JPH03149057A - Bio-active complex implanting member - Google Patents

Bio-active complex implanting member

Info

Publication number
JPH03149057A
JPH03149057A JP1288537A JP28853789A JPH03149057A JP H03149057 A JPH03149057 A JP H03149057A JP 1288537 A JP1288537 A JP 1288537A JP 28853789 A JP28853789 A JP 28853789A JP H03149057 A JPH03149057 A JP H03149057A
Authority
JP
Japan
Prior art keywords
glass
living body
bioactive
intermediate layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288537A
Other languages
Japanese (ja)
Inventor
Tadashi Takahashi
忠 高橋
Takehiro Shibuya
武宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP1288537A priority Critical patent/JPH03149057A/en
Publication of JPH03149057A publication Critical patent/JPH03149057A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an intermediate layer which can be baked at a temperature of 900 deg.C or below and an apatite layer conforming to a living body in the early period by forming an intermediate layer made of boron silicate glass on a core body made of Ti or Ti alloy and an outermost layer made of living body activating crystallized glass and boron silicate glass. CONSTITUTION:A bio-active complex implanting member has an intermediate layer made of boron silicate group glass on a core body made of Ti or Ti alloy and has an outermost layer consisting of living body activating crystallized glass and boron silicate glass. Ti or Ti alloy possesses the superior erosion resistance in a living body, and the elution of metallic ions is suppressed, and workability is superior, and since the boron silicate glass which possesses high strength has a low softening point, coating on the core body at a baking temperature of 900 deg.C or below is permitted, and the deterioration of strength due to the phase transition of Ti or Ti alloy as core body is prevented, and the firm joint with the core body is permitted. Since the living body activating crystallized glass forms the apatite layer conforming with the living body in the early period and covers the outer surface, the superior living body activity can be obtained, and the joint with natural bones is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人工骨、人工関節、人工歯根などの生体代替材
料として有用な生体活性複合インプラント材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bioactive composite implant material useful as a biosubstitute material for artificial bones, artificial joints, artificial tooth roots, and the like.

〔従来の技術〕[Conventional technology]

従来より、生体代替材料としてステンレス、コバルト−
クロム合金、チタン合金等の金属の表面〜にアバ−タイ
ト等の生体活性物質をコーティングした複合インプラン
ト材が提案されているが、このような複合インプラント
材は芯体となる金属と生体活性物質のなじみが悪かった
り、両者の熱膨張係数に大きな開きがあって強固な接着
が期待できない等の問題がある。これを改良したものと
して、芯体である金属と生体活性物質との間に適切な熱
膨張係数を有し、且つ両者に対してなじみの良い中間層
を介在させた複合インプラント材も提案されている。し
かしこのような構造の複合インプラント材についても、
生体内において何らかのトラブルで体液と芯体が接触し
た場合、芯体として使用される金属が生体内に溶出し、
生体に悪影響を及ぼす恐れがある。このような問題を解
決するものとして特開昭GO−241447に、芯体と
して金属のかわりに生体内で溶出する恐れのないアルミ
ナやジルコニアを使った複合インプラント材が開示され
、また特開昭83−102762に、生体内耐蝕性に優
れたチタン合金を芯体とする複合インプラント材が開示
されている。
Traditionally, stainless steel and cobalt have been used as biological substitute materials.
Composite implant materials have been proposed in which the surface of metals such as chromium alloys and titanium alloys are coated with bioactive substances such as avartite. There are problems such as poor compatibility and a large difference in coefficient of thermal expansion between the two, making it difficult to expect strong adhesion. As an improvement on this, a composite implant material has been proposed in which an intermediate layer is interposed between the metal core and the bioactive substance, which has an appropriate coefficient of thermal expansion and is compatible with both. There is. However, regarding composite implant materials with this structure,
If the core body comes into contact with body fluid due to some trouble in the living body, the metal used as the core body will elute into the body,
There is a risk of adverse effects on living organisms. To solve these problems, JP-A-241447 discloses a composite implant material that uses alumina or zirconia as a core instead of metal, which is not likely to elute in vivo, and JP-A-83 No. 102,762 discloses a composite implant material having a core made of a titanium alloy with excellent in-vivo corrosion resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら特開昭Go−241447の複合インプラ
ント材のようにアルミナやジルコニアを芯体として用い
る場合、これらの芯体には強度は高いが靭性が低く傷に
弱いという問題がある。加えて硬度が高いために加工性
が悪く、複雑な形状が得難い。またこの複合インプラン
ト材に用いられる生体活性ガラスはA1.03を20〜
40重量%含有するため、生体内で生体活性ガラスの表
面からAIイオンが溶出し、生体活性を阻害するという
問題が生じる。
However, when alumina or zirconia is used as a core as in the composite implant material of JP-A-241447, there is a problem that these cores have high strength but low toughness and are susceptible to scratches. In addition, because of its high hardness, it has poor workability and is difficult to form into complex shapes. In addition, the bioactive glass used in this composite implant material has an A1.03 of 20~
Since the content is 40% by weight, a problem arises in that AI ions are eluted from the surface of the bioactive glass in vivo, inhibiting bioactivity.

ところでチタンあるいはチタン合金は、その変態点90
0〜980℃で低温相から高温相への相転移を起こし、
その結果強度が劣化する。しかして芯体にチタンあるい
はチタン合金を用いる特開昭63−102762に開示
の複合インプラント材の場合、中間層を芯体にコーティ
ングする焼付温度が高温であるために、芯体であるチタ
ンあるいはチタン合金に強度劣化を生じる恐れがある。
By the way, titanium or titanium alloy has a transformation point of 90
A phase transition occurs from a low temperature phase to a high temperature phase at 0 to 980°C,
As a result, the strength deteriorates. However, in the case of the composite implant material disclosed in JP-A-63-102762 that uses titanium or a titanium alloy for the core, the baking temperature for coating the intermediate layer on the core is high, so the core is made of titanium or titanium. There is a risk of strength deterioration in the alloy.

またアパタイトは自然骨の重要な無機構成成分であると
ともに生体活性物質として知られており、先記特開昭6
3−1027G2の複合インプラント材ではアパタイト
を最外層に分散させて用いている。しかしながら人工骨
等の生体代替材料が自然骨と速やかに結合する為には、
その表面にCa2+イオンと体液中に存在するHP0.
2−イオンからなる生体類似のアパタイト層が早期に形
成されることが必要であるが、アパタイトは生体内では
Ca2+イオンを溶出せず、したがって生体類似のアパ
タイト層を形成するのに長期間を必要とするという問題
がある。
In addition, apatite is an important inorganic component of natural bone and is known as a bioactive substance.
3-1027G2 composite implant material uses apatite dispersed in the outermost layer. However, in order for biosubstitute materials such as artificial bone to bond quickly with natural bone,
Ca2+ ions on its surface and HP0.
It is necessary to form a bio-similar apatite layer consisting of 2- ions at an early stage, but apatite does not elute Ca2+ ions in vivo, so it takes a long time to form a bio-similar apatite layer. There is a problem that.

本発明の目的は、靭性が高く加工性のよいチタンあるい
はチタレ合金を芯体とし、チタンあるいはチタン合金の
変態点以下、すなわち900℃以下の 温度で焼き付け
が可能な中間層及び生体類似のアパタイト層を早期に形
成することが可能な最外層を有する生体活性複合インプ
ラント材を提供するものである。
The purpose of the present invention is to create an intermediate layer and a biosimilar apatite layer that have a core made of titanium or titanium alloy with high toughness and good workability, and can be baked at a temperature below the transformation point of titanium or titanium alloy, that is, below 900°C. The purpose of the present invention is to provide a bioactive composite implant material having an outermost layer that can be formed at an early stage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の生体活性複合インプラント材は、チタンあるい
はチタン合金からなる芯体上にホウケイ酸系ガ、ラスか
らなる中間層を有し、該中間層上に、生体活性結晶化ガ
ラスと該ホウケイ酸系ガラスからなる最外層を有するこ
とを特徴とする特vた本発明において使用するホウケイ
酸系ガラスは重量%で、StO□60〜70%、820
310−15χ、At203 2=lO% 、h L1
20 2.3−8% 、Mg20  t−sχ 、K2
O1−8%、L12O+Na2O+K2O10”15%
、ZrO□1”8%からなることを特徴とし、生体活性
結晶化ガラスは重量%でSi0222〜50%、P2O
3B=30%、CaO2G=53%、Mg01”IGL
 A120a O−3L F20.1=2%、8203
0”5% カラーCる結晶化ガラス、もしくは少なくと
も90%以上がSi0□40−GO5G、Ca030−
45%、MgOl−17%からなる結晶化ガラスのいず
れかであることを特徴とする特vらに最外層の混合割合
は、生体活性結晶化ガラス50−90重量%とホウケイ
酸系ガラス10〜50重量%からなることを特徴とする
特 *作用〕 本発明の生体活性複合インプラント材の芯体に使用する
チタンあるいはチタン合金は、生体内耐蝕性に優れてお
り、他の金属のように金属イオンを溶出することがなく
、また生体とのなじみもよい。さらに金属であるために
加工性がよく、複雑形状の成形も容易であり、かつ高い
強度を有する。
The bioactive composite implant material of the present invention has an intermediate layer made of borosilicate glass or lath on a core made of titanium or titanium alloy, and on the intermediate layer, bioactive crystallized glass and the borosilicate glass. The borosilicate glass used in the present invention, which is characterized by having an outermost layer made of glass, has a StO□ of 60 to 70%, 820% by weight.
310-15χ, At203 2=lO%, h L1
20 2.3-8%, Mg20 t-sχ, K2
O1-8%, L12O+Na2O+K2O10"15%
, ZrO□1”8%, the bioactive crystallized glass is composed of 22-50% Si0222-50% by weight, P2O
3B=30%, CaO2G=53%, Mg01”IGL
A120a O-3L F20.1=2%, 8203
0"5% Color C crystallized glass, or at least 90% Si0□40-GO5G, Ca030-
The mixing ratio of the outermost layer is 50-90% by weight of bioactive crystallized glass and 10-10% by weight of borosilicate glass. 50% by weight] The titanium or titanium alloy used for the core of the bioactive composite implant material of the present invention has excellent in vivo corrosion resistance, and unlike other metals, titanium or titanium alloy is used for the core of the bioactive composite implant material. It does not elute ions and is compatible with living organisms. Furthermore, since it is a metal, it has good workability, can be easily molded into complex shapes, and has high strength.

本発明の生体活性複合インプラント材の中間層に用いる
ホウケイ酸系ガラスは、軟化点が低いために300℃以
下の焼付温度で芯体にコーティングすることが可能であ
り、その結果芯体であるチタンあるいはチタン合金の相
転移による強度劣化を防ぐことができる。またこのホウ
ケイ酸系ガラスは熱膨張係数が70〜80X 10−/
 ”Cと、チタンあるいはチタン合金のそれ(88〜9
8% 1G−″77℃)よりやや低い値を有することか
ら、温度変化によりクラックが入ることなく、芯体と強
固に結合する。
Since the borosilicate glass used for the intermediate layer of the bioactive composite implant material of the present invention has a low softening point, it is possible to coat the core body at a baking temperature of 300°C or less, and as a result, the titanium core body can be coated. Alternatively, strength deterioration due to phase transition of titanium alloy can be prevented. In addition, this borosilicate glass has a coefficient of thermal expansion of 70 to 80X 10-/
"C and that of titanium or titanium alloy (88-9
Since it has a value slightly lower than 8% 1G-''77°C), it is firmly bonded to the core without cracking due to temperature changes.

以下に本発明のホウケイ酸系ガラスの組成を先記のよう
に限定した理由を示す。
The reason why the composition of the borosilicate glass of the present invention is limited as described above will be explained below.

Si02はガラス網目形成成分であると同時に、化学耐
久性を向上させる成分であり、その含有量は80〜70
%である。Si02が70%より多いと軟化点が高くな
り、60%より少ないと化学耐久性が低下する。
Si02 is a component that forms a glass network and at the same time is a component that improves chemical durability, and its content is between 80 and 70%.
%. If Si02 is more than 70%, the softening point will be high, and if it is less than 60%, chemical durability will be decreased.

B203はガラス網目形成成分であると同時に軟化点を
下げる働きをし、その含有量は10〜15%である。B
、03が15%より多いど化学耐久性が低下−し、10
%より少ないと軟化点が高くなる。
B203 serves as a glass network forming component and at the same time lowers the softening point, and its content is 10 to 15%. B
, 03 is more than 15%, the chemical durability decreases, and 10
If it is less than %, the softening point will be high.

at、O3は化学耐久性を向上させる成分であり、その
含有量は2〜10%である。Al2O3が10%より多
いと軟化点が高くなり、2%より少ないと化学耐久性が
低下する。
at and O3 are components that improve chemical durability, and their content is 2 to 10%. If Al2O3 is more than 10%, the softening point will be high, and if it is less than 2%, chemical durability will be decreased.

Li、0は軟化点を下げる成分であり、その含有量は2
.3〜8駕である。L120が8%より多いと化学耐久
性が低下し、2.3χより少ないと軟化点が高くなる。
Li,0 is a component that lowers the softening point, and its content is 2
.. It is 3 to 8 pieces. When L120 is more than 8%, the chemical durability decreases, and when it is less than 2.3χ, the softening point becomes high.

11a2G、に20はガラスの溶融を促進する成分であ
り、その含有量はそれぞれ1〜8%である。Na2Oと
に、0がそれぞれ8%より多くなると化学耐久性が低下
し、それぞれ1%より少ないとガラスの溶融性が悪くな
る。
11a2G and 20 are components that promote glass melting, and their content is 1 to 8%, respectively. If Na2O and 0 are each more than 8%, the chemical durability will be reduced, and if each is less than 1%, the meltability of the glass will be poor.

またLi、0とNa20とに、Oはガラスに適切な熱膨
張係数を与えるために合量で10−15%含有する。即
ちこれらの成分が合量で15%より多いと熱膨張係数が
高くなりすぎ、lO%より少ないと熱膨張係数が低くな
りすぎるのである。
In addition, Li, 0, Na20, and O are contained in a total amount of 10-15% in order to give an appropriate thermal expansion coefficient to the glass. That is, if the total amount of these components is more than 15%, the thermal expansion coefficient becomes too high, and if it is less than 10%, the thermal expansion coefficient becomes too low.

本発明ではLi、0、Na201に20を合量で10−
15%としているが、前述の特開昭83−102782
ではL120、Na20、K2O等のアルカリ成分を合
量で■5〜20%とし、これらアルカリ成分の含量が1
5%より少ないとガラスとしての溶融温度が高くなり、
その結果中間層をコーティングする焼付温度が高くなる
としている。しかしながら本発明ではLi、0の含有量
を2゜3%以上とすると六によって軟化点を低くシ、そ
れゆえ低い温度での中間層の焼き付けを可能にしている
In the present invention, Li, 0, Na201 and 20 are added in a total amount of 10-
Although it is set at 15%, the above-mentioned Japanese Patent Application Laid-Open No. 83-102782
In this case, the total amount of alkali components such as L120, Na20, K2O, etc. is 5 to 20%, and the content of these alkali components is 1.
If it is less than 5%, the melting temperature of the glass will be high,
As a result, the baking temperature for coating the intermediate layer becomes higher. However, in the present invention, when the content of Li,0 is 2.3% or more, the softening point is lowered by 6, thereby making it possible to bake the intermediate layer at a low temperature.

Zr02は化学耐久性を向上させる成分であり、その含
有量は1〜8%である。ZrO□が8%より多いとガラ
スの溶融性が悪くなり、1%より少ないと化学耐久性が
低下する。
Zr02 is a component that improves chemical durability, and its content is 1 to 8%. If ZrO□ is more than 8%, the meltability of the glass will deteriorate, and if it is less than 1%, chemical durability will be reduced.

また本発明においては上記成分以外にも化学耐久性を良
くするためにCaO、NK Oをそれぞれ5%まで、ま
た軟化点を下げるためにF2を2%まで添加することが
可能である。
In addition to the above-mentioned components, in the present invention, CaO and NKO can be added up to 5% each to improve chemical durability, and F2 can be added up to 2% to lower the softening point.

本発明の生体活性複合インプラント材の最外層は、粒子
杖の生体活性結晶化ガラスを分散して含む。該生体活性
結晶化ガラスはアパタイト(Ca、。
The outermost layer of the bioactive composite implant material of the present invention comprises dispersed bioactive crystallized glass in the form of particulate matter. The bioactive glass ceramic is apatite (Ca).

(F04) aO) 、ウォラストナイト(CaO・S
10□)、ディオプサイド(CaO・資gO・2SiO
□)等の結晶を析出すルS10222”50%、P20
a 8”30%、Ca020”53% 、MgOlケI
G% 、 AI20. O−9X、F20.1−2XJ
203G−5%からなる結晶化ガラスや、少なくとも9
0%以上がS10240〜[ioX、Ca030〜45
%、MgOl−17%からなり、ウォラストナイトを主
結晶として析出する結晶化ガラスを用いることが好まし
い。これらの生体活性結晶化ガラスは、ガラスマトリッ
クスやウォラストナイト結晶中からCa”″イオンが溶
出し、これが体液中のI[PO,”−イオンとともに生
体類似のアパタイト層を早期に形成して外表面を覆う結
果、良好な生体活性が得られ、自然骨との結合が容易に
なる。
(F04) aO), wollastonite (CaO・S
10□), diopside (CaO, SiO, 2SiO
□) to precipitate crystals such as S10222”50%, P20
a 8”30%, Ca020”53%, MgOlKe I
G%, AI20. O-9X, F20.1-2XJ
Crystallized glass consisting of 203G-5% or at least 9
0% or more is S10240~[ioX, Ca030~45
%, MgOl-17%, and preferably uses crystallized glass in which wollastonite is precipitated as the main crystal. In these bioactive crystallized glasses, Ca"" ions are eluted from the glass matrix and wollastonite crystals, and these, together with I[PO,"- ions in body fluids, quickly form an apatite layer similar to that of a biological body, and are exuded. The surface coverage results in good bioactivity and facilitates integration with natural bone.

また本発明の生体活性複合インプラント材は、最外層の
生体活性結晶化ガラスの含有量を重量%で5G−90%
と限定しているが、その理由は該生体活性結晶化ガラス
が90%より多いと中間層に焼き付けることが困難にな
り、50%より少ないと良好な生体活性が得られず、接
合強度が不足することによる。
Furthermore, the bioactive composite implant material of the present invention has a content of bioactive crystallized glass in the outermost layer of 5G-90% by weight.
The reason for this is that if the bioactive crystallized glass is more than 90%, it will be difficult to bake into the intermediate layer, and if it is less than 50%, good bioactivity will not be obtained and the bonding strength will be insufficient. By doing.

本発明の生体活性複合インプラント材を製造するには、
まず芯体となるチタンあるいはチタン合金の表面にサン
ドブラスト、洗浄、脱脂等の処理を行った後、中間層と
して用いるホウケイ酸系ガラスを粉末にして塗布し、焼
成する。次に最外層として、該ホウケイ酸系ガラス粉末
と、粒子状にした生体活性結晶化ガラスを適当な割合で
混合し、中間層上に塗布して焼成すればよい。なお最外
層の表面にエッチングや研磨等を施すことにより、より
多くの生体活性結晶化ガラスの粒子を露出させると、さ
らに良好な生体活性を得ることができる。
To produce the bioactive composite implant material of the present invention,
First, the surface of the titanium or titanium alloy that serves as the core is subjected to treatments such as sandblasting, cleaning, and degreasing, and then powdered borosilicate glass to be used as the intermediate layer is applied and fired. Next, as the outermost layer, the borosilicate glass powder and particulate bioactive crystallized glass may be mixed in an appropriate ratio, coated on the intermediate layer, and fired. Note that even better bioactivity can be obtained by exposing more bioactive crystallized glass particles by etching or polishing the surface of the outermost layer.

〔実施例〕〔Example〕

以下実施例に基づいて本発明の生体活性複合インプラン
ト材を詳細に説明する。
The bioactive composite implant material of the present invention will be described in detail below based on Examples.

表1は本発明の中間層に用いるホウケイ酸系ガラスの実
施例(試料No1〜3)と比較例(試料N。
Table 1 shows Examples (Samples Nos. 1 to 3) and Comparative Examples (Sample N) of borosilicate glasses used in the intermediate layer of the present invention.

4)、表2は本発明の最外層に粒子として含まれる生体
活性結晶化ガラスの実施例(試料No1〜3)をそれぞ
れ示すものである。なお表中の各成分の含有量は重量%
で示される。
4), Table 2 shows examples (sample Nos. 1 to 3) of bioactive crystallized glass contained as particles in the outermost layer of the present invention. The content of each component in the table is weight%.
It is indicated by.

表  1 1  Ca8 1 44.7 1 35.8 1 44
.0 11  Mg0 14.8 1 11−1 13
.5 1中間層に用いるホウケイ酸系ガラスの実施例(
試料No1〜3)及び比較例(試料N04)は次のよう
に調製した。
Table 1 1 Ca8 1 44.7 1 35.8 1 44
.. 0 11 Mg0 14.8 1 11-1 13
.. 5 1 Example of borosilicate glass used for intermediate layer (
Samples Nos. 1 to 3) and a comparative example (sample No. 04) were prepared as follows.

表1の組成になるように二酸化珪素、ホウ酸、酸化アル
ミニウム、炭酸リチウム等のガラス原料を秤量混合し、
白金坩堝にいれて1300〜1600度で3時間溶融す
る。この溶融ガラスを水砕やロール成形等で粉砕しやす
いように成形した後、ボールミルにて粉砕し、200メ
ツシュのふるいで分級し−た。このようにして得られた
実施例のホウケイ酸系ガラスは72.9〜7B、2X 
10−/ Cの熱膨張係数を示し、また比較例のそれは
70X 10−/ Cであった。
Glass raw materials such as silicon dioxide, boric acid, aluminum oxide, lithium carbonate, etc. are weighed and mixed to have the composition shown in Table 1,
Place in a platinum crucible and melt at 1,300 to 1,600 degrees for 3 hours. This molten glass was molded to be easily pulverized by water pulverization, roll molding, etc., then pulverized in a ball mill, and classified using a 200-mesh sieve. The borosilicate glass of the example thus obtained was 72.9 to 7B, 2X
It exhibited a thermal expansion coefficient of 10-/C, and that of the comparative example was 70X 10-/C.

最外層に分散して含まれる生体活性結晶化ガラスの実施
例(試料No1〜3)は次のように調製した。
Examples of bioactive crystallized glass dispersed and contained in the outermost layer (Samples Nos. 1 to 3) were prepared as follows.

表2に示すような組成となるようにガラス原料を調合し
、白金坩堝にいれて1400〜IGOO度で3時間溶融
した。この溶融ガラスを水砕やロール成形等で成形しボ
ールミルにて粉砕した。粉砕したガラスを200メツシ
ュのふるいで分級したのち、電気炉中で1〜時間に30
〜300℃の割合で昇温し1000〜1200℃で焼成
した。これをボールミルで粉砕し145メツシュのふる
いで分級した。
Glass raw materials were prepared to have the composition shown in Table 2, placed in a platinum crucible, and melted at 1400 to IGOO degrees for 3 hours. This molten glass was molded by water pulverization, roll molding, etc., and pulverized in a ball mill. After classifying the crushed glass with a 200-mesh sieve, it is heated in an electric furnace at 30°C per hour.
The temperature was raised at a rate of ~300°C and firing was performed at 1000~1200°C. This was ground with a ball mill and classified with a 145 mesh sieve.

また比較例の生体活性物質にはアパタイトを用い、次の
方法で製造した。湿式法により生成したアパタイトを乾
燥後800℃で仮焼し、1200℃で焼成した後、粉砕
し200メツシュのふるいで分級した。
In addition, apatite was used as a bioactive substance in a comparative example, and was produced by the following method. After drying, the apatite produced by the wet method was calcined at 800°C, fired at 1200°C, and then crushed and classified using a 200-mesh sieve.

このようにして得られた試料を用いて構成した生体活性
複合インプラント材の実施例(試料No1〜4)および
比較例(試料No5)を表3に示す。
Table 3 shows examples (sample Nos. 1 to 4) and comparative examples (sample No. 5) of bioactive composite implant materials constructed using the samples obtained in this manner.

以下余白   表  3 1  芯     体  l     rt−eal−
4y      1表3の生体活性複合インプラント材
の実施例(試料No1〜4)及び比較例(試料No5)
は次のようにして製造した。
Margin below Table 3 1 Core body l rt-eal-
4y 1 Examples (Samples No. 1 to 4) and Comparative Example (Sample No. 5) of bioactive composite implant materials in Table 3
was manufactured as follows.

15X IOX 1 mm+17)大きさノTi−GA
I−4V合金板ニ30〜150番のアランダムをサンド
ブラストし、洗浄及び脱脂を行った。このチタン合金板
に表1のホウケイ酸系ガラス粉末を塗布し、表3の焼付
温度で焼成して中間層を形成した。この中間層上に該ホ
ウケイ酸系ガラスと生体活性物質の混合粉末を塗付し、
表3の焼付温度で焼成して製造した。
15X IOX 1 mm+17) Size Ti-GA
I-4V alloy plate No. 30 to No. 150 Alundum was sandblasted, washed, and degreased. This titanium alloy plate was coated with the borosilicate glass powder shown in Table 1, and fired at the baking temperature shown in Table 3 to form an intermediate layer. Applying a mixed powder of the borosilicate glass and bioactive substance on this intermediate layer,
It was manufactured by firing at the firing temperature shown in Table 3.

表1から明らかなように、実施例のホウケイ酸系ガラス
の焼付温度ぽいずれも890℃以下であるのに対し、比
較例のそれは9′50℃であった。また実施例の引き剥
がし荷重は5.0−8−4Kgと高(、すべての実施例
で破壊は骨内部より起こった。さらに最外層の生体活性
結晶化ガラスの含有量が70%である試料1o3の引き
剥がし荷重は5.9Kgであり、最外層のアパタイト含
有量が同じ<Texである比較例(試料1o5)のそれ
が5.0Kgであるのに対して−高い値を示した。
As is clear from Table 1, the baking temperatures of the borosilicate glasses of the Examples were all 890°C or less, whereas those of the Comparative Examples were 9'50°C. In addition, the peeling load of the examples was as high as 5.0-8-4 kg (the fracture occurred from inside the bone in all the examples. Furthermore, the sample had a bioactive crystallized glass content of 70% in the outermost layer). The peeling load of 1o3 was 5.9Kg, which was higher than that of the comparative example (sample 1o5) in which the apatite content of the outermost layer was the same <Tex, which was 5.0Kg.

これらの事実は本発明の生体活性複合インプラント材が
、SOO℃以下の焼付温度でコーティングすることがで
き、また優れた生体活性を有することを示している。
These facts indicate that the bioactive composite implant material of the present invention can be coated at a baking temperature of SOO° C. or lower and has excellent bioactivity.

なお表1中の熱膨張係数は周知のディラドメーター(D
llato■eter)により測定された熱膨張曲線か
ら算出した。また表3中の引き剥がし荷重は次のような
試験を行って測定した。試料表面を10−00番の耐水
研磨紙で研磨し、洗浄滅菌したものを兎の大腿骨に埋入
し、8週間後に取り出して引き剥がし試験を行った。測
定方法は兎の大腿骨から試料を埋大した部位をとり出し
て固定したのち、試料を骨から引き剥がすのに要した強
度を測定しこれを引き剥がし荷重とした。
The coefficient of thermal expansion in Table 1 is measured using a well-known diradometer (D
It was calculated from the thermal expansion curve measured by llato■eter). Moreover, the peeling load in Table 3 was measured by conducting the following test. The surface of the sample was polished with No. 10-00 water-resistant abrasive paper, washed and sterilized, and then implanted into the femur of a rabbit. Eight weeks later, it was removed and a peel test was performed. The measurement method was to remove the part of the rabbit's femur where the sample was embedded and fix it, then measure the strength required to peel the sample from the bone, and use this as the peeling load.

〔効果〕〔effect〕

本発明の生体活性複合インプラント材は、中間層を30
0℃以下の焼付温度でコーティングすることが可能であ
り、それゆえ芯材であるチタンあるいはチタン合金の強
度劣化が生じず、また最外層に生体活性結晶化ガラスの
粒子を分散して含むことで、表面に生体類似のアパタイ
ト層を早期に形成する結果、速やかに自然骨と結合する
ことが可能であるために、人工骨、人工関節、人工歯根
等の生体代替材料として有用である。
The bioactive composite implant material of the present invention has an intermediate layer of 30%
It is possible to coat at a baking temperature of 0℃ or less, so there is no deterioration in the strength of the core titanium or titanium alloy, and the outermost layer contains dispersed particles of bioactive crystallized glass. As a result of the early formation of a biosimilar apatite layer on the surface, it is possible to quickly integrate with natural bone, making it useful as a biosubstitute material for artificial bones, artificial joints, artificial tooth roots, etc.

特許出願人  日本電気硝子株式会社 代表者   岸 田 清 作Patent applicant: Nippon Electric Glass Co., Ltd. Representative: Kiyoshi Kishida

Claims (4)

【特許請求の範囲】[Claims] (1)チタンあるいはチタン合金からなる芯体上にホウ
ケイ酸系ガラスからなる中間層を有し、該中間層上に生
体活性結晶化ガラスと該ホウケイ酸系ガラスとからなる
最外層を有することを特徴とする生体活性複合インプラ
ント材。
(1) Having an intermediate layer made of borosilicate glass on a core made of titanium or a titanium alloy, and having an outermost layer made of bioactive crystallized glass and the borosilicate glass on the middle layer. Characteristic bioactive composite implant material.
(2)ホウケイ酸系ガラスは重量%で、SiO_260
〜70%、B_2O_310〜15%、Al_2O_3
2〜10%、Li_2O2.3〜8%、Na_2O1〜
8%、K_2O1〜8%、Li_2O+Na_2O+K
_2O10〜15%、ZrO_21〜8%からなること
を特徴とする特許請求の範囲第1項記載の生体活性複合
インプラント材。
(2) Borosilicate glass is SiO_260 in weight%
~70%, B_2O_3 10~15%, Al_2O_3
2-10%, Li_2O2.3-8%, Na_2O1-
8%, K_2O1-8%, Li_2O+Na_2O+K
The bioactive composite implant material according to claim 1, characterized in that it consists of 10 to 15% of _2O and 21 to 8% of ZrO.
(3)生体活性結晶化ガラスは重量%で、SiO_22
2〜50%、P_2O_58〜30%、CaO20〜5
3%、MgO1〜16%、Al_2O_30〜9%、F
_20.1〜2%、B_2O_30〜5%からなる結晶
化ガラス、もしくは少なくとも30%以上がSiO_2
40〜60%、CaO30〜45%、MgO1〜17%
からなる結晶化ガラスのいずれかであることを特徴とす
る特許請求の範囲第1項記載の生体活性複合インプラン
ト材。
(3) Bioactive crystallized glass is SiO_22 in weight%
2-50%, P_2O_58-30%, CaO20-5
3%, MgO1-16%, Al_2O_30-9%, F
Crystallized glass consisting of _20.1-2%, B_2O_30-5%, or at least 30% or more is SiO_2
40-60%, CaO 30-45%, MgO 1-17%
The bioactive composite implant material according to claim 1, characterized in that it is any one of crystallized glasses consisting of.
(4)最外層は、生体活性結晶化ガラス50〜90重量
%とホウケイ酸系ガラス10〜50重量%からなること
を特徴とする特許請求の範囲第1項記載の生体活性複合
インプラント材。
(4) The bioactive composite implant material according to claim 1, wherein the outermost layer consists of 50 to 90% by weight of bioactive crystallized glass and 10 to 50% by weight of borosilicate glass.
JP1288537A 1989-11-06 1989-11-06 Bio-active complex implanting member Pending JPH03149057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288537A JPH03149057A (en) 1989-11-06 1989-11-06 Bio-active complex implanting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288537A JPH03149057A (en) 1989-11-06 1989-11-06 Bio-active complex implanting member

Publications (1)

Publication Number Publication Date
JPH03149057A true JPH03149057A (en) 1991-06-25

Family

ID=17731523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288537A Pending JPH03149057A (en) 1989-11-06 1989-11-06 Bio-active complex implanting member

Country Status (1)

Country Link
JP (1) JPH03149057A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102762A (en) * 1986-10-20 1988-05-07 丸野 重雄 Living body compatible composite and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102762A (en) * 1986-10-20 1988-05-07 丸野 重雄 Living body compatible composite and its production

Similar Documents

Publication Publication Date Title
JP5049466B2 (en) Apatite glass ceramic based on siliceous oxyapatite
Kasuga et al. Bioactive calcium phosphate invert glass-ceramic coating on β-type Ti–29Nb–13Ta–4.6 Zr alloy
JP2983962B2 (en) Translucent apatite glass ceramic
Oliveira et al. Surface modifications of a glass and a glass-ceramic of the MgO-3CaO· P2O5-SiO2 system in a simulated body fluid
WO2019202333A1 (en) Glass powder composition, method for forming a glass-ceramic material and glass-ceramic material obtained therefrom
Kasuga et al. Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy
JPS6351985B2 (en)
CA2239869A1 (en) Chemically stable translucent apatite glass ceramic
JPH0432009B2 (en)
JP3244201B2 (en) Glass frit composition
US5198393A (en) Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance
JPH01212248A (en) Glaze composition for artificial tooth
Sanyal et al. In vitro evaluation of bioactive glass ceramic coating for application on Ti6Al4V based biomedical implants
JPH03149057A (en) Bio-active complex implanting member
CA2492744C (en) Water-resistant porcelain enamel coatings and method of manufacturing same
CA1239654A (en) Glazes for glass-ceramic articles
JP2953066B2 (en) Bioactive composite implant material
Fujino et al. Fabrication and characterization of bioactive glass coatings on Co-Cr implant alloys
JPS62187142A (en) Composite material for organism
US5264287A (en) Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance
JPS63242944A (en) Production of biomaterial
Pazo et al. Bioactive Coatings On Ti And Ti-6A1-4V Alloys For Medical Applications
JPH01145347A (en) Aluminum enamel article having high brightness
JPS63156036A (en) Pottery material composition to be glazed on titanium or titanium alloy and its preparation
JPH02157139A (en) Glass composition for reinforcement