 4 has been shown, the atmosphere inside the molding chamber is filled with an inert gas such as nitrogen gas, and the molding surfaces of the upper and lower molds or the surface of the glass material are filled with Ar + CHa
By attaching the mixed gas and molding under the above molding conditions, the effect of preventing fusion caused by the Ar+CH4 mixed gas was obtained.

実施例2 2−1)第7図〜第12図は、本発明の成形方法に用い
る他の装置を示す図である。
Example 2 2-1) FIGS. 7 to 12 are diagrams showing other apparatuses used in the molding method of the present invention.

この装置の全体的構成は、素材取入室61、加熱部62
)素材移替部63、プレス部65、徐冷部66及び成形
品取出室67から成るものである。素材取入室61、加
熱部62)素材移替部63及びブレス[65は同一ライ
ン状にあり、これらのラインと並列して徐冷部66が配
設されている。
The overall configuration of this device includes a material intake chamber 61, a heating section 62
) It consists of a material transfer section 63, a press section 65, an annealing section 66, and a molded product removal chamber 67. The material intake chamber 61, the heating section 62) the material transfer section 63, and the brace [65] are in the same line, and a slow cooling section 66 is arranged in parallel with these lines.

加熱部62の入口近傍には第1の移送室81が構成され
、このilの移送室81に上記素材取入室61が設けら
れている。プレス部65の出口近傍には第2の移送室8
2が構成され、徐冷部66の入口には第3の移送’fi
83が構成され、これら第2と第3の移送室は移送路8
5で連結されている。又、徐冷部66の出口近傍には第
4の移送室84が構成され、この第4の移送室84には
移動された成形品取出室67が設けられ、第4の移送室
84と上記第1の移送室81とは回送路86で連結され
ている。このような構成により本成形装置は連続的な循
環路を成して成形室99を構成している。
A first transfer chamber 81 is constructed near the entrance of the heating section 62, and the material intake chamber 61 is provided in this IL transfer chamber 81. A second transfer chamber 8 is located near the outlet of the press section 65.
2, and a third transfer 'fi' is provided at the entrance of the slow cooling section 66.
83 is constructed, and these second and third transfer chambers are connected to the transfer path 8
They are connected by 5. Further, a fourth transfer chamber 84 is configured near the outlet of the annealing section 66, and a molded product removal chamber 67 that has been moved is provided in this fourth transfer chamber 84, and the fourth transfer chamber 84 and the above-mentioned It is connected to the first transfer chamber 81 through a feeding path 86 . With such a configuration, the present molding apparatus forms a continuous circulation path and forms a molding chamber 99.

71は、この成形室99を移送せしめられるパレットで
あり、該パレット71上には素材載置台72とプレス成
形用の上型73及び下型74とが一定の間隔を有して配
設されている。又、下型74の外周には、上型73の載
置動作を案内するとともに上型73の位置決め用として
ガイド部材87が下型74の上端部よりやや突出するよ
うに固設されている。上型73及び下型74のプレス成
形面は、夫々光学素子機能面を成形するための鏡面73
a、74aが施されている。
Reference numeral 71 denotes a pallet to which the molding chamber 99 is transferred, and on the pallet 71, a material mounting table 72, an upper mold 73 and a lower mold 74 for press molding are arranged at a constant interval. There is. Further, a guide member 87 is fixed to the outer periphery of the lower mold 74 so as to slightly protrude from the upper end of the lower mold 74 for guiding the placing operation of the upper mold 73 and for positioning the upper mold 73. The press molding surfaces of the upper mold 73 and the lower mold 74 are mirror surfaces 73 for molding optical element functional surfaces, respectively.
a, 74a are applied.

パレット71を上記経路中にて移送せしめる手段として
、第1の移送室81には押出しシリンダー91が設けら
れ、この押出しシリンダーによりパレット71はプレス
部65に移動せしめられる。第2の移送室82には押出
しシリンダー93と引出しシリンダー92とが設けられ
、引出しシリンダー92によりプレス部65に移動せし
められたパレット71が第2の移送路82に引出され、
押出しシリンダー93により該第2の移送室に移動され
たパレット71が第3の移送室83にまで押出される。
As a means for transferring the pallet 71 in the above-mentioned path, an extrusion cylinder 91 is provided in the first transfer chamber 81, and the pallet 71 is moved to the press section 65 by this extrusion cylinder. The second transfer chamber 82 is provided with an extrusion cylinder 93 and a drawer cylinder 92, and the pallet 71 moved to the press section 65 by the drawer cylinder 92 is pulled out to the second transfer path 82.
The pallet 71 moved to the second transfer chamber is pushed out to the third transfer chamber 83 by the extrusion cylinder 93.

第3の移送室83には押出しシリンダー94が設けられ
、この押出しシリンダーにより当該第3の移送室83に
移動せしめられたパレット71が第4の移送室84直前
まで押出される。第4の移送室84には押出しシリンダ
ー95と引出しシリンダー96とが設けられており、引
出しシリンダー96により第4の移送室84直前まで移
動されたパレット71が該第4の移送室84まで引出さ
れる0次いで、この第4の移送室84に移動されたパレ
ット71は押出しシリンダー95により再び第1の移送
室81まで押出される。
The third transfer chamber 83 is provided with an extrusion cylinder 94, by which the pallet 71 moved to the third transfer chamber 83 is extruded to just before the fourth transfer chamber 84. The fourth transfer chamber 84 is provided with a push cylinder 95 and a drawer cylinder 96, and the pallet 71 that has been moved to just before the fourth transfer chamber 84 is pulled out to the fourth transfer chamber 84 by the drawer cylinder 96. Then, the pallet 71 moved to the fourth transfer chamber 84 is pushed out again to the first transfer chamber 81 by the extrusion cylinder 95.

かくして、パレット71は上述したシリンダーの押出し
或は引出し動作により各工程に移送され、本装置の成形
室99内を移動することができる。なお、パレット71
は成形室99内に設けられた不図示のレール上に載置さ
れ、シリンダーの押出し或は引出しによりレール上を移
動する。
In this way, the pallet 71 is transferred to each process by the above-described extrusion or withdrawal operation of the cylinder, and can be moved within the molding chamber 99 of the present apparatus. In addition, pallet 71
is placed on a rail (not shown) provided in the molding chamber 99, and is moved on the rail by extrusion or extraction of the cylinder.

2−2)次に、上記成形室の各部について説明する。2-2) Next, each part of the molding chamber will be explained.

素材移替部62及び成形品取出室67には上型73を下
型74に所要間隔をあけて持上げるための持上げハンド
76.80 (第10図)が設けられている。この持上
げハンドは、不図示のリフト手段により上下動する。さ
らに、素材移替部63には、素材取入室61にて素材載
置第72上に配置された素材75を下型74上に穆替え
るための吸着フィンガー64が設けられており(第10
図)、上記持上げハンド76の作動により上型73が一
旦持上げられた後、該吸着ハンド64が作動し、素材7
5が下型74上の所定位置に穆替えられる。この吸着フ
ィンガー64は、上記のような素材75の移替時に、該
素材75が正確に下型74上の所定位置に配置されるよ
う、パレット71上の素材載置台72と下型74とが有
する所定間隔の長さだけ正確に平行移動する一定のスト
ロークを有して作動するように構成されている。
Lifting hands 76,80 (FIG. 10) are provided in the material transfer section 62 and the molded product removal chamber 67 for lifting the upper mold 73 onto the lower mold 74 at a required distance. This lifting hand is moved up and down by a lifting means (not shown). Further, the material transfer section 63 is provided with a suction finger 64 (10th
), after the upper die 73 is once lifted by the operation of the lifting hand 76, the suction hand 64 is operated, and the material 7
5 is replaced in a predetermined position on the lower die 74. This suction finger 64 is arranged between the material mounting table 72 on the pallet 71 and the lower mold 74 so that the material 75 is accurately placed at a predetermined position on the lower mold 74 when the material 75 is transferred as described above. It is configured to operate with a constant stroke that translates exactly the length of a predetermined interval.

又、素材取入室61及び成形品取出室67には、素材7
5を載置台72上に配置したり、成形品78を上型74
から取出すための吸着フィンガー79が設けられている
(第12図)。
In addition, the material 7 is stored in the material intake chamber 61 and the molded product removal chamber 67.
5 on the mounting table 72, or place the molded product 78 on the upper mold 74.
A suction finger 79 is provided for taking it out (FIG. 12).

プレス部65には、プレス成形時に上型73を押圧する
ためのプレス用ロッド77が設けられている(第11図
)。
The press section 65 is provided with a press rod 77 for pressing the upper mold 73 during press molding (FIG. 11).

なお、本装置において成形室99の内部は、上型73及
び下型74を形成する型材が高温下で酸化されるのを防
止するよう、真空排気の後、雰囲気ガスを充填する必要
がるため、上記の持上げハンド76、吸着フィンガー6
4及びプレスロッド77等と炉体99外壁との摺動部分
には充分のシールドを施しておく必要がある。
In addition, in this apparatus, the inside of the molding chamber 99 needs to be filled with atmospheric gas after being evacuated to prevent the mold materials forming the upper mold 73 and lower mold 74 from being oxidized at high temperatures. , the above-mentioned lifting hand 76, and the suction finger 6
4, the press rod 77, etc., and the sliding portions of the outer wall of the furnace body 99 must be sufficiently shielded.

又、本装置においては、図示は省略しであるが、素材7
5を素材取入室61に取入れる際、外気が成形室99の
内部に侵入しないように、雰囲気置換室を設ける必要が
ある。雰囲気のCH4ガス濃度を調整するため赤外線式
ガス分析計100を成形室に設けである。
Also, in this device, although not shown, the material 7
5 into the material intake chamber 61, it is necessary to provide an atmosphere exchange chamber to prevent outside air from entering the molding chamber 99. An infrared gas analyzer 100 was installed in the molding chamber to adjust the CH4 gas concentration in the atmosphere.

2−3) 型材料について 本実施例第8図に図示する上型73、下型74及び調型
ガイド部材87をそれぞれSi3N、から成るセラミッ
クス焼結材を選択した。
2-3) Regarding the mold material, a ceramic sintered material made of Si3N was selected for the upper mold 73, lower mold 74, and mold adjusting guide member 87 shown in FIG. 8 of this embodiment.

尚木実層側はガラス素材75はパレット71上の素材載
置台72上に置かれて所定温度まで加熱される。従って
加熱されたガラスと載置台72との融着を防ぐために素
材載置台72をセラミックス焼結材で作ると良い結果が
得られる。
On the woody layer side, the glass material 75 is placed on a material mounting table 72 on a pallet 71 and heated to a predetermined temperature. Therefore, good results can be obtained if the material mounting table 72 is made of a sintered ceramic material in order to prevent the heated glass and the mounting table 72 from being fused together.

2−4) 次に上述のように構成された装置の動作につ
いて第8図〜第12図に示すプレス成形工程順に従って
説明する。第8図は素材75が配置されていない状態の
パレット75を示す。
2-4) Next, the operation of the apparatus configured as described above will be explained in accordance with the order of press forming steps shown in FIGS. 8 to 12. FIG. 8 shows the pallet 75 without any materials 75 placed thereon.

まず、上記したように、上下型73.74の型材の酸化
防止のために、成形室99の内部を不図示の真空ポンプ
により1xlO−’Torrまで真空排気した後、(A
r+1%C1(4)ガスを充填する。CH4ガス濃度は
、赤外線式ガス分析計100を用いて許容値内にプロセ
スコントロールする。
First, as described above, in order to prevent the mold materials of the upper and lower molds 73 and 74 from oxidizing, the inside of the molding chamber 99 is evacuated to 1xlO-'Torr using a vacuum pump (not shown), and then (A
Fill with r+1% C1 (4) gas. The CH4 gas concentration is process-controlled using an infrared gas analyzer 100 to within a permissible value.

次いで、ヒーター97.98に通電し、炉内温度を所定
値にまで昇温する。R0温完了後、素材取入室61にて
上記雰囲気置換室を通し、吸着フィンガー79により第
9図に示すように素材75を素材取入室61にあるパレ
ット71の載置台72上に配置する。
Next, the heaters 97 and 98 are energized to raise the temperature inside the furnace to a predetermined value. After the R0 temperature is completed, the material 75 is passed through the atmosphere exchange chamber in the material intake chamber 61 and placed on the mounting table 72 of the pallet 71 in the material intake chamber 61 by the suction finger 79 as shown in FIG.

次に、上述した如く押出しシリンダー91.93.94
.95及び引出しシリンダー92.96を作動して順次
パレット71が成形品取出室67から素材取入室61に
送られてくるたびに素材75を上記の方法で各々の載置
台72上に配置する。
Next, as described above, the extrusion cylinder 91.93.94
.. 95 and drawer cylinders 92 and 96 are operated to sequentially transport the pallet 71 from the molded product take-out chamber 67 to the material intake chamber 61, and each time the material 75 is placed on each mounting table 72 in the above-described manner.

このような動作を繰り返し行うことにより、最初のパレ
ット71に供給された素材75と上型73及び下型74
が素材移替部63付近においてプレス成形に必要な温度
にまで加熱された時点で素材75の下型74への移替え
を行う。
By repeating such operations, the material 75 supplied to the first pallet 71, the upper mold 73 and the lower mold 74
When the material 75 is heated to a temperature necessary for press forming near the material transfer section 63, the material 75 is transferred to the lower mold 74.

なお、この時、素材75と上型73及び下型74とは略
同温度にまで加熱されていることが望ましい、こうする
ことにより、移替後の素材75の温度が上型73或は下
型74の温度によって変化することなく最適なプレス温
度条件下でプレス成形を行うことかできる。
At this time, it is desirable that the material 75 and the upper mold 73 and lower mold 74 be heated to approximately the same temperature. Press molding can be performed under optimal press temperature conditions without changing depending on the temperature of the mold 74.

前述の加熱されたガラス素材75を下型74の上に移替
えを行う際のガラスと載置台との融着は発生していない
ことが確かめられた。このことは載置台をセラミックス
焼結材で作ったことによりガラス中の鉛との反応を防げ
たことに起因する。
It was confirmed that no fusion occurred between the glass and the mounting table when the heated glass material 75 was transferred onto the lower mold 74. This is because the mounting table was made of sintered ceramic material to prevent reaction with lead in the glass.

そして、素材移替部63において、第10図に示すよう
に、持上げハンドフロにより上型73を持上げ、次いで
吸着フィンガー64により素材75を吸着して下型74
上に移替える。この後、押出しシリンダー91を押出し
て素材75の移替えが完了したパレット71をプレス部
65の位置に移動させる。この時、持上げハンド76を
除去すると共に、プレス用ロッド77を作動させ、所定
のプレス圧にて、上型73を押圧し、素材75に対する
プレス成形を行う。
Then, in the material transfer section 63, as shown in FIG.
Move it up. Thereafter, the extrusion cylinder 91 is pushed out to move the pallet 71 on which the transfer of the materials 75 has been completed to the position of the press section 65. At this time, the lifting hand 76 is removed, and the press rod 77 is activated to press the upper die 73 with a predetermined press pressure, thereby press forming the material 75.

次いで、プレス用ロッド77の押圧を解除し、上型73
はプレス時における状態を維持したまま、押出しシリン
ダー91の作動により、このパレット71はプレス部6
5から該プレス部65の出口付近にB動せしぬられる。
Next, the pressure of the press rod 77 is released, and the upper die 73
The pallet 71 is moved to the press section 6 by the operation of the extrusion cylinder 91 while maintaining the state in which it was pressed.
5 to near the exit of the press section 65.

さらに、このパレット71を引出しシリンダー92によ
り引出して第2の移送室82に移動した後、押出しシリ
ンダー93により押出し、穆送路85を経て移送室83
に移送する。
Further, this pallet 71 is pulled out by the drawer cylinder 92 and moved to the second transfer chamber 82, and then pushed out by the extrusion cylinder 93 and passed through the feeding path 85 to the transfer chamber 82.
Transfer to.

次いで、パレット71は押出しシリンダー94の押出し
により、成形品の取出室67の方向に押出されるが、押
出し方向の前方には他のパレット71が配列された状態
にあるので、上述のような動作が継続する中で、当該パ
レット71が徐冷部66の出口付近に至る間上型73と
下型74内で保持された成形品78は徐冷部66を通過
し、ここで徐々に玲却せしめられる。こうして、徐冷部
66の先頭位置まで移動したパレット71は引出しシリ
ンダー96により成形品取出室67に至る。
Next, the pallet 71 is extruded by the extrusion cylinder 94 in the direction of the molded product removal chamber 67, but since other pallets 71 are arranged in front of the extrusion direction, the above-mentioned operation is performed. While this continues, the molded product 78 held in the upper mold 73 and lower mold 74 passes through the annealing section 66 while the pallet 71 reaches the vicinity of the exit of the annealing section 66, where it is gradually cooled. I am forced to do it. In this way, the pallet 71 that has been moved to the leading position of the slow cooling section 66 reaches the molded product removal chamber 67 by the drawer cylinder 96.

次に、持上げハンド80が作動して上型73が除去され
、次いで吸着フィンガー79により成形品78が取出さ
れる。そして、この成形品取出しの完了したパレット7
1は押出しシリンダー95の押出しにより回送路86を
経て素材取入室61に移送される。
Next, the lifting hand 80 is operated to remove the upper mold 73, and then the molded product 78 is taken out by the suction finger 79. Then, the pallet 7 from which the molded products have been removed is
1 is transferred to the material intake chamber 61 via the feeding path 86 by being extruded by the extrusion cylinder 95.

上記装置は、素材15はプレス成形の直前の素材移替え
時まで素材載置台12上に配置され上型73及び下型1
4から分離された状態にあるため、素材15と型73.
74との反応が極力防止される構造になっている。
In the above device, the material 15 is placed on the material mounting table 12 until the material is transferred immediately before press molding, and the material 15 is placed on the material mounting table 12 and the upper mold 73 and the lower mold 1
4, the material 15 and the mold 73.
The structure is such that reaction with 74 is prevented as much as possible.

このようにして行った成形において、型材料がセラミッ
クス焼結材である故に、型材とガラス中の鉛との反応を
生じない。それ故反応生成物を発生せず、型とガラスの
融着は発生せず、良好な成形面が得られた。また、得ら
れたレンズの透過率のd線(587,56%m)で86
%と良好であった。
In the molding performed in this manner, since the mold material is a sintered ceramic material, no reaction occurs between the mold material and the lead in the glass. Therefore, no reaction products were generated, no fusion occurred between the mold and the glass, and a good molding surface was obtained. In addition, the transmittance of the obtained lens was 86 at the d-line (587, 56% m).
%, which was good.

2−5) 変形例 前記第2実施例は成形室99内部をAr+CH,混合ガ
スで施すことによりガラスと型材との融着を防ぐように
した例であるが、成形室全体は窒素ガス等の不活性ガス
を満し、加圧成形する直前の工程に上型・下型の成形面
、又は、ガラス素材の表面にAr+CH,混合ガスを付
着させるようにしても良い。例えば前記第7図に示すプ
レス部65の手前にガラス素材載置台上のガラス素材に
Ar+CH4混合ガスを噴射するノズルを配置し、ガラ
ス素材に混合ガスを付着させるとともに第13図に示し
たようにガラス素材フ5を吸着フィンガー79で吸着後
に混合ガスを付着させ、ガラス素材の両面を処理する。
2-5) Modification Example The second embodiment is an example in which the inside of the molding chamber 99 is treated with Ar+CH mixed gas to prevent fusion between the glass and the mold material, but the entire molding chamber is filled with nitrogen gas or the like. Ar+CH or a mixed gas may be applied to the molding surfaces of the upper and lower molds or the surface of the glass material in the step immediately before filling with inert gas and pressure molding. For example, a nozzle that injects Ar+CH4 mixed gas onto the glass material on the glass material mounting table is placed in front of the press section 65 shown in FIG. After adsorbing the glass material 5 with suction fingers 79, a mixed gas is applied to treat both sides of the glass material.

(発明の効果〕 本発明は型部材が超硬合金のように成分中にガラス中の
鉛と反応し易い金属を含む材料であっても、成形雰囲気
をA r + CHa混合ガスとすることにより、超硬
合金とガラスの直接的反応にともなう反応生成物の発生
を防ぎ、型とガラス成形対の離型時の融着を引き起こす
ことのない製造方法を得ることができ、成形品の製品不
良率を大幅に低げることができた。
(Effects of the Invention) The present invention allows molding to be performed even when the mold member is made of a material such as cemented carbide, which contains a metal that easily reacts with lead in glass, by setting the molding atmosphere to an Ar + CHa mixed gas. , it is possible to obtain a manufacturing method that prevents the generation of reaction products due to the direct reaction between cemented carbide and glass, and does not cause fusion during demolding of the mold and glass molding pair, thereby reducing product defects in molded products. We were able to significantly reduce the rate.

又、成形室の雰囲気は窒素ガス等の不活性ガスとし、加
圧成形の前工程で型部材又はガラス素材の表面に前記混
合ガスを付着させる方法によっても型部材とガラス成形
品の融着を防ぐことができた。
In addition, the atmosphere in the molding chamber is set to an inert gas such as nitrogen gas, and the fusion of the mold member and the glass molded product can also be achieved by applying the mixed gas to the surface of the mold member or glass material in the pre-pressure molding process. It could have been prevented.

更に本発明は成形雰囲気ガスをAr+CH4混合ガスと
することにより型部材にセラミックス焼結材を用いて非
球面形状成形面を有する型部材あるいは高温高硬度材表
面にセラミックシートを施した型の場合にも、型とガラ
ス成形品間の温度の密着力の発生を防ぐことができた。
Furthermore, the present invention uses an Ar+CH4 mixed gas as the molding atmosphere gas, so that it can be used for mold members that use ceramic sintered materials and have an aspherical molding surface, or for molds that have ceramic sheets applied to the surface of high-temperature, high-hardness materials. It was also possible to prevent the occurrence of thermal adhesion between the mold and the glass molded product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aは本発明の光学素子成形方法に用いる成形装置
の断面図である。第1図Bはブロック構成の説明図、第
2図はレンズ成形の際の時間温度関係図である。第3図
はガラスと型の密着力成形温度関係図であり、第4図は
密着力測定に用いる装置であり、第5図は測定の際の加
圧後の状態を示す拡大図である。第6図は成形体の透過
率測定図である。第7図〜第12図は本発明の方法に用
いる他の成形装置の断面図であり、第7図はその全体的
平面図、第8図〜第12図は各工程におけるパレットの
概略断面図である。′s13図は他の変形例の説明図で
ある。 1・・・真空槽本体、 3・・・上型、 5・・・上型おさえ、 7・・・型ホルダ− 9・・・つき上げ棒、 11・・・油回転ポンプ、 12.13.14・・・バルブ、 15・・・流入バイブ、   16・・・バルブ、17
・・・流出バイブ、   18・・・バルブ、19・・
・温度センサー  20・・・冷水バイブ、21・・・
台、       31・・・真空槽、32・・・水冷
管、     33.34・・・架台、35・・・真空
ポンプ、   36・・・給気管、37・・・真空排気
管、   38・・・リーク管、39.40,41.4
2・・・バルブ、43・・・エアーシリンダー 2・・・フタ、 4・・・下型、 6・・・調型、 8・・・ヒーター 10・・・エアシリンダ、 力り圧 時?’、”l (勿 絹 3 図 瓜形類型温甜’c) ア /3 図 一丁二よ
FIG. 1A is a sectional view of a molding apparatus used in the optical element molding method of the present invention. FIG. 1B is an explanatory diagram of the block configuration, and FIG. 2 is a time-temperature relationship diagram during lens molding. FIG. 3 is a diagram showing the relationship between the adhesion force and molding temperature between the glass and the mold, FIG. 4 is an apparatus used for measuring the adhesion force, and FIG. 5 is an enlarged view showing the state after pressurization during measurement. FIG. 6 is a transmittance measurement diagram of the molded body. Figures 7 to 12 are sectional views of other molding equipment used in the method of the present invention, with Figure 7 being an overall plan view thereof, and Figures 8 to 12 being schematic sectional views of pallets in each process. It is. Figure 's13 is an explanatory diagram of another modification. 1... Vacuum chamber body, 3... Upper mold, 5... Upper mold presser, 7... Mold holder 9... Lifting rod, 11... Oil rotary pump, 12.13. 14...Valve, 15...Inflow vibe, 16...Valve, 17
... Outflow vibrator, 18... Valve, 19...
・Temperature sensor 20...cold water vibe, 21...
Stand, 31... Vacuum tank, 32... Water cooling pipe, 33.34... Frame, 35... Vacuum pump, 36... Air supply pipe, 37... Vacuum exhaust pipe, 38... Leak pipe, 39.40, 41.4
2...Valve, 43...Air cylinder 2...Lid, 4...Lower die, 6...Adjusting mold, 8...Heater 10...Air cylinder, during strain pressure? ','l (Mushinku 3 Figure melon type warm sweet 'c) A/3 Figure 1-cho-2.

Claims (6)

【特許請求の範囲】[Claims] (1)高精度な光学面を備える光学素子を成形するため
の製造方法は次のものからなる: ・予じめ予備成形されたガラスプリフォーム;・前記ガ
ラスプリフォームを前記光学素子に成形するための型部
材を用意する工程; 前記型部材は前記ガラスプリフォームを押圧成形するた
めの少なくとも前記光学面を成形する上型と下型を有し
、前記型部材は耐酸化性・高温高硬度材料から作られて
いる; ・前記ガラスプリフォーム及び前記型部材をそれぞれ個
別に、又は、同時に、成形に必要な温度まで加熱する工
程; ・前記ガラスプリフォームを前記上型と下型の間に挿入
して加圧成形する工程; 前記加圧成形において、上型と下型のガラスプリフォー
ムの加圧操作の前に操作雰囲気を非酸化性ガスと炭化水
素ガスとの混合ガス中で加圧成形を行う。
(1) The manufacturing method for molding an optical element with a high-precision optical surface consists of the following: - A preformed glass preform; - Molding the glass preform into the optical element. The step of preparing a mold member for press-molding the glass preform; the mold member has an upper mold and a lower mold for molding at least the optical surface, and the mold member has oxidation resistance and high temperature and high hardness. - heating the glass preform and the mold member individually or simultaneously to a temperature required for molding; - placing the glass preform between the upper mold and the lower mold. Step of inserting and pressure forming; In the pressure forming, the operating atmosphere is pressurized in a mixed gas of non-oxidizing gas and hydrocarbon gas before the pressurizing operation of the upper and lower glass preforms. Perform molding.
(2)特許請求の範囲第(1)項の製造方法において、 ・前記型部材は超硬合金又はセラミックス焼結材料で作
られていることを特徴とする。
(2) The manufacturing method according to claim (1), wherein: - The mold member is made of a cemented carbide or a ceramic sintered material.
(3)特許請求の範囲第(2)項記載の前記型部材にお
いて、 ・前記型部材の前記ガラスプリフォームと接する表面に
窒化物、炭化物、酸化物のいずれかの物質からなる膜が
コートされていることを特徴とする。
(3) In the mold member according to claim (2), the surface of the mold member in contact with the glass preform is coated with a film made of any one of nitrides, carbides, and oxides. It is characterized by
(4)特許請求の範囲第(1)項記載の製造方法におい
て、更に次のことを含む: ・前記成形工程の雰囲気は不活性ガスを入れた気密室で
あり、前記気密室内に、前記ガラスプリフォーム表面に
前記混合ガスを付着される手段を設け、前記上型と下型
の間にガラスプリフォームを置く前に前記混合ガスを付
着させてからプレス成形を行う。
(4) The manufacturing method according to claim (1) further includes the following: - The atmosphere of the molding step is an airtight chamber containing an inert gas, and the glass is contained in the airtight chamber. A means for applying the mixed gas to the surface of the preform is provided, and the mixed gas is applied before the glass preform is placed between the upper mold and the lower mold, and then press molding is performed.
(5)高精度光学面を備える光学素子を成形するための
製造方法は次のものからなる: ・予じめ予備成形されたガラスプリフォーム;・前記ガ
ラスプリフォームを前記光学素子に成形するための型部
材を用意する工程; ・前記ガラスプリフォームと前記型部材を加熱部、プレ
ス部、冷却部に順次移送する工程;・前記移送工程にお
いて前記プレス部の前において前記ガラスプリフォーム
の表面に非酸化性ガスと炭化水素ガスとの混合ガスを付
着させる工程
(5) The manufacturing method for forming an optical element with a high-precision optical surface consists of: - a glass preform preformed in advance; - forming the glass preform into the optical element; A step of preparing a mold member; - A step of sequentially transferring the glass preform and the mold member to a heating section, a press section, and a cooling section; - In the transfer step, the surface of the glass preform is Process of attaching a mixed gas of non-oxidizing gas and hydrocarbon gas
(6)特許請求の範囲第(5)項記載の製造方法におい
て、 ・前記型部材の材料は超硬合金又はセラミックス焼結材
料で作られていることを特徴とする。
(6) In the manufacturing method according to claim (5), the mold member is made of a cemented carbide or a ceramic sintered material.
JP1291907A 1988-12-08 1989-11-08 Manufacturing method for molding optical element Expired - Fee Related JP2644597B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1291907A JP2644597B2 (en) 1989-11-08 1989-11-08 Manufacturing method for molding optical element
US07/446,779 US5032159A (en) 1988-12-08 1989-12-06 Method of manufacturing optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291907A JP2644597B2 (en) 1989-11-08 1989-11-08 Manufacturing method for molding optical element

Publications (2)

Publication Number Publication Date
JPH03153531A true JPH03153531A (en) 1991-07-01
JP2644597B2 JP2644597B2 (en) 1997-08-25

Family

ID=17775002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291907A Expired - Fee Related JP2644597B2 (en) 1988-12-08 1989-11-08 Manufacturing method for molding optical element

Country Status (1)

Country Link
JP (1) JP2644597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226220A (en) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd Optic manufacturing method and method for manufacturing mold for molding optic
JP2012031016A (en) * 2010-07-30 2012-02-16 Olympus Corp Method and apparatus for producing optical element
JP2015078077A (en) * 2013-10-15 2015-04-23 オリンパス株式会社 Manufacturing method of optical element and manufacturing device of optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726442A (en) * 1980-07-24 1982-02-12 Toshiba Corp Plasma thin film forming device
JPS6126528A (en) * 1984-07-14 1986-02-05 Hoya Corp Apparatus for producing pressed lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726442A (en) * 1980-07-24 1982-02-12 Toshiba Corp Plasma thin film forming device
JPS6126528A (en) * 1984-07-14 1986-02-05 Hoya Corp Apparatus for producing pressed lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226220A (en) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd Optic manufacturing method and method for manufacturing mold for molding optic
JP4567893B2 (en) * 2001-01-26 2010-10-20 パナソニック株式会社 Optical element manufacturing method and optical element molding mold manufacturing method
JP2012031016A (en) * 2010-07-30 2012-02-16 Olympus Corp Method and apparatus for producing optical element
US8739571B2 (en) 2010-07-30 2014-06-03 Olympus Corporation Manufacturing method and manufacturing apparatus for manufacturing optical element
TWI552967B (en) * 2010-07-30 2016-10-11 Olympus Corp A manufacturing method of an optical element and a manufacturing apparatus for an optical element
JP2015078077A (en) * 2013-10-15 2015-04-23 オリンパス株式会社 Manufacturing method of optical element and manufacturing device of optical element

Also Published As

Publication number Publication date
JP2644597B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US7415843B2 (en) Apparatus and method for producing a glass optical element and glass optical element produced thereby
US4629489A (en) Method of manufacturing pressed lenses
JP3103243B2 (en) Glass compression molding machine and its processing room
US5032159A (en) Method of manufacturing optical device
JP4214117B2 (en) Glass optical element manufacturing apparatus and method
JP3974200B2 (en) Glass optical element molding method
US4883528A (en) Apparatus for molding glass optical elements
US4929265A (en) Method of molding glass optical elements
JPH03153531A (en) Production for molding optical element
JPH0812355A (en) Apparatus for producing quartz glass article
JP2986647B2 (en) Method for manufacturing optical glass element
JP3967146B2 (en) Optical element molding method
JP3162180B2 (en) Glass optical element molding method
JP3234871B2 (en) Method for manufacturing glass optical element
JPH0435427B2 (en)
JPH07106914B2 (en) Optical element molding method
EP0690027A1 (en) Method for manufacturing quartz glass components and molding frame therefor
JP2934937B2 (en) Method for molding glass optical element and press device used for this method
JP3875309B2 (en) OPTICAL ELEMENT MOLD AND METHOD FOR PRODUCING OPTICAL ELEMENT MOLD
JP3246728B2 (en) Glass optical element molding method
JPH1135333A (en) Production of glass shaped body
JP4094587B2 (en) Glass optical element molding method
JP3753415B2 (en) Glass optical element molding method
JP2005126325A (en) Apparatus and method for manufacturing optical element
JP2001354435A (en) Formed die and formed method for optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees