JPH03152953A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH03152953A
JPH03152953A JP1291104A JP29110489A JPH03152953A JP H03152953 A JPH03152953 A JP H03152953A JP 1291104 A JP1291104 A JP 1291104A JP 29110489 A JP29110489 A JP 29110489A JP H03152953 A JPH03152953 A JP H03152953A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
electrostatic chuck
insulator
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1291104A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Keiichi Hosoi
啓一 細井
Kenji Morita
憲司 守田
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1291104A priority Critical patent/JPH03152953A/en
Publication of JPH03152953A publication Critical patent/JPH03152953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To prevent an electrostatic chuck from decreasing in breakdown strength or electrostatic attractive force due to the abrasion of the surface of an insulating film and to improve it in moisture non-hygroscopic property by a method wherein not only the insulating film of organic insulator is used an insulator but also an inorganic insulator film is provided onto the insulating film. CONSTITUTION:The upside of a ceramic disc substrate 1 is high in flatness through a polishing process, and electrodes 2 and 3 are formed thereon as insulated from each other thorugh a nickel electroless plating method or a chrome sputtering method. Leading-out wires 4 and 5 connected to the electrodes 2 and 3 are formed along the edge face of the substrate 1. An insulator 6 which insulates the electrodes 2 and 3 from each other is formed of an organic insulating film, and an film 7 formed of inorganic insulator is formed on the insulating film 6. An electrostatic chuck formed as above can be made to function as a chuck in such manner that a wafer to be attracted is placed on the film 7 and a positive and a negative voltage are applied to the electrodes 2 and 3 respectively.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体製造工程等に使用して好適な静電チャッ
クに係り、特にシリコンウェハ等の基板を静電的に吸着
保持する静電チャックに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrostatic chuck suitable for use in semiconductor manufacturing processes, etc., and particularly to an electrostatic chuck that electrostatically holds a substrate such as a silicon wafer. It is related to.

[従来の技術] X線を用いてシリコンウェハ(以下ウェハと称する)上
に集積回路パターンを転写するX線露光装置、ウェハの
表面観察を電子顕微鏡で行う場合等においては、真空吸
着によるウェハのチャッキングを行うことができず、そ
のため従来より特開昭59−74624号公報に見られ
るような静電気力を利用した静電チャックが使用されて
いる。
[Prior Art] In X-ray exposure equipment that transfers integrated circuit patterns onto silicon wafers (hereinafter referred to as wafers) using X-rays, and in cases where the surface of the wafer is observed using an electron microscope, wafers are separated by vacuum suction. Since chucking cannot be performed, an electrostatic chuck utilizing electrostatic force as disclosed in Japanese Patent Application Laid-open No. 74624/1983 has been used.

この静電チャックは絶縁材料からなる基板上にアルミニ
ウム、チタン、クロム等を主成分とした合金を材料とし
た2つの電極を形成し、この電極の表面に酸化処理によ
って数μm〜30μm程度の厚みの薄膜絶縁層を形成し
、更にその」−にピンホールによる耐圧低下を防ぐため
絶縁性の樹脂を塗布したものである。
This electrostatic chuck has two electrodes made of an alloy mainly composed of aluminum, titanium, chromium, etc. formed on a substrate made of an insulating material, and the surface of these electrodes is oxidized to a thickness of several μm to 30 μm. A thin insulating layer is formed on the insulating layer, and an insulating resin is coated on the insulating layer to prevent a drop in breakdown voltage due to pinholes.

このような構成において、静電チャック上に被吸着物と
してのウェハを設置した後、2つの電極間に互いに逆符
号の高電圧(±50ボルト〜±200ボルト)を印加す
ると、ウェハの各電極と対向する面には、それぞれ電極
の極性とは逆極性の電荷が誘起され、これによって電極
が静電気力によりウェハを吸着固定し、ウェハ表面の反
り等を矯正し、高い平面性を得るようにしている。
In such a configuration, after a wafer as an object to be attracted is placed on the electrostatic chuck, when high voltages (±50 volts to ±200 volts) with opposite signs are applied between the two electrodes, each electrode of the wafer Charges of opposite polarity to those of the electrodes are induced on the surfaces facing the wafers, and the electrodes use electrostatic force to attract and fix the wafer, correcting warpage on the wafer surface and achieving high flatness. ing.

ここで、静電チャックによる静電吸着力(F)は次式に
よって与えられる。
Here, the electrostatic adsorption force (F) by the electrostatic chuck is given by the following equation.

d2 但し、ε。は真空中での誘電率、ε1は絶縁物の比誘電
率、Sは電極の表面積、■は電極への印加電圧、dは絶
縁物の厚さである。
d2 However, ε. is the dielectric constant in vacuum, ε1 is the dielectric constant of the insulator, S is the surface area of the electrode, ■ is the voltage applied to the electrode, and d is the thickness of the insulator.

したがって、上式からεo、Sを一定とすればとなり、
静電吸着力Fは印加電圧、換言すれば誘起される電荷量
によって大きくすることができる。
Therefore, from the above formula, if εo and S are constant, then
The electrostatic adsorption force F can be increased by changing the applied voltage, in other words, the amount of induced charge.

また、静電チャックの池の従来例としてセラミックス製
の基板上に華−の電極を形成し、その上に別途薄く研磨
したセラミックス製薄板をガラス等によって融着し、被
吸着物をアースするようにしたものがある。
In addition, as a conventional example of an electrostatic chuck, a flower electrode is formed on a ceramic substrate, and a separately polished thin ceramic plate is fused with glass or the like to ground the object to be attracted. There is something I did.

[発明が解決しようとする課題] ところで、電極表面の酸化処理により絶縁層を形成した
上記特開昭59−74.62 /1号公報による従来の
静電チャックにおいては、電極材料としてアルミニウム
、チタン、クロム等を主成分とする合金材料を使用して
いるため、絶縁層自体は硬くて耐摩耗性に富むと云う大
きな利点を有するものの、酸化処理によって形成された
ピンホールによる耐圧劣化を樹脂の含浸のみによっては
、十分に阻止することができないと云う問題があった。
[Problems to be Solved by the Invention] By the way, in the conventional electrostatic chuck disclosed in Japanese Patent Application Laid-Open No. 1987-74.62/1 in which an insulating layer is formed by oxidizing the electrode surface, aluminum or titanium is used as the electrode material. Because it uses an alloy material whose main component is chromium, etc., the insulating layer itself has the great advantage of being hard and highly wear resistant. There was a problem in that it could not be sufficiently prevented by impregnation alone.

一方、強誘電材料からなるセラミックス製薄板を絶縁層
とした静電チャックにおいては、絶縁層の耐摩耗性につ
いては問題ないが、静電吸着力は電圧を印加する時間の
増加関数になる。したがって、電圧を印加した直後は静
電吸着力が小さく、必要な吸着力を得られず、暫く待ち
時間が必要になるばかりか、−変電圧を印加すると永久
分極を生じ、電圧を切っただけではウェハを取り除くこ
とができず、ウェハの着脱操作を迅速に行うためには、
逆符号の電圧を所定時間印加する必要があるといった問
題があった。
On the other hand, in an electrostatic chuck with an insulating layer made of a ceramic thin plate made of ferroelectric material, there is no problem with the wear resistance of the insulating layer, but the electrostatic adsorption force becomes an increasing function of the voltage application time. Therefore, immediately after voltage is applied, the electrostatic adsorption force is small, and the necessary adsorption force cannot be obtained, and not only is it necessary to wait for a while, but - permanent polarization occurs when a variable voltage is applied, and the voltage is simply turned off. However, in order to quickly attach and detach the wafer, the wafer cannot be removed.
There is a problem in that it is necessary to apply voltages of opposite signs for a predetermined period of time.

さらに、ウェハは高い平面性が要求されるため基板上面
を鏡面仕上げしなければならず、製造コストが高くなる
という問題もあった。
Furthermore, since the wafer is required to have high flatness, the upper surface of the substrate must be mirror-finished, which raises the problem of increased manufacturing costs.

したがって、本発明はこのような従来の問題点に鑑みて
なされたもので、その目的とするところは、絶縁層表面
の摩耗による耐圧劣化あるいは静電吸着力の低下が少な
く、また非吸湿性に優れ、しかも比較的面積度の粗い基
板の使用を可能にした静電チャックを提供することにあ
る。
Therefore, the present invention has been made in view of these conventional problems, and its purpose is to minimize deterioration of pressure resistance or decrease in electrostatic adsorption force due to abrasion of the surface of the insulating layer, and to maintain non-hygroscopicity. It is an object of the present invention to provide an electrostatic chuck which is excellent and allows the use of a substrate having a relatively rough surface area.

[課題を解決するための手段] 本発明は上記目的を達成するためになされたもので、そ
の第1の発明は、基板に形成した電極上に絶縁物を設け
た静電チャックにおいて、前記絶縁物として有機絶縁材
料による絶縁膜を用いると共に、前記絶縁膜の上に無機
絶縁材料による膜を設けたものである。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and a first aspect of the present invention is an electrostatic chuck in which an insulator is provided on an electrode formed on a substrate. An insulating film made of an organic insulating material is used as a material, and a film made of an inorganic insulating material is provided on the insulating film.

また、第2の発明は、基板に形成した電極上に絶縁物を
設けた静電チャックにおいて、基板と電極との間に、基
板上にスピンコートして形成された有機絶縁材料の層を
設けたものである。
Further, a second invention is an electrostatic chuck in which an insulator is provided on an electrode formed on a substrate, in which a layer of an organic insulating material formed by spin coating on the substrate is provided between the substrate and the electrode. It is something that

更に、第3の発明は、上記第2の発明において、基板を
金属材料で形成するようにしたものである。
Furthermore, a third invention is the second invention, in which the substrate is made of a metal material.

[作用] 有機絶縁材料からなる絶縁膜を保護する無機絶縁材料か
らなる膜は、有機絶縁材料に比べて硬くて耐摩耗性に優
れ、耐圧劣化あるいは吸着力の低下を防止する。また、
空気中の湿度の影響も受は難く、絶縁膜を水、湿気等か
ら保護する。
[Function] A film made of an inorganic insulating material that protects an insulating film made of an organic insulating material is harder and more resistant to abrasion than an organic insulating material, and prevents deterioration in pressure resistance or decrease in adsorption force. Also,
It is not easily affected by the humidity in the air and protects the insulating film from water, moisture, etc.

有機絶縁材料は無機絶縁材料より耐摩耗性に劣るが、有
機絶縁材料としてポリイミドを考え、無機絶縁材料とし
てアルミナを考えた場合、ポリイミドの厚み(d)をア
ルミナの厚みに比して十分小さくする(1/30〜1/
300程度)ことができるため、比誘電率(ε*)が小
さい(1/3程度)ことを考慮してもなお同じ吸着力(
F)を得るためには小さな電圧(1,/10)ですむ。
Organic insulating materials have inferior wear resistance than inorganic insulating materials, but when considering polyimide as an organic insulating material and alumina as an inorganic insulating material, the thickness (d) of polyimide should be sufficiently smaller than the thickness of alumina. (1/30~1/
300), so even if we consider that the relative dielectric constant (ε*) is small (about 1/3), the same adsorption force (
F) requires a small voltage (1,/10).

また、吸着力の印加時間依存性も減少する。Furthermore, the dependence of the adsorption force on application time is also reduced.

基板と電極の間に介在された有機絶縁材料からなる絶縁
層はスピンコートされ、加熱処理されることで高精度な
平面を形成し、基板を絶縁する。
An insulating layer made of an organic insulating material interposed between the substrate and the electrode is spin-coated and heat-treated to form a highly precise plane and insulate the substrate.

したがって、基板は面の粗いアルミニウム等の金属製基
板であってもよい。
Therefore, the substrate may be a metal substrate such as aluminum with a rough surface.

[実施例] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
[Example] Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は本発明に係る静電チャックの第1実施例を示す
断面図、第2図は第1図の電極パターンを示すための第
1図のA−A’矢視図である。
FIG. 1 is a sectional view showing a first embodiment of an electrostatic chuck according to the present invention, and FIG. 2 is a view taken along the line AA' in FIG. 1 to show the electrode pattern of FIG. 1.

これらの図において、■は適宜板厚(2am )を有す
るセラミックス製の円盤状基板で、この基板1の上面は
研磨加工されて高い平面度を有し、ニッケルの無電界メ
ツキあるいはクロムのスパッタリングによって2つの電
極2.3が互いに絶縁されて半円状に形成されている。
In these figures, ■ is a disk-shaped substrate made of ceramics having an appropriate thickness (2 am), and the upper surface of this substrate 1 is polished to have a high degree of flatness, and is coated by electroless nickel plating or chromium sputtering. Two electrodes 2.3 are insulated from each other and formed semicircularly.

これらの電極2.3の形成に際しては予め電極を分離す
るための細いテープを基板1の上面に接着し、この状態
でニッケルの無電界メツキあるいはクロムのスパッタリ
ングを行い、しかる後テープを取り除けばよい。
When forming these electrodes 2.3, a thin tape for separating the electrodes is adhered to the top surface of the substrate 1 in advance, electroless nickel plating or chromium sputtering is performed in this state, and the tape is then removed. .

電極2.3は厚みが3μm程度とされ、その一端部に接
続されて引き出し線4.5が基板1の側面に沿ってそれ
ぞれ形成されている。
The electrode 2.3 has a thickness of about 3 μm, and is connected to one end thereof, and a lead wire 4.5 is formed along the side surface of the substrate 1, respectively.

6は直配電極2.3を絶縁する絶縁物で、この絶縁物6
は有機絶縁材料からなる絶縁膜で構成され、またこの絶
縁膜6のトには無機絶縁材料からなる膜7が形成されて
いる。
6 is an insulator that insulates the direct distribution electrode 2.3, and this insulator 6
is composed of an insulating film made of an organic insulating material, and a film 7 made of an inorganic insulating material is formed on top of this insulating film 6.

絶縁膜6としては、電極2.3の上にポリイミド(東し
製セラミコファイン5P−910)を塗布し、約1 、
000 r、p−mの回転速度でスピンコートし、その
後80°Cで1時間(200°Cで30分、35°Cで
1時間)ベーキング処理を行うことにより厚さ10μm
の丈夫なポリイミド層を得た。
As the insulating film 6, polyimide (Ceramicofine 5P-910 manufactured by Toshi) is coated on the electrode 2.3, and about 1.
A thickness of 10 μm was obtained by spin coating at a rotational speed of 000 r, p-m, followed by baking at 80°C for 1 hour (30 minutes at 200°C, 1 hour at 35°C).
A durable polyimide layer was obtained.

膜7は前記絶縁膜6を保護するもので、例えばアルミナ
(A、ff20s)を前記絶縁膜6の上にスパッタリン
グすることにより形成され、その厚みは0.5μm〜1
μmとされる。
The film 7 protects the insulating film 6, and is formed, for example, by sputtering alumina (A, ff20s) on the insulating film 6, and has a thickness of 0.5 μm to 1 μm.
It is assumed to be μm.

このような構成からなる静電チャックは膜7上に被吸着
物としてのウェハを設置し、一対の電極2.3に互いに
逆符号の電圧(例えば±200V)を印加することによ
り動作され、しかして絶縁膜6に上述したと同様電荷が
発生ずることでウェハが静電的に吸着固定される。
The electrostatic chuck having such a configuration is operated by placing a wafer as an object to be attracted on the membrane 7 and applying voltages of opposite signs (for example, ±200 V) to the pair of electrodes 2.3. As a result, charges are generated in the insulating film 6 in the same manner as described above, and the wafer is electrostatically attracted and fixed.

ここで、絶縁膜6を形成するポリイミドはその厚み(d
)が10μmで、単に電極上にアルミナからなる絶縁物
を形成した従来の場合と比較して上述した通り著しく小
さく (1/20〜]−/30)することができるので
、比誘電率(ε*〉が小さい(1/3程度)ことを考慮
してもなお同じ吸着力(F)を得るためには電圧(V)
を1/10程度に小さくすることができる。また、同じ
電圧であれば大きな吸着力を得ることができる。さらに
また、有機絶縁材料は電圧を0にすると分極も0になり
、永久分極や残留分極を生じないため、吸着力の印加時
間依存性が少なく、ウェハの着脱操作を短時間で行える
。さらに、ポリイミドの絶縁耐力はアルミナの絶縁耐力
が15.7Kv/msであるのに対して、31.7 K
 v/amと著しく大きいという利点を有している。
Here, the polyimide forming the insulating film 6 has a thickness (d
) is 10 μm, and compared to the conventional case in which an insulator made of alumina is simply formed on the electrode, the dielectric constant (ε Even considering that *> is small (about 1/3), in order to obtain the same adsorption force (F), the voltage (V)
can be reduced to about 1/10. Further, if the voltage is the same, a large adsorption force can be obtained. Furthermore, the polarization of the organic insulating material becomes 0 when the voltage is reduced to 0, and no permanent polarization or residual polarization occurs. Therefore, the dependence of the adsorption force on the application time is small, and the wafer attachment/detachment operation can be performed in a short time. Furthermore, the dielectric strength of polyimide is 31.7 Kv/ms, whereas that of alumina is 15.7 Kv/ms.
It has the advantage of being extremely large, v/am.

ところが、ポリイミドは表面の硬度が小さく、耐摩耗性
に欠ける嫌いがあるため、絶縁膜6をポリイミド単体で
形成した場合には表面が摩擦によって粗面になると耐圧
劣化あるいは静電吸着力の低下を生じるという問題があ
った。またポリイミドは耐湿性に欠けるため、大気中で
も吸着力が要求される場合には、空気中の水蒸気を吸収
して表面抵抗が低下すると、沿面漏れ電流が流れ、静電
吸着力が劣化する。
However, polyimide has a low surface hardness and tends to lack abrasion resistance, so if the insulating film 6 is formed of polyimide alone, the surface may become rough due to friction, resulting in deterioration in pressure resistance or a decrease in electrostatic adsorption force. There was a problem that occurred. Furthermore, since polyimide lacks moisture resistance, when adsorption power is required even in the atmosphere, when water vapor in the air is absorbed and the surface resistance decreases, creepage current flows and the electrostatic adsorption power deteriorates.

この点、本発明では硬くて耐摩耗性に優れ、また非吸湿
性、安定性、耐候性等に優れたアルミナからなる膜7に
よって前記ポリイミドからなる絶縁膜6を被覆保護して
いるので、上記したポリイミドの欠点をカバーすること
ができる。また、絶縁膜6によって絶縁を図っているた
め、膜7自体の厚みを0.5μm程度と、非常に薄くす
ることができる。
In this regard, in the present invention, the insulating film 6 made of polyimide is covered and protected by the film 7 made of alumina, which is hard and has excellent wear resistance, and also has excellent non-hygroscopicity, stability, and weather resistance. It can cover the disadvantages of polyimide. Further, since insulation is achieved by the insulating film 6, the thickness of the film 7 itself can be made very thin, approximately 0.5 μm.

例えば、本実施例の膜7は、アルミナ単体により 0 り厚い絶縁膜を形成した場合の1/300程度でしかな
いので、強誘電体にも拘らず、印加時間の依存性を1/
300程度にまで低減することができる。
For example, the film 7 of this example is only about 1/300 of the thickness of a thicker insulating film made of alumina alone, so the dependence on the application time is reduced to 1/3 even though it is a ferroelectric material.
It can be reduced to about 300.

また、電極2.3の表面にサブミクロン程度の凹凸があ
る場合であっても、ポリイミドをスピンコートすること
で表面が平坦になるので、ウェハの吸着性がきわめて良
い。
Further, even if the surface of the electrode 2.3 has submicron irregularities, the surface is made flat by spin coating with polyimide, so that the wafer adsorption property is extremely good.

第3図は本発明の第2実施例を示す断面図、第4図は基
板の電極の形状を示す第3図のB−B’矢視図である。
FIG. 3 is a sectional view showing a second embodiment of the present invention, and FIG. 4 is a view along the line BB' in FIG. 3 showing the shape of the electrodes on the substrate.

この実施例はあまり高い平面度が要求されないウェハ搬
送用静電チャックに適用したもので、上記実施例と異な
る点は、基板10を板厚2mm程度のアルミニウム板に
よって平面視コ字状に形成した点と、基板10と電極2
.3との間に絶縁層11を介在させた点にある。その他
の構成は上記実施例と暗闘−であるため、同一符号を以
て示し、その説明を省略する。
This example is applied to an electrostatic chuck for wafer transfer, which does not require very high flatness, and differs from the above example in that the substrate 10 is formed of an aluminum plate with a thickness of about 2 mm into a U-shape in plan view. point, substrate 10 and electrode 2
.. 3, and an insulating layer 11 is interposed between the two. Since the other configurations are similar to those of the above embodiment, they are designated by the same reference numerals and their explanations will be omitted.

絶縁層11は基板10と電極2.3とを絶縁すると共に
基板表面を平坦化させるためのもので、ポリイミドから
なる絶縁層とされる。この絶縁層11の形成は、上記し
た実施例における絶縁y6の形成と全く同様で、ポリイ
ミドを基板10の上面に塗布してスピンコートし、その
後加熱硬化させることにより得られる。このようにして
形成された絶縁層11の表面は高い平面度を有するため
、基板10自体の上面が多少粗くても、同等支障を生じ
ることがなく、基板10を安価に製作し得ると云う利点
を有する。
The insulating layer 11 is for insulating the substrate 10 and the electrodes 2.3 and flattening the surface of the substrate, and is made of polyimide. The formation of this insulating layer 11 is exactly the same as the formation of the insulating layer y6 in the above-described embodiment, and is obtained by applying polyimide to the upper surface of the substrate 10, spin-coating it, and then heating and curing it. Since the surface of the insulating layer 11 formed in this way has a high degree of flatness, even if the upper surface of the substrate 10 itself is somewhat rough, no problem will occur, and the substrate 10 can be manufactured at a low cost. has.

このような構成からなる静電チャックにおいては、上記
実施例と同様な効果を奏することはもとより基板1.0
の材料として、アルミニウムを使用しているので、材料
費が安価で、しかも研磨によって高い平面精度とする必
要が無いため、−層製造コストの低減を図ることができ
ると云う利点を有する。特に、円形ではなく、特殊な形
状のものや、穴を沢山設ける必要がある静電チャックで
は圧倒的に安く作れる。
In an electrostatic chuck having such a configuration, not only the same effects as those of the above embodiment can be obtained, but also the substrate 1.0.
Since aluminum is used as the material, the material cost is low, and there is no need to polish to high plane accuracy, which has the advantage of reducing layer manufacturing costs. In particular, electrostatic chucks that are not circular but have a special shape, or that require many holes, can be made much more cheaply.

なお、金属板からなる基板10の上面にポリイミドから
なる有機絶縁材料をコーティングすれば、絶縁基板にな
ることは云うまでもないが、この場合絶縁層11をあま
り薄く形成すると、金属面との静電容量が大きくなるの
で、注意する必要がある。
It goes without saying that if the upper surface of the substrate 10 made of a metal plate is coated with an organic insulating material made of polyimide, it becomes an insulating substrate. Since the capacitance increases, care must be taken.

[発明の効果] 以上説明したように本発明に係る静電チャックによれば
、電極上に形成される絶縁物を有機絶縁材料からなる絶
縁膜とし、この絶縁膜を無機絶縁材料からなる膜によっ
て保護するように構成しなので、耐摩耗性に優れ、耐圧
劣化或は吸着力の低下が少なく、また非吸湿性に優れて
いるため空気中でも水、水蒸気等による劣化が少なく、
耐久性を向上させることができる。また、有機絶縁材料
からなる絶縁膜は電圧を印加しても遅れがなく所定の吸
着力が得られるので、被吸着物の着脱操作を迅速に行う
ことができ、作業性を向上させる。
[Effects of the Invention] As explained above, according to the electrostatic chuck of the present invention, the insulator formed on the electrode is an insulating film made of an organic insulating material, and this insulating film is replaced by a film made of an inorganic insulating material. Because it is structured to protect it, it has excellent abrasion resistance, and there is little pressure deterioration or decrease in adsorption power.It is also excellent in non-hygroscopicity, so there is little deterioration due to water, water vapor, etc. even in the air.
Durability can be improved. Further, since the insulating film made of an organic insulating material can obtain a predetermined adsorption force without delay even when a voltage is applied, it is possible to quickly attach and detach the object to be adsorbed, thereby improving workability.

さらにまた、長時間被吸着物を吸着固定したまま放置し
ておいても吸着力は増加しないので、脱着時に外れない
等の事故が起こらず、信頼性の高い静電チャックを提供
することができる。また、無機絶縁材料からなる膜は薄
く形成できるので、印加時間依存性に悪影響を及ぼすこ
とがない。また、細かい凹凸のある基板や、金属製基板
でも静電チャックを製作できるので、非常に安く作れ、
その上各種形状のものの製作が可能であるなど、その効
果は大である。
Furthermore, since the adsorption force does not increase even if the object to be adsorbed is left adsorbed and fixed for a long time, accidents such as not coming off when attaching and detaching do not occur, making it possible to provide a highly reliable electrostatic chuck. . Furthermore, since the film made of inorganic insulating material can be formed thinly, it does not have a negative effect on the application time dependence. In addition, electrostatic chucks can be manufactured even on substrates with fine irregularities or metal substrates, so they can be manufactured very cheaply.
Moreover, it has great effects, such as being able to manufacture products of various shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る静電チャックの第1実施例を示す
断面図、第2図は第1図のA−A’矢視図、第3図は本
発明の第2実施例を示す断面図、第4図は第3図のB−
B’矢視図である。 1・・・基板、2.3・−・電極、 4.5・・・引き出し線、6・・・絶縁物(膜)、7・
・・膜、10・・・基板、 11・・・絶縁層。
FIG. 1 is a sectional view showing a first embodiment of an electrostatic chuck according to the present invention, FIG. 2 is a view taken along the line A-A' in FIG. 1, and FIG. 3 is a cross-sectional view showing a second embodiment of the present invention. Cross-sectional view, Figure 4 is B- in Figure 3.
It is a view taken along arrow B'. DESCRIPTION OF SYMBOLS 1... Substrate, 2.3... Electrode, 4.5... Leading wire, 6... Insulator (film), 7...
...Membrane, 10...Substrate, 11...Insulating layer.

Claims (3)

【特許請求の範囲】[Claims] (1)基板に形成した電極上に絶縁物を設けた静電チャ
ックにおいて、 前記絶縁物として有機絶縁材料による絶縁膜を用いると
共に、前記絶縁膜の上に無機絶縁材料による膜を設けた
ことを特徴とする静電チャック。
(1) In an electrostatic chuck in which an insulator is provided on an electrode formed on a substrate, an insulating film made of an organic insulating material is used as the insulator, and a film made of an inorganic insulating material is provided on the insulating film. Features an electrostatic chuck.
(2)基板に形成した電極上に絶縁物を設けた静電チャ
ックにおいて、 前記基板と前記電極との間に、前記基板上にスピンコー
トして形成された有機絶縁材料の層が設けられているこ
とを特徴とする静電チャック。
(2) In an electrostatic chuck in which an insulator is provided on an electrode formed on a substrate, a layer of an organic insulating material formed by spin coating on the substrate is provided between the substrate and the electrode. An electrostatic chuck characterized by:
(3)請求項2記載の静電チャックにおいて、前記基板
は金属材料であることを特徴とする静電チャック。
(3) The electrostatic chuck according to claim 2, wherein the substrate is made of a metal material.
JP1291104A 1989-11-10 1989-11-10 Electrostatic chuck Pending JPH03152953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1291104A JPH03152953A (en) 1989-11-10 1989-11-10 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1291104A JPH03152953A (en) 1989-11-10 1989-11-10 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH03152953A true JPH03152953A (en) 1991-06-28

Family

ID=17764503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1291104A Pending JPH03152953A (en) 1989-11-10 1989-11-10 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH03152953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563063A (en) * 1991-09-02 1993-03-12 Nikon Corp Electrostatic chuck device
US5539179A (en) * 1990-11-17 1996-07-23 Tokyo Electron Limited Electrostatic chuck having a multilayer structure for attracting an object
US5560780A (en) * 1993-04-22 1996-10-01 Applied Materials, Inc. Protective coating for dielectric material on wafer support used in integrated circuit processing apparatus and method of forming same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539179A (en) * 1990-11-17 1996-07-23 Tokyo Electron Limited Electrostatic chuck having a multilayer structure for attracting an object
JPH0563063A (en) * 1991-09-02 1993-03-12 Nikon Corp Electrostatic chuck device
US5560780A (en) * 1993-04-22 1996-10-01 Applied Materials, Inc. Protective coating for dielectric material on wafer support used in integrated circuit processing apparatus and method of forming same

Similar Documents

Publication Publication Date Title
JP2665242B2 (en) Electrostatic chuck
US5691876A (en) High temperature polyimide electrostatic chuck
US4724510A (en) Electrostatic wafer clamp
IE52318B1 (en) Method and apparatus for dry etching and electrostatic chucking device used therein
JP2000323558A (en) Electrostatic suction device
JP7395708B2 (en) Grounding mechanism and related methods for multilayers for electrostatic chucks
JPH0652758B2 (en) Electrostatic check
KR100652244B1 (en) a Electrostatic Chuck with the elix-shape electrode and a method for manufacturing thereof
JPS63283037A (en) Statically attracting apparatus
JPH03152953A (en) Electrostatic chuck
JPH04367247A (en) Ceramic electrostatic chuck
JPH056933A (en) Electrostatic chuck made of ceramic
JP2000332089A (en) Electrostatic chuck for heating and holding wafer
JPS6245698B2 (en)
JP2006066857A (en) Bipolar electrostatic chuck
JP3767719B2 (en) Electrostatic chuck
JPH0255175B2 (en)
JPH10209256A (en) Electrostatic chuck device and its manufacture
JP4056599B2 (en) Method for attracting glass substrate for liquid crystal display device using electrostatic chuck
JPS6156842A (en) Electrostatic attractive plate
JPH0563063A (en) Electrostatic chuck device
US20080266747A1 (en) Electrostatic chuck
JP2851766B2 (en) Electrostatic chuck
JPH0636583Y2 (en) Electrostatic chuck
JPH03187240A (en) Electrostatic chuck