JPH0315208Y2 - - Google Patents

Info

Publication number
JPH0315208Y2
JPH0315208Y2 JP1985007793U JP779385U JPH0315208Y2 JP H0315208 Y2 JPH0315208 Y2 JP H0315208Y2 JP 1985007793 U JP1985007793 U JP 1985007793U JP 779385 U JP779385 U JP 779385U JP H0315208 Y2 JPH0315208 Y2 JP H0315208Y2
Authority
JP
Japan
Prior art keywords
roll gap
roll
rolling mill
work rolls
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985007793U
Other languages
Japanese (ja)
Other versions
JPS61127808U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985007793U priority Critical patent/JPH0315208Y2/ja
Publication of JPS61127808U publication Critical patent/JPS61127808U/ja
Application granted granted Critical
Publication of JPH0315208Y2 publication Critical patent/JPH0315208Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は圧延機、特に、作業ロールを軸線方向
にシフトし得るようにした圧延機におけるロール
ギヤツプの測定方式に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring roll gaps in a rolling mill, particularly in a rolling mill whose work rolls can be shifted in the axial direction.

[従来の技術] 圧延機において、ロールギヤツプの管理は製品
の寸法精度を維持する上で重要である。従来、こ
のロールギヤツプを検出する場合、圧下シリンダ
に設けた位置検出器によりシリンダのピストンあ
るいはラムの位置を求め、これをロールギヤツプ
に変換するのが一般的な方法であつた。しかし、
斯かる方法の場合、ハウジングの伸びや圧下シリ
ンダ内の油の体積変化の影響を受けるため、これ
らの影響を演算補正しており、精度的に限界に達
していた。
[Prior Art] In rolling mills, roll gap management is important for maintaining the dimensional accuracy of products. Conventionally, when detecting this roll gap, the general method was to determine the position of the piston or ram of the cylinder using a position detector provided on the reduction cylinder, and convert this to the roll gap. but,
In the case of such a method, since it is affected by the elongation of the housing and the change in the volume of oil in the compression cylinder, these effects are corrected by calculation, and the accuracy has reached its limit.

詳述すると、第6図は従来の圧延機のロール位
置制御方式としての代表例であり、ビスラ制御系
の制御装置を備えた圧延機を示している。図中2
7は圧延機ハウジング、28,29は作業ロー
ル、30,31は控えロール、32は圧下シリン
ダ33のラム、34はロードセル、35はラム3
2の変位計、36は演算制御器である。
To be more specific, FIG. 6 is a typical example of a roll position control system of a conventional rolling mill, and shows a rolling mill equipped with a control device of the Bisla control system. 2 in the diagram
7 is a rolling mill housing, 28 and 29 are work rolls, 30 and 31 are backing rolls, 32 is a ram of the rolling cylinder 33, 34 is a load cell, and 35 is a ram 3
2 is a displacement meter, and 36 is an arithmetic controller.

第6図において、板厚指令値をxc、圧延機の
剛性係数(一般にミル常数と言う)をKm、荷重
定数をC、ラムの変位をx、圧延力をFとすると
ビスラ制御では、 x=xc+C/KmF …(1) の如き関係でラム32の変位xが得られる。即
ち、指令値xcよりC/Kmだけ大きくラム32を変 位させ圧延機の伸びによるロールギヤツプの拡大
を補償して板厚変動をなくすようにしている。
又、C=1とする場合、圧延機の伸びの影響を完
全に補償することが可能であり、ビスラ系の最終
目標を達成することができるとされている。
In Figure 6, if the plate thickness command value is xc, the rigidity coefficient of the rolling mill (generally called mill constant) is Km, the load constant is C, the displacement of the ram is x, and the rolling force is F, then in Bisla control, x= The displacement x of the ram 32 can be obtained from the relationship xc+C/KmF (1). That is, the ram 32 is displaced by C/Km greater than the command value xc to compensate for the expansion of the roll gap due to the elongation of the rolling mill and to eliminate variations in plate thickness.
Further, when C=1, it is possible to completely compensate for the influence of elongation of the rolling mill, and it is said that the ultimate goal of the Visla system can be achieved.

しかしながら、斯かる従来方式においては、ロ
ール間隙を直接検出するのではなく、圧下シリン
ダのラムの変位を検出し、圧延機の伸び分はロー
ドセルを用いて圧延力を検出し、ミル常数で割つ
て間接的に求めているため、ロードセルの分解能
からくる精度限度を来たしていた。
However, in this conventional method, instead of directly detecting the roll gap, the displacement of the ram of the rolling cylinder is detected, and the elongation of the rolling mill is calculated by detecting the rolling force using a load cell and dividing it by the mill constant. Because it is determined indirectly, there is a limit to accuracy due to the resolution of the load cell.

更に、近年、一定の板幅の圧延材の反覆圧延に
よるロールの段差摩耗(通常板道と称される)を
解消するとともに圧延材の形状を良好にするため
に、作業ロールを軸線方向にシフトし得るように
した圧延機が開発されている。而して、斯かるシ
フト圧延機では、作業ロールのシフトのため通常
の圧延機よりロール変形外乱が増加するので、前
記のロールギヤツプ検出方法によつてロールギヤ
ツプを精度良く求めるためには、更に複雑な演算
補正が必要となり、一層精度的問題が拡大されて
いた。例えば、(1)式においてミル常数Kmもロー
ルシフト量の関係となるので、シフト量に応じて
Kmを変えなければ、精度の良いビスラ制御がで
きないことは容易にわかる。すなわち、それだけ
補正演算は複雑になるわけである。
Furthermore, in recent years, the work rolls have been shifted in the axial direction in order to eliminate step wear on the rolls (usually referred to as plateway) caused by repeated rolling of rolled material with a constant width and to improve the shape of the rolled material. A rolling mill that can do this has been developed. In such a shift rolling mill, the roll deformation disturbance increases due to the shift of the work rolls compared to a normal rolling mill. Therefore, in order to accurately determine the roll gap using the roll gap detection method described above, a more complicated method is required. Calculation correction was required, further aggravating accuracy problems. For example, in equation (1), the mill constant Km is also related to the roll shift amount, so depending on the shift amount,
It is easy to see that accurate Bisla control cannot be achieved without changing Km. In other words, the correction calculation becomes that much more complicated.

[考案が解決しようとする問題点] 本考案は、作業ロールを軸線方向にシフトし得
るようにした圧延機において、複雑な外乱補正演
算を行わずに、容易且つ正確にロールギヤツプを
検出し得るようにしたものである。
[Problems to be solved by the invention] The present invention provides a method for easily and accurately detecting a roll gap in a rolling mill in which the work rolls can be shifted in the axial direction, without performing complicated disturbance correction calculations. This is what I did.

[問題点を解決するための手段] 本考案は、作業ロールを軸線方向にシフトし得
るようにした圧延機において、前記作業ロールと
一体に軸線方向移動し且つ圧延材の幅端部近傍に
位置する部分を有する移動部材を設けると共に、
該移動部材の圧延材の幅端部近傍部分に位置する
部分にロールギヤツプ検出器を作業ロールのロー
ルギヤツプと近接させて取付けた構成としてい
る。
[Means for Solving the Problems] The present invention provides a rolling mill in which a work roll can be shifted in the axial direction. a movable member having a portion to
A roll gap detector is attached to a portion of the moving member located near the width end of the rolled material in close proximity to the roll gap of the work roll.

[作用] 従つて、作業ロールがシフトしてもその移動と
一体に検出器が移動するので、検出器と作業ロー
ルとの位置関係が保持され、正確にロールギヤツ
プが検出される。
[Operation] Therefore, even if the work roll shifts, the detector moves together with the shift, so the positional relationship between the detector and the work roll is maintained, and the roll gap is accurately detected.

[実施例] 以下、図面に基づいて本考案の実施例を説明す
る。
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

第1図及び第2図において、1,2は夫々反対
側の端部にテーパ部3,4を有し且つ図示しない
シフト装置によつて軸線方向に移動し得るように
した上下の作業ロール、5,6は上下作業ロール
1,2の軸箱であり、該各軸箱5,6には、ベン
デイングシリンダ7,8を内蔵したブロツク9,
10が、前記ベンデイングシリンダのロツド7
a,8aを介し作業ロール1,2と軸線方向に一
体移動可能に係合せしめてある。
1 and 2, upper and lower work rolls 1 and 2 have tapered portions 3 and 4 at opposite ends, respectively, and are movable in the axial direction by a shift device (not shown); 5 and 6 are axle boxes for the upper and lower work rolls 1 and 2, and each axle box 5 and 6 includes blocks 9 and 9 that have built-in bending cylinders 7 and 8, respectively.
10 is the rod 7 of the bending cylinder;
It is engaged with the work rolls 1 and 2 via a and 8a so that they can move together in the axial direction.

すなわち、第2図の側面図に示すように、軸箱
5,6は圧延荷重を受ける方向にはブロツク9,
10を置き去りにして自由に動くことができ、ロ
ール軸方向にはブロツク9,10と一体となつて
移動することができるようになつている。
That is, as shown in the side view of FIG. 2, the axle boxes 5 and 6 have blocks 9 and
The block 10 can be left behind and can move freely, and can move together with the blocks 9 and 10 in the roll axis direction.

斯かる圧延機に対し、テーパ部3,4側に位置
するブロツク9,10には、ロールギヤツプ側内
側端部に、第3図に示すようにその検出ヘツド1
1,12をロールギヤツプに近接させて渦電流式
ロールギヤツプ検出器13,14を取付ける。
In such a rolling mill, the blocks 9 and 10 located on the tapered portions 3 and 4 have their detection heads 1 at the inner ends on the roll gap side, as shown in FIG.
Eddy current type roll gap detectors 13 and 14 are installed with the rollers 1 and 12 close to the roll gap.

第3図はロールギヤツプ制御のブロツク線図を
示し、15は前記検出器13,14からの信号を
加算して平均値を求める平均値演算器、16は該
演算器15からの信号に基づいてロールギヤツプ
を求める換算器、17は該換算器16からの信号
とロールギヤツプの設定信号とを加算する加算
器、19は該加算器17からの信号と圧下シリン
ダ18に設けた位置検出器21からのフイードバ
ツク信号21aとを比較し差があると修正指令を
圧下シリンダ18への圧油の流出・流入を制御す
るサーボ弁26へ送る制御装置である。
FIG. 3 shows a block diagram of roll gap control, in which numeral 15 is an average value calculator that adds the signals from the detectors 13 and 14 to obtain an average value, and 16 is a roll gap controller that calculates the average value by adding the signals from the detectors 13 and 14. 17 is an adder that adds the signal from the converter 16 and the roll gap setting signal. 19 is a feedback signal from the signal from the adder 17 and the position detector 21 provided in the reduction cylinder 18. 21a, and if there is a difference, it sends a correction command to the servo valve 26 that controls the outflow and inflow of pressure oil to the pressure reduction cylinder 18.

すなわち、本考案の制御系では、圧下シリンダ
18に設けた位置検出器21の信号をもとに、初
期のロールギヤツプを設定し、圧延中の荷重によ
る圧延機の伸びに帰因して起こるロールギヤツプ
の拡大量をロールギヤツプ直近に設置した検出器
13,14で検出して補正するものである。
That is, in the control system of the present invention, the initial roll gap is set based on the signal from the position detector 21 installed in the rolling cylinder 18, and the roll gap caused by the elongation of the rolling mill due to the load during rolling is controlled. The amount of expansion is detected by detectors 13 and 14 installed close to the roll gap and corrected.

斯かる構成において、上下作業ロール1,2間
のロールギヤツプを検出する場合、検出器13,
14では直接ロールギヤツプを検出するものでは
なく、検出ヘツド11と一端部における上下作業
ロール1,2の周面接近部との隙間寸法x,y、
並びに検出ヘツド12と他端部における上下作業
ロール1,2の周面接近部との隙間寸法x′,y′を
夫々検出し、これらの信号を演算器15へ送つて
平均値を求め、更に換算器16でロールギヤツプ
に換算するものである。
In such a configuration, when detecting a roll gap between the upper and lower work rolls 1 and 2, the detector 13,
14 does not directly detect the roll gap, but rather detects the gap size x, y,
In addition, the gap dimensions x' and y' between the detection head 12 and the peripheral surfaces of the upper and lower work rolls 1 and 2 at the other end are detected, respectively, and these signals are sent to the calculator 15 to obtain the average value. The converter 16 converts it into a roll gap.

即ち、検出器13,14をブロツク9,10に
取付けた時に、検出ヘツド13,14からロール
ギヤツプ中心までの距離、検出ヘツド13,14
と作業ロール1,2のテーパ部3,4開始端との
間の距離、テーパ部3,4の角度、作業ロール
1,2の径等の値が総て分つているので、演算器
15にて算出された平均値信号から換算器16に
て前記の諸値に基づいてロールギヤツプを求める
ことができる。
That is, when the detectors 13, 14 are attached to the blocks 9, 10, the distance from the detection heads 13, 14 to the center of the roll gap, the distance between the detection heads 13, 14
Since the distance between the start end of the tapered portions 3 and 4 of the work rolls 1 and 2, the angle of the taper portions 3 and 4, and the diameters of the work rolls 1 and 2 are all known, the calculation unit 15 A converter 16 can calculate the roll gap based on the above-mentioned values from the average value signal calculated.

更に、換算器16によつて求められたロールギ
ヤツプ換算信号は、加算器17を介し制御装置1
9に送られてラムの位置信号21aと比較され、
差があるとサーボ弁26に駆動指令が送られ、圧
下シリンダ18のラム位置の調整を介しロールギ
ヤツプが修正される。すなわち、ロールギヤツプ
換算信号に基づき、圧下ラム18aがその分だけ
上方向に押し上げられてロールギヤツプが狭ま
り、ミルの伸びが補正されて初期の設定ギヤツプ
が維持されるわけである。
Further, the roll gap conversion signal obtained by the converter 16 is sent to the control device 1 via an adder 17.
9 and is compared with the ram position signal 21a,
If there is a difference, a drive command is sent to the servo valve 26 and the roll gap is corrected through adjustment of the ram position of the reduction cylinder 18. That is, based on the roll gap conversion signal, the reduction ram 18a is pushed upward by that amount, narrowing the roll gap, correcting the elongation of the mill, and maintaining the initially set gap.

前記において、作業ロール1,2が軸線方向に
シフトすると、各ブロツク9,10も作業ロール
1,2と一体に移動するので、検出ヘツド11,
12と作業ロール1,2との関係は常に一定に保
持される。従つて、作業ロール1,2を圧延材S
の幅に対応して如何なる位置にシフトさせても、
検出系統に何ら調整を施すことなくロールギヤツ
プを検出することができる。
In the above, when the work rolls 1 and 2 shift in the axial direction, the blocks 9 and 10 also move together with the work rolls 1 and 2, so the detection heads 11 and
12 and the work rolls 1 and 2 are always maintained constant. Therefore, the work rolls 1 and 2 are rolled material S
No matter how you shift it to any position corresponding to the width of
Roll gaps can be detected without making any adjustments to the detection system.

尚、前記実施例では演算器15によつてロール
ギヤツプの平均値を求めて修正作業を行つたが、
平均値を求めずに、作業ロール1,2間の各端部
位置におけるロールギヤツプを夫々別個に求め
て、作業ロール1,2の両端部、つまり作業側、
駆動側で各別にギヤツプ調整をするようにしても
よい。
Incidentally, in the embodiment described above, the average value of the roll gap was calculated by the calculating unit 15 and the correction work was performed.
Without determining the average value, the roll gap at each end position between the work rolls 1 and 2 is determined separately, and the roll gap at both ends of the work rolls 1 and 2, that is, the work side,
The gap may be adjusted separately on the drive side.

第4図及び第5図は本考案の他の実施例であ
り、作業ロール1,2はテーパ部3,4の代にリ
ング溝22,23を設けた方式の圧延機の場合を
示している。即ち、ロールギヤツプ検出器とし
て、リング溝22,23側に位置するブロツク
9,10の一方に投光器24を、又対向する他方
のブロツク9,10に受光器25を夫々対向させ
て取付け、作業ロール1,2のリング溝22,2
3と作業ロール2,1の周面との間を通過する投
光器24,24からの光を夫々受光器25,25
にてロールギヤツプとして検出し、これら受光器
25,25からの信号を演算器15にて平均値に
直し、この信号に基づいて前記実施例と同様な制
御を行うようにしたものである。
Figures 4 and 5 show other embodiments of the present invention, and show a rolling mill in which the work rolls 1 and 2 have ring grooves 22 and 23 in place of the tapered parts 3 and 4. . That is, as a roll gap detector, a light emitter 24 is attached to one of the blocks 9, 10 located on the ring grooves 22, 23 side, and a light receiver 25 is attached to the other block 9, 10 facing each other, and the work roll 1 is , 2 ring groove 22, 2
The light from the projectors 24, 24 passing between the work rolls 3 and the circumferential surfaces of the work rolls 2, 1 is received by the receivers 25, 25, respectively.
The roll gap is detected as a roll gap, and the signals from these light receivers 25, 25 are converted to an average value by the calculator 15, and the same control as in the previous embodiment is performed based on this signal.

この方式の場合には、リング溝22,23の深
さが一定であるから、作業ロール1,2がシフト
してもロールギヤツプが変化しても、ロールギヤ
ツプを簡単且つ確実に直接検出することができ、
検出精度が更に向上する。
In this method, the depth of the ring grooves 22 and 23 is constant, so even if the work rolls 1 and 2 shift or the roll gap changes, the roll gap can be directly detected easily and reliably. ,
Detection accuracy is further improved.

尚、前記実施例では、ロールギヤツプの検出器
をブロツクに取付けたが、各軸箱5,5間及び
6,6間に、作業ロール1,2と一体に軸線方向
移動し得るようにビームを掛け渡して、このビー
ムの所要位置に検出器を取付けるようにしてもよ
い。また、検出器は非接触式であれば、渦電流
式、光学式以外のものを使つても良いことは言う
までもない。
In the above embodiment, the roll gap detector was attached to the block, but a beam was installed between each axle box 5, 5 and between each axle box 6, 6 so that it could move in the axial direction together with the work rolls 1, 2. A detector may be attached to a desired position of this beam. It goes without saying that a detector other than the eddy current type or optical type may be used as long as it is a non-contact type detector.

[考案の効果] 以上説明したように本考案によれば、作業ロー
ルと一体に移動するようにした移動部材の圧延材
の幅端部近傍に位置する部分に、ロールギヤツプ
検出器をロールギヤツプに近接して取付けたの
で、圧延材の幅端部におけるロールギヤツプを直
接検出することができ、従つて作業ロールの撓み
等の影響を受けることなく、容易且つ正確にロー
ルギヤツプを検出することができる、と言う優れ
た効果を奏し得る。
[Effects of the invention] As explained above, according to the invention, a roll gap detector is placed close to the roll gap in the portion of the movable member that moves together with the work roll, which is located near the width end of the rolled material. Since the roll gap is installed at the width end of the rolled material, it is possible to directly detect the roll gap at the width end of the rolled material. Therefore, the roll gap can be easily and accurately detected without being affected by deflection of the work roll. It can have a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の圧延機の概略正面図、第2図
は第1図の側面図、第3図は第1図の−矢視
図、第4図は本考案の他の例を示す説明図、第5
図は第4図の−矢視図、第6図は従来の説明
図である。 1,2は作業ロール、5,6は軸箱、9,10
はブロツク、13,14は検出器、23は投光
器、24は受光器を示す。
Fig. 1 is a schematic front view of the rolling mill of the present invention, Fig. 2 is a side view of Fig. 1, Fig. 3 is a view taken from - arrow in Fig. 1, and Fig. 4 shows another example of the present invention. Explanatory diagram, 5th
The figure is a view taken along the - arrow in FIG. 4, and FIG. 6 is an explanatory diagram of the conventional device. 1 and 2 are work rolls, 5 and 6 are axle boxes, 9 and 10
1 is a block, 13 and 14 are detectors, 23 is a light projector, and 24 is a light receiver.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 作業ロールを軸線方向に移動し得るようにした
圧延機において、前記作業ロールと一体に軸線方
向移動し且つ圧延材の幅端部近傍に位置する部分
を有する移動部材を設けると共に、該移動部材の
圧延材の幅端部近傍部分に位置する部分にロール
ギヤツプ検出器を作業ロールのロールギヤツプと
近接させて取付けたことを特徴とする圧延機。
In a rolling mill in which a work roll can be moved in the axial direction, a moving member that moves in the axial direction integrally with the work roll and has a portion located near the width end of the rolled material is provided, and the moving member is moved in the axial direction. 1. A rolling mill characterized in that a roll gap detector is attached to a portion located near the width end of a rolled material in close proximity to a roll gap of a work roll.
JP1985007793U 1985-01-23 1985-01-23 Expired JPH0315208Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985007793U JPH0315208Y2 (en) 1985-01-23 1985-01-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985007793U JPH0315208Y2 (en) 1985-01-23 1985-01-23

Publications (2)

Publication Number Publication Date
JPS61127808U JPS61127808U (en) 1986-08-11
JPH0315208Y2 true JPH0315208Y2 (en) 1991-04-03

Family

ID=30486473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985007793U Expired JPH0315208Y2 (en) 1985-01-23 1985-01-23

Country Status (1)

Country Link
JP (1) JPH0315208Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078139A1 (en) * 2011-06-07 2012-12-13 Sms Siemag Ag Measuring device, rolling stand and method for detecting the height of a roll gap

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132009A (en) * 1981-02-09 1982-08-16 Nippon Kokan Kk <Nkk> Measuring method for roll gap of work roll of rolling mill
JPS57137012A (en) * 1981-02-16 1982-08-24 Nippon Kokan Kk <Nkk> Roll gap measuring device for working roll of rolling mill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132009A (en) * 1981-02-09 1982-08-16 Nippon Kokan Kk <Nkk> Measuring method for roll gap of work roll of rolling mill
JPS57137012A (en) * 1981-02-16 1982-08-24 Nippon Kokan Kk <Nkk> Roll gap measuring device for working roll of rolling mill

Also Published As

Publication number Publication date
JPS61127808U (en) 1986-08-11

Similar Documents

Publication Publication Date Title
RU2194585C2 (en) Method for compensating efforts or components of efforts caused by horizontal motion of rolls in rolling stands
US4320643A (en) Method and apparatus for correcting asymmetrical condition in rolling mill
US3938360A (en) Shape control method and system for a rolling mill
JPH0315208Y2 (en)
US20210001388A1 (en) Rolling mill and method of controlling the same
JP3055838B2 (en) Method of detecting and adjusting position of work roll of rolling mill and rolling mill
KR20010075183A (en) Combined regulating system for producing particular product characteristics in the rolling of austentic, mixed austentic and ferritic and ferritic steel qualities
JP2826167B2 (en) Method and apparatus for correcting plate shape asymmetry
CN109647902A (en) A kind of real-time method for obtaining gap between rolling mill bearing and memorial archway
JP7127446B2 (en) How to set the rolling mill
JP4461051B2 (en) Zero point adjustment method of lower horizontal roll of rolling mill
EP1909983A1 (en) Method for automatically zeroizing a universal edger stand
US20090031777A1 (en) Method for thickness regulation during a hot-rolling process
JPS5848247B2 (en) Steel plate continuous rolling equipment
JPS598446B2 (en) Type steel rolling machine
JPS6338008Y2 (en)
JP3135114B2 (en) Automatic correction method for the distance between dies in a press-type width reduction device
JPH0787938B2 (en) Rolling mill control device
JPS62192204A (en) Method for measuring roll crown
JPS5949083B2 (en) Steel plate continuous rolling equipment
JPS603908A (en) Method and equipment for correctingly controlling rolling reduction in rolling mill
JPH06328111A (en) Method for controlling leveling in hot rolling
JPS5848248B2 (en) Steel plate continuous rolling equipment
JP3640157B2 (en) How to set the roll reference position of universal rolling mill
JPS5852447B2 (en) Roll axial position control method