JPH03146644A - Steel plate for magnetic shielding - Google Patents

Steel plate for magnetic shielding

Info

Publication number
JPH03146644A
JPH03146644A JP28383489A JP28383489A JPH03146644A JP H03146644 A JPH03146644 A JP H03146644A JP 28383489 A JP28383489 A JP 28383489A JP 28383489 A JP28383489 A JP 28383489A JP H03146644 A JPH03146644 A JP H03146644A
Authority
JP
Japan
Prior art keywords
magnetic properties
upper limit
formability
deteriorated
content exceeds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28383489A
Other languages
Japanese (ja)
Inventor
Teruo Kaneko
金子 輝雄
Takao Ko
高 隆夫
Susumu Tatsufuku
龍福 進
Kenichi Sato
憲一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Sumitomo Metal Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28383489A priority Critical patent/JPH03146644A/en
Publication of JPH03146644A publication Critical patent/JPH03146644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a steel plate in which magnetic properties are combined with formability, etc., as a shielding material for cathode-ray tube in particular by specifying a compositional ranges. CONSTITUTION:This steel plate has a composition which consists of, by weight, <=0.005% C, <=0.25% Si, <=0.50% Mn, <=0.1% P, <=0.01% S, <=0.02% Al, <=0.005% N, <=0.005% B, and the balance Fe and in which inequalities I, II are satisfied. Respective contents of C, S, and N are limited because they cause deterioration in magnetic properties. Although P has a function of performing strength regulation, etc., cold rollability is deteriorated if its content exceeds the upper limit. Si is added for deoxidizing and in crease of electric resistance, but blackening treatability is deteriorated if its content exceeds the upper limit. Although Mn has a function similar to that of Si and prevents the occurrence of hot brittleness due to S, formability and magnetic properties are deteriorated if its content exceeds the upper limit. Al acts as a deoxidizing agent, but magnetic properties are deteriorated if its content exceeds the upper limit. Although B has functions of preventing deterioration in formability and increasing strength in a spot weld zone, these effects are saturated and magnetic properties are deteriorated if its content exceeds the upper limit. Moreover, when the value of the inequality I is lower than the lower limit, deoxidation and weldability become unstable, and, on the other hand, formability and magnetic properties are deteriorated if it exceeds the upper limit. Further, it is necessary to regulate the value of the inequality II to a value of the lower limit or above in order to fix N perfectly, and the effect is saturated if it exceeds the upper limit.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性、成形加工性、スポット溶接性、
および黒化処理性に優れた磁気シールド用鋼板であって
、特にカラーテレビ受像機などのCRTデイスプレー装
置に組み込まれる磁気シールド材あるいはそれらを保持
するための磁気シールド性を兼ね備えたフレーム材に適
する鋼板に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention provides magnetic properties, moldability, spot weldability,
and steel sheets for magnetic shielding with excellent blackening treatment properties, which are particularly suitable for magnetic shielding materials incorporated in CRT display devices such as color television receivers, or frame materials with magnetic shielding properties for holding them. Regarding steel plates.

(従来の技術) CRT (Cathode Ray Tube、いわゆ
るブラウン管)では、外部磁気の影響により像や色調が
ずれるのを防ぐため、一般に磁気シールド材が用いられ
る。磁気シールドの原理は、空間を強磁性体で囲んで外
部磁気をそれに沿って流し、シールドした空間内部への
磁気の影響を弱めようというものである。シールド材の
透磁率が高く肉厚が厚い程磁気は流れ易いが、材料の節
約と軽量化の観点から高i3磁率の材料が強く望まれる
ことになる。またシールド材自身が磁気を帯びるとやは
り電子ビームを乱すなどの悪影響を与えるので消磁コイ
ルで残留磁気を消去するゐく、この場合、シールド材の
保磁力が小さいことが必要となる。シールド材やシャド
ウマスクを保持するためのフレーム材に対しても、高i
in率や保磁力が小さいという磁気特性が要求される。
(Prior Art) In a CRT (Cathode Ray Tube, so-called cathode ray tube), a magnetic shielding material is generally used to prevent images and color tones from shifting due to the influence of external magnetism. The principle of magnetic shielding is to surround a space with a ferromagnetic material and allow external magnetism to flow along it, thereby weakening the influence of magnetism on the inside of the shielded space. The higher the magnetic permeability and the thicker the shielding material, the easier the magnetic flux will be, but from the viewpoint of material saving and weight reduction, materials with high i3 magnetic permeability are strongly desired. Furthermore, if the shielding material itself becomes magnetic, it will have an adverse effect such as disturbing the electron beam, so the residual magnetism must be erased with a degaussing coil, and in this case, the coercive force of the shielding material must be small. High i
Magnetic properties such as low in ratio and low coercive force are required.

一方、シールド材やフレーム材は、所定の形状に成形加
工した後、シャドウマスク等とともにスポット溶接で一
体構造とし、CRTに組み込まれる、このため成形加工
性やスポット溶接性も重要な材料特性として要求される
。更に表面からの熱放射を良くするために、薄いマグネ
タイト被膜を形成させる黒化処理が施されるが、その被
膜の密着性もCRTの性能を支配する要素となる。
On the other hand, shield materials and frame materials are molded into a predetermined shape, then spot-welded together with shadow masks, etc., and then incorporated into the CRT.For this reason, moldability and spot-weldability are also required as important material properties. be done. Furthermore, in order to improve heat radiation from the surface, a blackening treatment is performed to form a thin magnetite film, and the adhesion of that film is also a factor that governs the performance of the CRT.

鉄は安価で優れた強磁性体であるが、普通の鉄板では磁
気特性が不十分なため満足な磁気シールド性が得られな
い、CRTで地6iI気のような弱磁場をシールドする
には、0.350eでの初透磁率μが1000 G /
 Oe以上であることが望ましいとされるのに対して、
普通の鉄板では200〜300G10eのレベルしかな
い。また消磁効率を良くするために、保磁力Hcは10
0eの磁場でfoe以下であることを要望されるが、普
通の鉄板では30e程度と高い、これらの磁気特性を改
良したものに珪素鋼板があるが、磁気特性の良い高級な
珪素鋼板はど多量の合金元素を添加するため飽和磁束密
度が低下し、強磁場に対するシールド性が劣る。
Iron is an inexpensive and excellent ferromagnetic material, but ordinary iron plates do not have sufficient magnetic properties to provide satisfactory magnetic shielding.To shield weak magnetic fields such as the earth's 6iI in a CRT, The initial permeability μ at 0.350e is 1000 G/
While it is said that it is desirable to have Oe or more,
Ordinary iron plates only have a level of 200-300G10e. In addition, in order to improve the demagnetization efficiency, the coercive force Hc is 10
It is required that the FOE be less than FOE in a magnetic field of 0e, but ordinary iron plates have a high value of about 30e. Silicon steel sheets have improved magnetic properties, but high-grade silicon steel plates with good magnetic properties are not available in large quantities. Because of the addition of alloying elements, the saturation magnetic flux density decreases, resulting in poor shielding performance against strong magnetic fields.

また珪素鋼板は通常トランスやモータの鉄心材料として
打ち抜き加工後積層して用いられるもので、成形加工性
や黒化処理性については何の配慮も払われていないため
、シールド材やフレーム材への適用は難しい。
In addition, silicon steel sheets are usually used as core materials for transformers and motors by being laminated after punching, and no consideration is given to formability or blackening properties, so they are not suitable for use in shielding or frame materials. Difficult to apply.

磁気特性だけで言えば、パーマロイ系の合金やアモルフ
ァス合金がi!iff率と保磁力の優れた材料とした著
名であるが極めて高価である。テレビ受像機のような大
量生産品では、材料コストの高低は材料選定の大きな要
素となる。しかも、これらの合金は、一般に飽和磁束密
度が低く、強磁場のシールド性が不十分で、また成形加
工や黒化処理も極めて難しい、このような欠点と価格が
高いことが原因で、CR’T用シールド材等へ適用され
た例はない。
In terms of magnetic properties alone, permalloy alloys and amorphous alloys are i! Although it is famous as a material with excellent IF factor and coercive force, it is extremely expensive. For mass-produced products such as television receivers, material cost is a major factor in material selection. Moreover, these alloys generally have low saturation magnetic flux density, insufficient shielding properties against strong magnetic fields, and are extremely difficult to form and blacken.These drawbacks and high prices have made CR' There are no examples of this being applied to T-shield materials, etc.

特公昭63−65743号公報公報には、Tiを含む磁
気シールド用鋼板が提案されている。しかし、そこでは
、専ら黒化被膜の剥がれ防止が主題であり、曲げ加工性
についても若干の言及はあるが、磁気特性やプレス成形
性、スポット溶接性については何ら考慮されていない、
一般にTiやNbなどの炭窒化物生成元素は、微細な析
出物を生成して磁気特性を著しく劣化させるため、添加
を避けるのが普通である。
Japanese Patent Publication No. 63-65743 proposes a steel plate for magnetic shielding containing Ti. However, the subject matter here is exclusively to prevent the blackened coating from peeling off, and although there is some mention of bending workability, no consideration is given to magnetic properties, press formability, or spot weldability.
Generally, carbonitride-forming elements such as Ti and Nb are generally avoided because they form fine precipitates and significantly deteriorate magnetic properties.

(発明が解決しようとする課題) 本発明の課題は、特にCRT用のシールド材やシールド
性を兼ね備えたフレーム材として総合的に優れた材料、
即ち、磁気特性、成形性、スポット溶接性、黒化処理性
の全てに優れ、しかも安価で量産品用の材料として使用
できる磁気シールド用鋼板を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to create a material that is comprehensively excellent especially as a shielding material for CRTs and a frame material that has shielding properties.
That is, the object of the present invention is to provide a steel sheet for magnetic shielding that has excellent magnetic properties, formability, spot weldability, and blackening treatment properties, is inexpensive, and can be used as a material for mass-produced products.

(課題を解決するための手段) まず経済性の観点から高価な合金元素を含まない鉄をベ
ースとした材料で考える必要がある。これは、飽和磁束
密度を高めて強磁場に対するシールド性を確保する意味
でも必要となる。
(Means for solving the problem) First, from the viewpoint of economy, it is necessary to consider an iron-based material that does not contain expensive alloying elements. This is also necessary in order to increase the saturation magnetic flux density and ensure shielding performance against strong magnetic fields.

ところが一般に鉄の磁気特性とその他の性質、例えば成
形加工性などとは両立しない場合が多い。
However, in general, the magnetic properties of iron and other properties, such as formability, are often incompatible.

珪素鋼板で磁気特性を改善するために添加されるSiや
Alなどの合金元素は、成形加工性や黒化処理性を劣化
させる傾向にある。成形加工性の劣化はこれらの合金元
素の添加により鋼が硬化したり大型の析出物が増えるた
めである。また、これらの元素は内部酸化しゃいため黒
化処理時の被膜の密着性を悪くする。一方、成形加工性
の優れた深絞り用鋼板では炭窒化物系の微細な析出物を
利用して加工性に望ましい集合&uk!(結晶粒の方位
)を形成させるが、磁気特性にはそれらの析出物自身が
悪影響を及ぼす上、得られた集合&111aも磁気特性
にとって極めて望ましくないものになる。
Alloying elements such as Si and Al added to silicon steel sheets to improve magnetic properties tend to deteriorate formability and blackening processability. The deterioration in formability is due to the addition of these alloying elements, which hardens the steel and increases the amount of large precipitates. Furthermore, these elements impair the adhesion of the film during the blackening treatment because they inhibit internal oxidation. On the other hand, deep drawing steel sheets with excellent formability utilize fine carbonitride-based precipitates to form aggregation &uk! (orientation of crystal grains), but these precipitates themselves have an adverse effect on magnetic properties, and the resulting set &111a is also extremely undesirable for magnetic properties.

このように、磁気特性と成形加工性などとでは成分組成
および金属学的&Il織の考え方が全く異なっており、
両者を同時に満足させる鋼は得られていない。
In this way, the component composition and metallurgical & Il weave concepts are completely different in terms of magnetic properties and moldability.
Steel that satisfies both requirements at the same time has not been obtained.

本発明者らは上記の状況に鑑み、磁気特性と成形加工性
などとの両立が可能な鋼の組成を求めて研究を進めた結
果、ある特定の組成範囲においてそれが可能であること
を知った。
In view of the above situation, the present inventors conducted research in search of a steel composition that could achieve both magnetic properties and formability, and found that this was possible within a certain composition range. Ta.

本発明は、下記の組成の鋼板を要旨とする。The gist of the present invention is a steel plate having the following composition.

重量%で、 C: o、oos%以下、 Si : 0.25%以下
、Mn : 0.50%以下、  p:0.1%以下、
s:o、ox%以下、  Af:0.02%以下、N 
: 0.005%以下、 B : 0.005%以下、
を含み、且つ ■0.1%≦Siχ+0.5XMnχ+IOX^lχ≦
0.4%と■0.5≦B%/N%≦2.5とを満足し、
残部はFeおよび不可避不純物からなることを特徴とす
る磁気シールド用鋼板。
In weight%, C: o, oos% or less, Si: 0.25% or less, Mn: 0.50% or less, p: 0.1% or less,
s: o, ox% or less, Af: 0.02% or less, N
: 0.005% or less, B: 0.005% or less,
and ■0.1%≦Siχ+0.5XMnχ+IOX^lχ≦
0.4% and ■0.5≦B%/N%≦2.5,
A steel plate for magnetic shielding, characterized in that the remainder consists of Fe and unavoidable impurities.

(作用) 鋼の製造には、通常、脱酸剤としてSt、 Mnおよび
AI!、が使用される0本発明者は、まずこれらの元素
に注目して検討した結果、これらの上限を規制すると同
時に総合有量をある特定の範囲に制御′Iする必要があ
ることが判明した。これらは脱酸のため、ある程度の添
加が必要なことはもちろんである。また、これらの元素
は、鋼の電気抵抗を増しスポット溶接性を安定させるの
に効果がある。
(Function) In the production of steel, St, Mn and AI are usually used as deoxidizing agents. , is used.The inventor first focused on and studied these elements, and found that it was necessary to regulate the upper limit of these elements and at the same time control the total abundance within a certain range. . It goes without saying that these need to be added to a certain extent for deoxidation. Furthermore, these elements are effective in increasing the electrical resistance of steel and stabilizing spot weldability.

しかし、一方ではこれらの含有量が過大になると黒化処
理性が著しく劣化し、また集合m織の異方性が大きくな
り、成形加工時の寸法精度が悪くなる。特にA2は3R
気特性と成形加工性の点から蔽しい制限が必要となる。
However, on the other hand, if their content becomes excessive, the blackening processability will be significantly deteriorated, and the anisotropy of the aggregated weave will increase, resulting in poor dimensional accuracy during molding. Especially A2 is 3R
This requires strict limitations in terms of mechanical properties and moldability.

Alの場合、SiJpMnに比べ微細な析出物を生成さ
せやすいためと考えられ、脱酸に必要な最小限度の添加
にとどめるのが望ましい。
In the case of Al, it is thought that this is because fine precipitates are more likely to be generated than in SiJpMn, and it is desirable to limit the addition to the minimum amount necessary for deoxidation.

次に、Bを適当な範囲で添加することにより、磁気特性
を損なわずに成形加工性とスポット溶接性を改善できる
ことが明らかになった。BはNを固定して時効による成
形性の劣化を防ぐのに有効で、BNはAl1Nに、比べ
形状が丸みを帯び、しかも比較的大型で数も少ないので
磁気特性を劣化させることが少ない、また溶接ボンド部
の焼き入れ性を増し溶接部の強度を高める効果がある。
Next, it has been revealed that by adding B in an appropriate range, the formability and spot weldability can be improved without impairing the magnetic properties. B is effective in fixing N and preventing deterioration of formability due to aging, and BN has a rounder shape compared to Al1N, and is relatively large and small in number, so it does not deteriorate magnetic properties. It also has the effect of increasing the hardenability of the weld bond and increasing the strength of the weld.

これらの知見を組み合わせて定めた前記の組成によって
、磁気特性、成形加工性、スポット溶接性、黒化処理性
がともに優れた鋼板となる。
The above composition determined by combining these findings results in a steel sheet with excellent magnetic properties, formability, spot weldability, and blackening treatment properties.

以下、各成分の含有量の限定理由をそれぞれ説明する。The reasons for limiting the content of each component will be explained below.

なお、成分含有量に関する「%」は全て「重量%」を意
味する。
In addition, all "%" regarding component content means "weight%."

C,S、N : Cは炭化物、Sは硫化物、Nは窒化物を鋼中に増加させ
て磁気特性を劣化させるため、いずれもできるだけ低く
する方がよい、特にCは磁気時効を避けるため、0.0
05%以下、望ましくは0.003%以下とする。Sは
0.1%以下、望ましくはo、oos%以下とし、Nは
o、oos%以下、望ましくは0.003%以下とする
C, S, N: C is a carbide, S is a sulfide, and N increases nitrides in the steel and deteriorates the magnetic properties, so it is better to keep all of them as low as possible, especially C to avoid magnetic aging. ,0.0
0.05% or less, preferably 0.003% or less. S is 0.1% or less, preferably 0.00% or less, and N is 0.003% or less, preferably 0.003% or less.

P: Pは強度調整等のため0.1%以下の範囲で含まれてい
てもよいが、それを超えると冷間圧延性が劣化する。
P: P may be contained within a range of 0.1% or less for strength adjustment, etc., but if it exceeds this, cold rollability will deteriorate.

Si: Siは脱酸と電気抵抗増加のために添加するが、含有量
が0.25%を趨えると黒化処理性が著しく劣化する。
Si: Si is added for deoxidation and to increase electrical resistance, but if the content exceeds 0.25%, the blackening processability will be significantly degraded.

Hn: MnはSiに比べて弱いが同様の効果があり、またSに
よる熱間脆性を防止するため、含11r!iが0.50
%以下となるように添加する。 0.50%を超えると
成形加工性と磁気特性が劣化する。
Hn: Although Mn is weaker than Si, it has the same effect and also contains 11r! to prevent hot embrittlement caused by S. i is 0.50
% or less. If it exceeds 0.50%, moldability and magnetic properties will deteriorate.

八l : Alは強力な脱酸剤であるが、その含有量が0.02%
を超えると磁気特性が著しく劣化する。特に多量に添加
すると微細なAfiNが生成し、磁気特性を1Mなうの
で脱酸に必要な最小限の添加にとどめるのが好ましい。
8L: Al is a strong deoxidizing agent, but its content is 0.02%
If it exceeds this, the magnetic properties will deteriorate significantly. In particular, if added in a large amount, fine AfiN will be generated and the magnetic properties will decrease to 1M, so it is preferable to limit the addition to the minimum amount necessary for deoxidation.

8 Bは、NをBNとして固定し時効による成形加工性の劣
化を防ぎ、更にスポット溶接部の強度を向上させる作用
があ条、シかし、その含有量がo、oos%を超えても
効果の増大はなく、むしろ析出物の増加により磁気特性
が悪くなる。
8 B has the effect of fixing N as BN, preventing deterioration of formability due to aging, and further improving the strength of spot welds, but even if its content exceeds o, oos%. There is no increase in the effect, but rather the magnetic properties deteriorate due to an increase in precipitates.

515Mn5Aj!の総量: SiX+Q、5MMnχ+10×^eχをQ、1〜0.
4%の範囲にすることが重要である。下限は脱酸とスポ
ット溶接性を安定させるのに必要である。一方、上限を
超えると寸法精度を含めて成形性が劣化する上、磁気特
性が劣化する。これは酸化物系の析出物が増加するため
と考えられる。特にAffiは悪影響が大きいので可能
な限り添加を避けることが望ましBとNの比(Bχ/N
χ): Bχ/NχはNを完全に固定するため0.5以上、望ま
しくは0.7以上とする。ただし、この比が2.5を超
えても効果は飽和し、Bの過大添加の弊が出る。
515Mn5Aj! Total amount of: SiX+Q, 5MMnχ+10×^eχ, Q, 1 to 0.
It is important to keep it within 4%. The lower limit is necessary to stabilize deoxidation and spot weldability. On the other hand, when the upper limit is exceeded, not only the formability including dimensional accuracy deteriorates, but also the magnetic properties deteriorate. This is thought to be due to an increase in oxide-based precipitates. In particular, since Affi has a large negative effect, it is desirable to avoid adding it as much as possible, and the ratio of B and N (Bχ/N
χ): Bχ/Nχ is set to 0.5 or more, preferably 0.7 or more in order to completely fix N. However, even if this ratio exceeds 2.5, the effect will be saturated and the disadvantages of excessive addition of B will occur.

上記の組成をもつ本発明の鋼板の望ましい製造条件を例
示すれば下記のとおりである。
Examples of desirable manufacturing conditions for the steel plate of the present invention having the above composition are as follows.

まず、熱間圧延工程におけるスラブ加熱温度は1100
〜1250°Cが適当である。加熱温度が高すぎると熱
間圧延中に微細なMnSが析出し、磁気特性を損なう、
一方、加熱温度が低すぎると、下記の熱延仕上温度が確
保し難くなる。熱延仕上温度は一般に高い方が磁気特性
や成形性が良くなるので、800°C以上とするのが望
ましい、熱間圧延後の巻取り温度は400〜700°C
の範囲で選べばよい。
First, the slab heating temperature in the hot rolling process is 1100
~1250°C is suitable. If the heating temperature is too high, fine MnS will precipitate during hot rolling, impairing the magnetic properties.
On the other hand, if the heating temperature is too low, it will be difficult to ensure the following hot rolling finishing temperature. In general, the higher the hot rolling finishing temperature, the better the magnetic properties and formability, so it is desirable to set it to 800°C or higher.The coiling temperature after hot rolling is 400 to 700°C.
You can choose within the range.

般に成形性は低温巻取りの方がよく、る■気持性は高温
巻取りの方がよい、これらの調和を考えれば、550〜
650°Cの巻取り温度が適当である。
In general, formability is better when rolled at low temperatures, and comfort is better when rolled at high temperatures.
A winding temperature of 650°C is suitable.

冷間圧延の圧下率は、40〜80%の範囲でよい。The reduction ratio of cold rolling may be in the range of 40 to 80%.

通常は、60〜70%程度の圧下率としたときが成形性
と磁気特性のバランスがよい、必要に応じて、中間焼鈍
を含む2回冷延を行ってもよいが、製造工程が簡易な1
回冷延法でも充分な特性が得られる。
Usually, a rolling reduction of about 60 to 70% provides a good balance between formability and magnetic properties.If necessary, cold rolling including intermediate annealing may be performed twice, but if the manufacturing process is simple, 1
Sufficient properties can also be obtained by the double cold rolling method.

冷間圧延後の焼鈍は700〜950°Cの範囲で行う。Annealing after cold rolling is performed at a temperature of 700 to 950°C.

この下限は再結晶に必要な温度であり、上限は素材のA
c3変態点で決まる温度である。この範囲外では成形性
、磁気特性ともに劣化する。焼鈍は箱焼鈍でもよいが、
経済性および工程短縮を考えれば連続焼鈍が望ましい、
焼鈍後、表面性状を整えるため1.5%以下のスキンパ
ス圧延を行う。
This lower limit is the temperature required for recrystallization, and the upper limit is the temperature required for recrystallization.
This is the temperature determined by the c3 transformation point. Outside this range, both moldability and magnetic properties deteriorate. Annealing may be box annealing, but
Continuous annealing is desirable in terms of economy and process shortening.
After annealing, skin pass rolling of 1.5% or less is performed to adjust the surface properties.

(実施例) 第1表に示す組成の鋼を実験室で溶解し、下記の条件で
熱間圧延と冷間圧延を行い、1.Oa+ai厚さの鋼板
とした。熱間圧延の加熱温度は1200℃、圧延仕上げ
温度は85Q″Cで600°Cのコイル巻取りに相当す
るパターンで冷却した。酸洗後、圧下率70%で冷間圧
延した。その後820℃×2分の焼鈍を施し、更に1%
の調質圧延を加えた後、各種の特性調査に供した。
(Example) Steel having the composition shown in Table 1 was melted in a laboratory, hot rolled and cold rolled under the following conditions.1. A steel plate with a thickness of Oa+ai was used. The heating temperature for hot rolling was 1200°C, and the rolling finishing temperature was 85Q''C, and the material was cooled in a pattern corresponding to coil winding at 600°C. After pickling, it was cold rolled at a rolling reduction of 70%. Thereafter, it was 820°C. x 2 minutes of annealing and an additional 1%
After being subjected to temper rolling, it was subjected to various characteristic investigations.

成形加工性は100禦−φの円筒絞り試験で破断限界径
と有効深さで評価した。いずれも大きいほど良好で、破
断限界径は平均的な成形性を、有効深さは異方性を示す
ものである。
The moldability was evaluated by the breaking limit diameter and effective depth in a cylindrical drawing test with a diameter of 100 mm. In both cases, the larger the diameter, the better; the breaking limit diameter indicates average formability, and the effective depth indicates anisotropy.

スポット溶接性は、同じ組成の鋼板を重ねて溶接した後
、引張試験で剪断引張り強度を評価した。
Spot weldability was determined by overlapping and welding steel plates of the same composition, and then evaluating the shear tensile strength in a tensile test.

磁気特性は、試験片を打ち抜いて、600°C×15分
の歪取り焼鈍を施した後、初透磁率(磁化力0.350
8での値)と保磁力(100eでの値)を評価した。
The magnetic properties were determined by punching out a test piece and subjecting it to strain relief annealing at 600°C for 15 minutes.
8) and coercive force (value at 100e) were evaluated.

黒化処理性はco −co を雰囲気で600°C×1
5分の処理を行った後、表面のマグネタイト被膜をテー
プで剥離して評価した。
Blackening treatment property is 600°C x 1 in co-co atmosphere.
After 5 minutes of treatment, the magnetite coating on the surface was peeled off with tape and evaluated.

試験結果を第2表に示す0本発明鋼では、いずれも極め
て良好な性能が得られることがわかる。
The test results are shown in Table 2. It can be seen that all of the steels of the present invention exhibited extremely good performance.

但し、Affiが多くなると成形加工時の有効深さと磁
気特性がやや低下する傾向にあるから、Affiは少な
い方が望ましい。
However, if Affi increases, the effective depth during molding and magnetic properties tend to decrease somewhat, so it is desirable that Affi be small.

比較tliFは、Siが本発明で定める範囲を超えてい
るため、黒化処理被膜の密着性が悪い、また、成形加工
性とスポット溶接性が若干劣る。これは鋼の強度や脆化
度が高くなったことによると考えられる。
Comparative tliF has Si exceeding the range specified in the present invention, so the adhesion of the blackened coating is poor, and the moldability and spot weldability are slightly inferior. This is thought to be due to the increased strength and embrittlement of the steel.

比較鋼Gは、Mnが高いため成形加工性が悪く磁気特性
も劣る。鋼の強度上昇と硫化物系析出物の増加が原因で
ある。
Comparative steel G has poor formability and poor magnetic properties due to its high Mn content. This is due to increased strength of steel and increased sulfide precipitates.

比較鋼HはAlが高いため、磁気特性が著しく劣り、ま
た成形加工の有効深さが小さい、これは微細な析出物の
増加とそれらの効果で異方性の強い集合&1Ilaが形
成されているためである。
Comparative steel H has a high Al content, so its magnetic properties are significantly inferior, and the effective depth of forming is small. This is due to the increase in fine precipitates and their effects, forming a highly anisotropic set &1Ila. It's for a reason.

比較fillはSi、 Mn、A2の総量が本発明で定
める範囲を超えているため、磁気特性が悪く成形性や黒
化処理性も不十分である。
In the comparison fill, the total amount of Si, Mn, and A2 exceeds the range defined by the present invention, so the magnetic properties are poor and the formability and blackening processability are also insufficient.

比較鋼JはBχ/Nχの比が小さいため、成形加工性と
スポット溶接性が劣る。
Comparative steel J has a small ratio of Bχ/Nχ, and therefore has poor formability and spot weldability.

これに対して、本発明鋼A−Eは、CRT用の磁気シー
ルド材やフレーム材に求められる全ての性能を充分に満
足している。
On the other hand, the steels A-E of the present invention fully satisfy all the performances required for magnetic shielding materials and frame materials for CRTs.

(以下、余白) (発明の効果) 本発明の鋼板は、磁気シールド材として必要な磁気特性
をはじめとし、成形加工性その他総合的な特性に優れて
いる。しかも、微量のB以外に特殊な合金元素を含まず
、製造方法も通常の冷延鋼板のそれと実質的に変わりが
なく安価に製造できる0本発明の鋼板は、特にCRT用
の(n気シールド材として適するが、他の電気+12S
のシールド用としても使用できることは言うまでもない
(Hereinafter, blank spaces) (Effects of the Invention) The steel sheet of the present invention is excellent in not only the magnetic properties necessary as a magnetic shielding material but also the formability and other overall properties. Moreover, the steel sheet of the present invention does not contain any special alloying elements other than a trace amount of B, and the manufacturing method is substantially the same as that of ordinary cold-rolled steel sheets, and can be manufactured at low cost. Suitable as material, but other electric +12S
Needless to say, it can also be used as a shield.

Claims (1)

【特許請求の範囲】 重量%で、C:0.005%以下、Si:0.25%以
下、Mn:0.50%以下、P:0.1%以下、S:0
.01%以下、Al:0.02%以下、N:0.005
%以下、B:0.005%以下で、且つ下記(1)式お
よび(2)式を満足し、残部はFeおよび不可避不純物
からなることを特徴とする磁気シールド用鋼板。 0.1%≦Si%+0.5×Mn%+10×Al%≦0
.4%・・(1)0.5≦B%/N%≦2.5・・(2
[Claims] In weight %, C: 0.005% or less, Si: 0.25% or less, Mn: 0.50% or less, P: 0.1% or less, S: 0
.. 01% or less, Al: 0.02% or less, N: 0.005
% or less, B: 0.005% or less, and satisfies the following formulas (1) and (2), the remainder being Fe and inevitable impurities. 0.1%≦Si%+0.5×Mn%+10×Al%≦0
.. 4%...(1) 0.5≦B%/N%≦2.5...(2
)
JP28383489A 1989-10-30 1989-10-30 Steel plate for magnetic shielding Pending JPH03146644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28383489A JPH03146644A (en) 1989-10-30 1989-10-30 Steel plate for magnetic shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28383489A JPH03146644A (en) 1989-10-30 1989-10-30 Steel plate for magnetic shielding

Publications (1)

Publication Number Publication Date
JPH03146644A true JPH03146644A (en) 1991-06-21

Family

ID=17670763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28383489A Pending JPH03146644A (en) 1989-10-30 1989-10-30 Steel plate for magnetic shielding

Country Status (1)

Country Link
JP (1) JPH03146644A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871851A (en) * 1997-07-31 1999-02-16 Nippon Steel Corporation Magnetic shielding material for television cathode-ray tube and process for producing the same
WO2001012870A1 (en) * 1999-08-11 2001-02-22 Nkk Corporation Magnetic shielding steel sheet and method for producing the same
EP1098010A1 (en) * 1999-03-04 2001-05-09 Nkk Corporation Steel sheet for heat-shrink band and method of manufacturing it
KR100568355B1 (en) * 2001-12-22 2006-04-05 주식회사 포스코 A Galvanized Steel Plate Having Superior Electric and Magnetic Shielding Property
KR100568354B1 (en) * 2001-12-22 2006-04-05 주식회사 포스코 A Method For Manufacturing Galvanized High Strength Steel Plate Having Electric and Magnetic Shielding Property by Cold Rolling Condition
JP2007277699A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
EP3531077A1 (en) * 2018-02-23 2019-08-28 Hamilton Sundstrand Corporation Vdt with high permeability shield

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871851A (en) * 1997-07-31 1999-02-16 Nippon Steel Corporation Magnetic shielding material for television cathode-ray tube and process for producing the same
EP1098010A4 (en) * 1999-03-04 2003-08-06 Nippon Kokan Kk Steel sheet for heat-shrink band and method of manufacturing it
EP1098010A1 (en) * 1999-03-04 2001-05-09 Nkk Corporation Steel sheet for heat-shrink band and method of manufacturing it
KR100625557B1 (en) * 1999-08-11 2006-09-20 제이에프이 스틸 가부시키가이샤 Magnetic shielding steel sheet and method for producing the same
CN1115422C (en) * 1999-08-11 2003-07-23 日本钢管株式会社 Magnetic shielding steel sheet and method for producing the same
US6635361B1 (en) 1999-08-11 2003-10-21 Nkk Corporation Magnetic shielding steel sheet and method for producing the same
US7056599B2 (en) 1999-08-11 2006-06-06 Jfe Steel Corporation Steel sheet for magnetic shields and manufacturing method thereof
WO2001012870A1 (en) * 1999-08-11 2001-02-22 Nkk Corporation Magnetic shielding steel sheet and method for producing the same
KR100568355B1 (en) * 2001-12-22 2006-04-05 주식회사 포스코 A Galvanized Steel Plate Having Superior Electric and Magnetic Shielding Property
KR100568354B1 (en) * 2001-12-22 2006-04-05 주식회사 포스코 A Method For Manufacturing Galvanized High Strength Steel Plate Having Electric and Magnetic Shielding Property by Cold Rolling Condition
JP2007277699A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
EP3531077A1 (en) * 2018-02-23 2019-08-28 Hamilton Sundstrand Corporation Vdt with high permeability shield
US10998116B2 (en) 2018-02-23 2021-05-04 Hamilton Sundstrand Corporation VDT with high permeability shield

Similar Documents

Publication Publication Date Title
JP6451967B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2001012870A1 (en) Magnetic shielding steel sheet and method for producing the same
JPS62185828A (en) Manufacture of frame material for shadow mask
JPH03146644A (en) Steel plate for magnetic shielding
US4948434A (en) Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
JP3243240B2 (en) Method of manufacturing thin cold rolled inner shield steel sheet with excellent magnetic field shielding properties
US5871851A (en) Magnetic shielding material for television cathode-ray tube and process for producing the same
CN107429307A (en) The manufacture method of one-way electromagnetic steel plate
JPH1150149A (en) Production of cold rolled steel sheet for shadow mask frame
JP4045746B2 (en) Magnetic shield steel sheet for color cathode ray tube and method for manufacturing the same
JPH059665A (en) Thin steel sheet for magnetic shield
JP4132252B2 (en) High-strength cold-rolled steel sheet that is resistant to corrosion and has excellent geomagnetic shielding properties, and a method for producing the same
US20210340651A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP3775215B2 (en) Magnetic shield material, steel plate for magnetic shield material and method for producing the same
JPS641531B2 (en)
JP2002080948A (en) Nonoriented silicon steel sheet having excellent blanking workability
JP3915108B2 (en) Soft magnetic steel sheet
JP2000169945A (en) Material for inner shield and its production
JP2002012956A (en) Cold rolled steel sheet and plated steel sheet both with high strength, superior in shielding property from earth magnetism, and manufacturing method therefor
JPS59173219A (en) Manufacture of magnetic shielding material
JP3804457B2 (en) Steel sheet for magnetic shield and manufacturing method thereof
JP2005054255A (en) High-strength hot-rolled steel plate for frame of cathode-ray tube, manufacturing method therefor, and frame of cathode-ray tube
JPH05255817A (en) Corrosion resistant soft magnetic material
JP4271308B2 (en) Steel sheet for magnetic shield and manufacturing method thereof
JP2002180214A (en) Cold-rolled steel sheet for magnetic shield of color cathode ray tube and its production method