JPH03146603A - Sintering method for adding temperature gradation and device thereof - Google Patents

Sintering method for adding temperature gradation and device thereof

Info

Publication number
JPH03146603A
JPH03146603A JP1284269A JP28426989A JPH03146603A JP H03146603 A JPH03146603 A JP H03146603A JP 1284269 A JP1284269 A JP 1284269A JP 28426989 A JP28426989 A JP 28426989A JP H03146603 A JPH03146603 A JP H03146603A
Authority
JP
Japan
Prior art keywords
sintering
powder compact
temperature
temperature gradient
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1284269A
Other languages
Japanese (ja)
Other versions
JP2798280B2 (en
Inventor
Ryuzo Watanabe
渡辺 龍三
Akira Kawasaki
亮 川崎
Masayuki Shinno
正之 新野
Masahiro Yuki
正弘 結城
Toshiichi Murayama
村山 敏一
Toshio Irisawa
入沢 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
IHI Corp
Original Assignee
National Aerospace Laboratory of Japan
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan, IHI Corp filed Critical National Aerospace Laboratory of Japan
Priority to JP1284269A priority Critical patent/JP2798280B2/en
Publication of JPH03146603A publication Critical patent/JPH03146603A/en
Application granted granted Critical
Publication of JP2798280B2 publication Critical patent/JP2798280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a gradated functional material having different property at the front and the back by heating the surface of a powder green compact with laser beam after heating it near to starting temp. of sintering, cooling the back face and sintering while giving temp. gradation. CONSTITUTION:For example, the powder green compact W composed of ceramic on the front face and metal on the back face, is set on a cooling device 25 in a sintering furnace 13 and the inner part of the furnace is made to an inert gas atmosphere with a vacuum suction device 18 and gas introducing hole 19. Successively, after uniformly heating in the sintering furnace 13 near to the starting temp. of sintering to the powder green compact W with an electric heating device 11, the powder green compact W is irradiated with the laser beam in a laser beam heating device 22 through a laser beam irradiating aperture 21 to heat the surface thereof. Simultaneously, cooling gas is supplied from a cooling device 25 to cool the back face of powder green compact W, and the sintering is executed under the condition of existence of the temp. inclination between the front and the back. By this method, as coming from the front face to the back face, the gradated functional material continuously varying the property at atomic and molecular level, is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、セラミックスと金属のような異種素材間に
連続的に組成を変化させた中間層を配置した−ものなど
の傾斜機能材料を焼結する焼結方法及びその装置に関し
、粉末成形体の表裏に温度勾配を与えることができるよ
うにしたものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the sintering of functionally graded materials such as ceramics and metals, in which an intermediate layer with a continuously changing composition is arranged between different materials such as ceramics and metals. The present invention relates to a sintering method and apparatus for sintering, which can provide a temperature gradient on the front and back sides of a powder compact.

[従来の技術] 新規な材料の開発研究の進展にともない従来の単純な張
り合わせ材料と異なり、表と裏の性質が全く異なり、し
かも表から裏にいくにしたがって徐々に原子・分子レベ
ルでの性質が連続的に変化する傾斜機能材料が開発され
れっつある。
[Conventional technology] With the progress of research and development of new materials, unlike conventional simple laminated materials, the front and back sides have completely different properties, and the properties at the atomic and molecular level gradually change from the front to the back. Functionally graded materials that change continuously are being developed.

この傾斜機能材料としては、例えば、宇宙往還機あるい
は核融合炉などで使用する熱応力緩和機能を備えた超高
温材料があり、セラミックスと金属の異種材料間に連続
的に組成を変化させた中間層(傾斜組成制御層)を配置
し、熱膨張をはじめとする物性値や組織を連続的に変化
させ、セラミックスによって耐熱性を与えると同時に、
金属によって熱伝導性及び機械的強度を与えるようにし
たものがある。さらに、傾斜機能材料は、熱応力緩和機
能だけでなく、組成変化とともにヤング率、熱膨張率、
熱伝導率、電気伝導率などの特性値の変化を制御するこ
とにより、求められる環境に適合した機能性を持たせる
ことができる。また、傾斜機能材料としては、均一材に
おいて組織に傾斜機能を持たせるようにすることもでき
る。
These functionally graded materials include, for example, ultra-high temperature materials with a thermal stress relaxation function used in spacecraft or nuclear fusion reactors. Layers (gradient composition control layers) are arranged to continuously change physical properties such as thermal expansion and structure, and at the same time provide heat resistance with ceramics.
Some metals provide thermal conductivity and mechanical strength. Furthermore, functionally graded materials not only have a thermal stress relaxation function, but also improve Young's modulus, thermal expansion coefficient, and
By controlling changes in characteristic values such as thermal conductivity and electrical conductivity, it is possible to provide functionality that suits the required environment. Furthermore, the functionally graded material may be a uniform material whose structure has a graded function.

このような傾斜機能材料の作製法の一つとして粉末冶金
法があり、所定の組成の粉末成形体を焼結することが考
えられている。
Powder metallurgy is one of the methods for producing such functionally graded materials, and it is considered that a powder compact having a predetermined composition is sintered.

[発明が解決しようとする課題] ところが、傾斜機能材料を焼結する場合、焼結炉等で一
定の焼結温度で加熱焼結しようとしても、例えばセラミ
ックスと金属とでは焼結温度が異なるため焼結できず、
セラミックスの焼結温度に保持した場合には、金属が溶
融するなどの問題があり、金属の焼結温度に保持する場
合には、セラミックスの焼結が不十分になってしまうと
いう問題がある。
[Problems to be Solved by the Invention] However, when sintering functionally graded materials, even if an attempt is made to heat and sinter them at a constant sintering temperature in a sintering furnace or the like, the sintering temperature is different for ceramics and metals, for example. Unable to sinter,
If the temperature is maintained at the sintering temperature of ceramics, there is a problem that the metal melts, and if the temperature is maintained at the sintering temperature of the metal, there is a problem that the sintering of the ceramic becomes insufficient.

この発明はかかる従来技術の課題に鑑みてなされたもの
で、傾斜機能材料の組成などその焼結温度に応じて温度
勾配を与えながら焼結することができる温度傾斜付加焼
結方法及びその装置を提供しようとするものである。
The present invention has been made in view of the problems of the prior art, and provides a temperature gradient addition sintering method and an apparatus thereof, which can perform sintering while giving a temperature gradient depending on the sintering temperature of the functionally gradient material, such as its composition. This is what we are trying to provide.

[課題を解決するための手段] 上記課題を解決するため、この発明の温度傾斜付加焼結
方法は、粉末成形体を焼結するに際し、粉末成形体を焼
結開始温度付近まで加熱した上、粉末成形体表面にレー
ザー光を照射して加熱すると同時に、裏面を必要に応じ
て冷却して表裏間で温度勾配を与えて焼結するようにし
たことを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the temperature gradient addition sintering method of the present invention includes heating the powder compact to around the sintering start temperature when sintering the powder compact, and then The powder compact is characterized in that the surface of the powder compact is irradiated with a laser beam to heat it, and at the same time, the back surface is cooled as necessary to create a temperature gradient between the front and back surfaces for sintering.

また、この発明の温度傾斜付加焼結装置は、粉末成形体
を焼結開始温度付近まで加熱する焼結炉と、この焼結炉
内部を所定の雰囲気に設定する雰囲気設定装置と、前記
焼結炉内の粉末成形体の表面にレーザー光を照射して加
熱するレーザー加熱に応じて冷却する冷却装置とでなり
、粉末成形体の表裏間に温度勾配を与えて焼結すること
を特徴とするものである。
Further, the temperature gradient addition sintering apparatus of the present invention includes a sintering furnace that heats a powder compact to around a sintering start temperature, an atmosphere setting device that sets the inside of this sintering furnace to a predetermined atmosphere, and It is characterized by a cooling device that irradiates the surface of the powder compact in the furnace to heat it and cools it according to the laser heating, and sintering by giving a temperature gradient between the front and back of the powder compact. It is something.

[作 用] この温度傾斜付加焼結方法によれ゛ば・、粉末成形体を
焼結開始温度付近まで加゛熱した上で、表面にレーザー
を照射して表面′のみを加熱するようにし、これと同時
に裏面を必要に応じて積極的に冷却するようにしており
、粉末成形体に表裏間で温度勾配を与えることがモきる
−0    ゛したがって、セラミックスと金属などの
異″種材料の傾斜機能材料や均一材料で組織に□傾斜機
能を与える傾斜機能材料などであっても容易に焼結する
ことができる。
[Function] According to this temperature gradient addition sintering method, the powder compact is heated to around the sintering start temperature, and then the surface is irradiated with a laser to heat only the surface. At the same time, the back side is actively cooled as necessary, making it possible to create a temperature gradient between the front and back sides of the powder compact. Even functional materials and homogeneous functionally graded materials that give a structure a graded function can be easily sintered.

また、この温度傾斜付加焼結装置・によれば、焼結炉に
よって粉末成形体を焼結開始゛□温度付近まで加熱でき
るとともに、雰−気設定装置で′真空や“不活性ガスな
どの所定の雰囲気゛に焼結□炉内をすることができ、こ
の状態でさらに、レーザー加熱装置によって表面にレー
ザーを照射して表面のみを加熱するとともに、冷却装置
で裏面を必要に応じて積極的に冷却することができ、粉
末成形体に表裏間で温度勾配を与えることができる。
In addition, according to this temperature gradient sintering device, the powder compact can be heated to around the sintering starting temperature in the sintering furnace, and the atmosphere setting device can be used to set the temperature to a specified temperature such as ``vacuum'' or ``inert gas''. The inside of the sintering furnace can be heated to an atmosphere of It can be cooled and a temperature gradient can be applied between the front and back sides of the powder compact.

したがって、セラミックスと金属などの異種材料の傾斜
機能材料や均一材料で゛□組織に傾斜i能を与える傾斜
機能材料などであっても容易に焼結することができる。
Therefore, it is possible to easily sinter even functionally graded materials made of different materials such as ceramics and metals, or functionally graded materials that are uniform materials and give a graded i-function to the structure.

[実施例] 以下、この発明の一実施例を図面に基づき詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図□はこの発明の温度傾斜付加焼結装置の一実施例
にかかる概略構成図である。
FIG. 1 □ is a schematic diagram of an embodiment of the temperature gradient sintering apparatus of the present invention.

この温度傾斜付加焼結装置10で′は、粉末成形体Wを
均一に加熱す□るためめ電気加熱装置11及びチャンバ
ー12が装備゛さ゛れ−た焼結炉13を備えており゛、
′チャンバー12内を気密状態にで゛きるようになって
いる。そして、電気加熱装置11には、温度調整器14
及び゛コントローラ15が接続され、温度センサ16か
らの検出信号に基づき炉内加゛熱温度を制御できるよう
になって−いる。
This temperature gradient addition sintering device 10 is equipped with a sintering furnace 13 equipped with an electric heating device 11 and a chamber 12 for uniformly heating the powder compact W.
'The interior of the chamber 12 can be kept airtight. The electric heating device 11 includes a temperature regulator 14.
A controller 15 is connected to the controller 15 so that the heating temperature in the furnace can be controlled based on a detection signal from a temperature sensor 16.

この焼結炉131ピは、炉内を所定の雰囲気にするため
雰囲気設定装置17として真空吸引装置18が接続され
、内部を真空状態にできるとともに、ガス導入口19が
設けられて図示しない不活性ガス供給装置によってアル
ゴンなどの不活性ガスを供給して炉内13を不活性ガス
雰囲気にすることもできるようになっている。さらに、
粉末成形体Wなどから発生するガス等を排出するため焼
結炉13にガス採取口20が設けられている。
This sintering furnace 131 is connected to a vacuum suction device 18 as an atmosphere setting device 17 in order to create a predetermined atmosphere inside the furnace, so that the inside can be kept in a vacuum state, and a gas inlet 19 is provided to inert gas (not shown). It is also possible to supply an inert gas such as argon using a gas supply device to create an inert gas atmosphere inside the furnace 13. moreover,
A gas sampling port 20 is provided in the sintering furnace 13 to discharge gas generated from the powder compact W and the like.

このような所定の雰囲気で均一加熱することができる焼
結炉13には、粉末成形体Wの表面に対応した頂部にレ
ーザー照射窓21が設けられている。
The sintering furnace 13 capable of uniformly heating in such a predetermined atmosphere is provided with a laser irradiation window 21 at the top corresponding to the surface of the powder compact W.

この焼結炉13のレーザー照射窓21の上方の焼結炉1
3外部にレーザー加熱装置22を構成するミラー駆動機
構23が設けられ、さらに焼結炉13の側方にレーザー
光源24が設けられ、ミラー駆動機構23とレーザー光
源24との間にビーム径調整用光学系30が設けられて
おり、レーザー光源24からのレーザー光をビーム径調
整用光学系30とミラー駆動機構23を介してレーザー
照射窓21から粉末成形体Wの表面に照射して粉末成形
体Wの表面を加熱できるようになっている。
The sintering furnace 1 above the laser irradiation window 21 of this sintering furnace 13
3. A mirror drive mechanism 23 constituting the laser heating device 22 is provided externally, and a laser light source 24 is further provided on the side of the sintering furnace 13, and a beam diameter adjustment device is provided between the mirror drive mechanism 23 and the laser light source 24. An optical system 30 is provided, and a laser beam from a laser light source 24 is irradiated onto the surface of the powder compact W from a laser irradiation window 21 via a beam diameter adjusting optical system 30 and a mirror drive mechanism 23 to form a powder compact. The surface of W can be heated.

さらに、この焼結炉13には、放射温度計29が設けら
れ、粉末成形体Wの表面温度を外部から計測、できるよ
うにしてあり、この放射温度計29からの検出信号はコ
ントローラ15に入力される。
Furthermore, this sintering furnace 13 is provided with a radiation thermometer 29 so that the surface temperature of the powder compact W can be measured from the outside, and a detection signal from this radiation thermometer 29 is input to the controller 15. be done.

そして、レーザー光源24とコントローラ15とが接続
され、加熱量を制御できるようになっており、放射温度
計29からの検出信号に基づき、粉末成形体Wの表面温
度を°制御するようになっている。。
The laser light source 24 and the controller 15 are connected to each other so that the amount of heating can be controlled, and the surface temperature of the powder compact W is controlled based on the detection signal from the radiation thermometer 29. There is. .

・また、焼結炉13内の粉末成形体Wの裏面に接するよ
うに冷却装置25が設けられ、焼結炉13外部からサー
ボバルブ26を介して冷却ガスや冷却液体などの冷却媒
体を供給するようになっている。そして、このサーボバ
ルブ26には、温度調整器27が接続され、温度センサ
28からの検出信号に基づき冷却温度を制御するように
なっている。
- Also, a cooling device 25 is provided so as to be in contact with the back surface of the powder compact W in the sintering furnace 13, and a cooling medium such as cooling gas or cooling liquid is supplied from outside the sintering furnace 13 via a servo valve 26. It looks like this. A temperature regulator 27 is connected to this servo valve 26 to control the cooling temperature based on a detection signal from a temperature sensor 28.

次に、このように構成された温度傾斜付加焼結装置10
の動作とともに、温度傾斜付加焼結方法について説明す
る。
Next, the temperature gradient addition sintering apparatus 10 configured as described above will be explained.
The temperature gradient addition sintering method will be explained along with the operation.

まず、このような温度傾斜付加焼結装置10で焼結され
る粉末成形体Wとしては、例えば表面がセラミックス1
00%で裏面が金属100%とされ、中間層が連続的に
組成が変化するようになっている複合素材の傾斜機能材
料や粉末成形体W自体は均一の素材で成形され、焼結の
際の温度勾配によって組織に連続した変化を与えるよう
にして傾斜化させるものなどが焼結対象となる。
First, the powder compact W to be sintered in such a temperature gradient sintering device 10 has a surface made of ceramic 1, for example.
00%, the back surface is 100% metal, and the composition of the intermediate layer changes continuously. Composite functionally graded materials and powder compacts W themselves are molded from a uniform material, and during sintering. Sintering targets include those whose structure is graded so as to cause continuous changes due to the temperature gradient.

このような粉末成形体Wは焼結炉13内の冷却装置25
上に設置される。
Such a powder compact W is stored in the cooling device 25 in the sintering furnace 13.
installed on top.

そして、焼結に当たっては、電気加熱装置11によって
粉末成形体Wの焼結開始温度付近まで焼結炉13内が均
一に加熱される。
During sintering, the electric heating device 11 uniformly heats the inside of the sintering furnace 13 to around the sintering start temperature of the powder compact W.

この後、焼結炉13のレーザー照射窓21からレーザー
加熱装置22のレーザーが照射され、粉末成形体Wの表
面が加熱されると同時に、粉末成形体Wの裏面が冷却袋
W25から供給される冷却ガスによって冷却される。
Thereafter, the laser of the laser heating device 22 is irradiated from the laser irradiation window 21 of the sintering furnace 13 to heat the surface of the powder compact W, and at the same time, the back surface of the powder compact W is supplied from the cooling bag W25. Cooled by cooling gas.

このレーザー加熱装置22加熱に当たっては、粉末成形
体Wの表面積が大きい場合には、レーザーのビームサイ
ズによっては、全体を均一に加熱できない場合もあり、
このような場合には、ミラー駆動機構23を用いてスキ
ャニングしたり、ビーム径調整用光学系30を用いてデ
フォーカスなどによって広い面積の加熱を行うようにす
る。
When heating this laser heating device 22, if the surface area of the powder compact W is large, depending on the laser beam size, it may not be possible to uniformly heat the entire body.
In such a case, a wide area is heated by scanning using the mirror drive mechanism 23 or by defocusing using the beam diameter adjusting optical system 30.

この結果、粉末成形体Wは表面がレーザー加熱によって
高い温度になり、裏面は冷却によって低い温度となって
表裏間に温度勾配(温度傾斜)がついた状態で焼結が行
われる。
As a result, the front surface of the powder compact W is brought to a high temperature by laser heating, and the back surface is brought to a low temperature by cooling, and sintering is performed with a temperature gradient between the front and back surfaces.

したがって、表面をセラミックスとし、裏面を金属とし
て傾斜機能を持たせた粉末成形体Wであっても表面をセ
ラミックスの焼結温度範囲に保持すると同時に、裏面を
金属の焼結温度範囲に保持して焼結することができる。
Therefore, even if the powder compact W is made of ceramic on the front side and has a gradient function on the back side with metal, it is possible to maintain the front side within the sintering temperature range of ceramics and at the same time maintain the back side within the sintering temperature range of metal. Can be sintered.

また、均一素材の粉末成形体Wの場合には、焼結される
組織の焼結温度を表裏間で変えることができ、組織の傾
斜化が可能となる。
Further, in the case of a powder compact W made of a uniform material, the sintering temperature of the structure to be sintered can be changed between the front and back sides, and the structure can be graded.

このような温度傾斜を付加して焼結しようとする場合に
は、特に、粉末成形体Wの厚さが薄いと表裏間に温度勾
配を付加することが困難となるが表面の加熱をレーザー
を用いるようにしているので、表面層の局部加熱ができ
、厚さが1〜10I!1lll程度の薄いものであって
も温度勾配を与えることができる。
When attempting to sinter by adding such a temperature gradient, it is difficult to add a temperature gradient between the front and back surfaces, especially if the powder compact W is thin. Because it is used, it is possible to locally heat the surface layer, and the thickness is 1 to 10 I! Even if it is as thin as 1 lll, it is possible to provide a temperature gradient.

また、温度傾斜を付加するための加熱をレーザー加熱装
置22で行うようにしているので、均一加熱している焼
結炉13の外部からの加熱が可能であり、加熱量の制御
や加熱装置の保守管理が容易となる。
In addition, since heating for adding a temperature gradient is performed by the laser heating device 22, it is possible to heat from outside the sintering furnace 13, which is heating uniformly, and it is possible to control the amount of heating and control the heating device. Maintenance management becomes easier.

次に、この温度傾斜付加焼結装置10および温度傾斜付
加焼結方法によって表裏間に温度勾配(温度傾斜)を与
えて焼結することができることを確認した実験結果につ
いて、第2図〜第4図により説明する。
Next, the experimental results that confirmed that the temperature gradient sintering apparatus 10 and the temperature gradient sintering method can perform sintering by providing a temperature gradient between the front and back surfaces are shown in Figures 2 to 4. This will be explained using figures.

■ レーザー照射パターンによる温度分布の影響につい
て 直径が1411I11で厚さ10fflI11の部分安
定化ジルコニア(3YPSZ)の粉末成形体Wにビーム
径が3fflffiでビームパワーが75Wのレーザー
ビームを走査速度144■/seeで、第2図(A) 
、 (B)に示す2つの照射パターンで照射した。
■ Regarding the influence of temperature distribution due to laser irradiation pattern A laser beam with a beam diameter of 3fffffi and a beam power of 75W was scanned at a scanning speed of 144mm/see on a powder compact W of partially stabilized zirconia (3YPSZ) with a diameter of 1411I11 and a thickness of 10fflI11. So, Figure 2 (A)
, Irradiation was performed using the two irradiation patterns shown in (B).

この結果、半径を61とした円に沿ってスキャニングし
た第2図(A)の場合には、表面からの深さが2III
ll及び深さが5.5mmのいずれにおいてもほぼ一定
の温度になっていること及び表面からの深さが2Ill
lのところと深さが5 、5+aIIlのところにおい
て、約50℃の温度差があることが確認された。
As a result, in the case of Figure 2 (A), which is scanned along a circle with a radius of 61, the depth from the surface is 2III.
ll and the depth is 5.5mm, the temperature is almost constant, and the depth from the surface is 2Ill.
It was confirmed that there was a temperature difference of about 50°C between the depth 1 and the depth 5,5+aIIl.

一方、第2図(B)に示すように、ビームをじぐざぐに
面スキャニングした場合には、表面からの深さが21の
ところで中心と外周で大きな温度差が生じ均一に加熱で
きないことが分かった。
On the other hand, as shown in Figure 2 (B), when the beam is surface-scanned gradually, there is a large temperature difference between the center and the outer periphery at a depth of 21 mm from the surface, making it impossible to heat the beam uniformly. Ta.

■ レーザー照射による温度分布について直径が30m
mで厚さ10wvの部分安定化ジルコニア(3YPSZ
)の粉末成形体Wにビーム径が6III11でビームパ
ワーが155Wのレーザービームを走査速度200m+
n/secで、第3図(A)に示す半径6111と半径
12ma+の円形の照射パターンで照射した。 この結
果、第3図(A)に示すように、外周1回と内周1回を
組合わせたO印の場合及び外周1回のみのム印の場合に
は、中心部と外周部での温度差が大きいことが分かった
■ Temperature distribution due to laser irradiation Diameter is 30m
Partially stabilized zirconia (3YPSZ) with a thickness of 10wv
) A laser beam with a beam diameter of 6III11 and a beam power of 155 W was scanned at a scanning speed of 200 m+ on the powder compact W of
The irradiation was performed at a circular irradiation pattern with a radius of 6111 and a radius of 12 ma+ as shown in FIG. 3(A) at a rate of n/sec. As a result, as shown in Figure 3 (A), in the case of the O mark, which is a combination of one outer circumference and one inner circumference, and in the case of the M mark, which is only one outer circumference, the difference between the center and outer circumference is It was found that the temperature difference was large.

これに対して、第3図(A)に示すように、外周2回と
内周1回を組合わせたΦ印の場合及び外周3回と内周1
回を組合わせたΔ印の場合には、最外周を除き、中心部
と外周部での温度差がほとんど無いことが分かった。
On the other hand, as shown in Fig. 3 (A), in the case of Φ mark which combines two times on the outer circumference and one time on the inner circumference, and three times on the outer circumference and one time on the inner circumference,
In the case of Δ mark, which is a combination of times, it was found that there was almost no temperature difference between the center and the outer periphery, except for the outermost periphery.

さらに、表面からの深さ方向の温度分布は、第3図(B
)に示すように、表面と裏面で、約50℃程度の温度差
が得られることが分かった。
Furthermore, the temperature distribution in the depth direction from the surface is shown in Figure 3 (B
), it was found that a temperature difference of approximately 50°C was obtained between the front and back surfaces.

これら第2図及び第3図に示す実験結果から、レーザー
加熱によって粉末成形体Wの表面を均一に加熱できると
ともに、表裏間に温度勾配(温度傾斜)を付加すること
ができることが確認された。
From the experimental results shown in FIGS. 2 and 3, it was confirmed that the surface of the powder compact W can be uniformly heated by laser heating, and that a temperature gradient (temperature gradient) can be added between the front and back sides.

■ レーザー照射による温度傾斜付加焼結について 直径が110l1lIで厚さ3fflIllの部分安定
化ジルコニア(3YPSZ)の粉末成形体Wをアルゴン
ガス雰囲気中の焼結炉13内に入れ、炉内温度を第4図
(A)に示すように変化させると同時、レーザーのビー
ムパワーを同図中に示すように変化させて加熱した。そ
して、この場合のレーザービームの照射パターンは、ビ
ーム径を6flIINとした場合には、直径6Ilの同
心円に沿うように、また、ビーム径を5a+sとした場
合には、直径8IIIIllの同心円に沿うようにし、
ビーム走査速度を100ov/secとした。
■ Temperature gradient addition sintering by laser irradiation A powder compact W of partially stabilized zirconia (3YPSZ) with a diameter of 110l1lI and a thickness of 3fflIll is placed in the sintering furnace 13 in an argon gas atmosphere, and the furnace temperature is set to 4. At the same time, the laser beam power was changed as shown in the figure (A) and heated. In this case, the irradiation pattern of the laser beam is such that when the beam diameter is 6flIIN, it follows a concentric circle with a diameter of 6Il, and when the beam diameter is 5a+s, it follows a concentric circle with a diameter of 8IIIll. west,
The beam scanning speed was 100 ov/sec.

こうして温度傾斜付加焼結を行った結果、粉末成形体W
の焼結後の外観において、表面での径方向の収縮率が1
9%であり、裏面での径方向の収縮率が13%であった
As a result of performing the temperature gradient addition sintering in this way, the powder compact W
In the appearance after sintering, the shrinkage rate in the radial direction at the surface is 1
The shrinkage rate in the radial direction on the back surface was 13%.

すなわち、レーザー加熱によっても炉内温度が約700
℃程度で変化がなく、部分安定化ジルコニアの焼結温度
より低いにも拘らず、外観上収縮がみられたことは、レ
ーザー加熱によって粉末成形体W自体は焼結開始温度以
上になって焼結が進んだことが分かる。
In other words, even with laser heating, the temperature inside the furnace is about 700℃.
Although there was no change at about ℃, and the temperature was lower than the sintering temperature of partially stabilized zirconia, there was visible shrinkage.This is because the powder compact W itself was heated to a temperature higher than the sintering start temperature due to laser heating and sintered. You can see that the knot has progressed.

そして、焼結後の粉末成形体Wのレーザー照射面からの
深さに対するビッカース硬さHvは、第4図(B)に示
すように、表面が硬く′、表面からの深さが深くなるに
したがって硬度が連続的に低下しており、裏面の硬度が
最も小さくなっている。
The Vickers hardness Hv with respect to the depth from the laser irradiated surface of the powder compact W after sintering is as shown in FIG. Therefore, the hardness decreases continuously, and the hardness of the back surface is the lowest.

このようなビッカース硬さHvよって粉末成形体Wに組
織の傾斜化が起こったことが確認された。
It was confirmed that the structure of the powder compact W was graded due to the Vickers hardness Hv.

なお、上記実施例では、冷却装置を設置した場合(第1
図)で説明したが、第2図〜第4図で説明した実験結果
の場合のように、冷却装置を用いず、表面だけをレーザ
ー加熱して温度勾配(温度傾斜)を付加するようにして
も良い。
In addition, in the above embodiment, when a cooling device is installed (the first
As explained in Figure), as in the case of the experimental results explained in Figures 2 to 4, a temperature gradient was added by laser heating only the surface without using a cooling device. Also good.

また、この発明の要旨を変更しない範囲で各構成要素に
変更を加えても良いことは言うまでもない。
Further, it goes without saying that each component may be changed without changing the gist of the invention.

[発明の効果コ 以上、実施例とともに具体的に説明したようにこの発明
の温度傾斜付加焼結方法によれば、粉末成形体を焼結開
始温度付近まで加熱した上で、表面にレーザーを照射し
て表面のみを加熱するようにし、これと同時に裏面を必
要に応じて積極的に冷却できるようにしたので、粉末成
形体の表裏間に温度勾配を与えることができる。
[Effects of the Invention] As specifically explained above in conjunction with the examples, according to the temperature gradient addition sintering method of the present invention, the powder compact is heated to around the sintering start temperature, and then the surface is irradiated with a laser. Since only the front surface is heated and at the same time the back surface can be actively cooled as required, a temperature gradient can be created between the front and back surfaces of the powder compact.

したがって、セラミックスと金属などの異種材料の傾斜
機能材料や均一材料で組織に傾斜機能を与える傾斜機能
材料などであっても容易に焼結することができる。
Therefore, it is possible to easily sinter even functionally graded materials made of different materials such as ceramics and metals, and functionally graded materials that are uniform materials and which provide graded functions to the structure.

また、この発明の温度傾斜付加焼結装置によれば、焼結
炉によって粉末成形体を焼結開始温度付近まで加熱でき
るとともに、雰囲気設定装置で真空や不活性ガスなどの
所定の雰囲気に焼結炉内をすることができ、この状態で
さらに、レーザー加熱装置によって表面にレーザーを照
射して表面のみを加熱するとともに、冷却装置で裏面を
必要に応じて積極的に冷却することができるので、粉末
成形体に表裏間で温度勾配を与えることができる。
Further, according to the temperature gradient sintering device of the present invention, the powder compact can be heated to around the sintering start temperature using the sintering furnace, and the sintering can be performed in a predetermined atmosphere such as vacuum or inert gas using the atmosphere setting device. In this state, the laser heating device irradiates the surface with a laser to heat only the surface, and the cooling device actively cools the back surface as necessary. It is possible to provide a temperature gradient between the front and back sides of the powder compact.

したがって、セラミックスと金属などの異種材料の傾斜
機能材料や均一材料で組織に傾斜機能を与える傾斜機能
材料などであっても容易に焼結することができる。
Therefore, it is possible to easily sinter even functionally graded materials made of different materials such as ceramics and metals, and functionally graded materials that are uniform materials and which provide graded functions to the structure.

また、これら温度傾斜付加焼結方法及びその装置によれ
ば、表面の加熱をレーザーを用いるようにしているので
、粉末成形体の厚さが薄い場合にも、表面層の局部加熱
ができ、厚さが1〜1o■程度の薄いものであっても表
裏間に温度勾配を与えることができる。
Furthermore, according to these temperature gradient addition sintering methods and apparatuses, since a laser is used to heat the surface, even when the thickness of the powder compact is thin, the surface layer can be locally heated and the thickness can be increased. Even if it is thin, with a thickness of about 1 to 1°, it is possible to create a temperature gradient between the front and back sides.

さらに、レーザー加熱装置で温度傾斜を付加するように
しているので、均一加熱している焼結炉等の外部からの
加熱が可能であり、加熱量の制御や加熱装置の保守管理
が容易となる。
Furthermore, since the laser heating device adds a temperature gradient, it is possible to heat the sintering furnace from the outside, which provides uniform heating, making it easier to control the amount of heating and maintain the heating device. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の温度傾斜付加焼結装置の一実施例に
かかる概略構成図である。 第2図(A) 、 (B)はこの発明によるレーザー照
射パターンによる温度分布の影響についての実験結果の
説明図である。 第3図(A) 、 (B)はこの発明によるレーザー照
射による温度分布についての実験結果の説明図である。 第4図(A) 、 (B)はこの発明によるレーザー照
射による温度傾斜付加焼結についての実験結果の説明図
である。 10:温度傾斜付加焼結装置、13:焼結炉、17:雰
囲気設定装置、22:レーザー加熱装置、25:冷却装
置、W:粉末成形体。
FIG. 1 is a schematic diagram of an embodiment of the temperature gradient sintering apparatus of the present invention. FIGS. 2(A) and 2(B) are explanatory diagrams of experimental results regarding the influence of temperature distribution by the laser irradiation pattern according to the present invention. FIGS. 3(A) and 3(B) are explanatory diagrams of experimental results regarding temperature distribution due to laser irradiation according to the present invention. FIGS. 4(A) and 4(B) are explanatory diagrams of experimental results regarding temperature gradient addition sintering by laser irradiation according to the present invention. 10: Temperature gradient addition sintering device, 13: Sintering furnace, 17: Atmosphere setting device, 22: Laser heating device, 25: Cooling device, W: Powder compact.

Claims (2)

【特許請求の範囲】[Claims] (1)粉末成形体を焼結するに際し、粉末成形体を焼結
開始温度付近まで加熱した上、粉末成形体表面にレーザ
ー光を照射して加熱すると同時に、裏面を必要に応じて
冷却して表裏間で温度勾配を与えて焼結するようにした
ことを特徴とする温度傾斜付加焼結方法。
(1) When sintering a powder compact, the powder compact is heated to around the sintering start temperature, and the surface of the powder compact is heated by irradiating a laser beam, and at the same time, the back side is cooled as necessary. A temperature gradient addition sintering method characterized in that sintering is performed by giving a temperature gradient between the front and back surfaces.
(2)粉末成形体を焼結開始温度付近まで加熱する焼結
炉と、この焼結炉内部を所定の雰囲気に設定する雰囲気
設定装置と、前記焼結炉内の粉末成形体の表面にレーザ
ー光を照射して加熱するレーザー加熱装置と、前記焼結
炉内の粉末成形体の裏面を必要に応じて冷却する冷却装
置とでなり、粉末成形体の表裏間に温度勾配を与えて焼
結することを特徴とする温度傾斜付加焼結装置。
(2) A sintering furnace that heats the powder compact to around the sintering start temperature, an atmosphere setting device that sets the inside of this sintering furnace to a predetermined atmosphere, and a laser beam applied to the surface of the powder compact in the sintering furnace. It consists of a laser heating device that heats the powder compact by irradiating it with light, and a cooling device that cools the back side of the powder compact in the sintering furnace as necessary, and creates a temperature gradient between the front and back surfaces of the powder compact to sinter the powder compact. A temperature gradient addition sintering device characterized by:
JP1284269A 1989-10-31 1989-10-31 Temperature gradient addition sintering method and apparatus Expired - Lifetime JP2798280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1284269A JP2798280B2 (en) 1989-10-31 1989-10-31 Temperature gradient addition sintering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284269A JP2798280B2 (en) 1989-10-31 1989-10-31 Temperature gradient addition sintering method and apparatus

Publications (2)

Publication Number Publication Date
JPH03146603A true JPH03146603A (en) 1991-06-21
JP2798280B2 JP2798280B2 (en) 1998-09-17

Family

ID=17676343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284269A Expired - Lifetime JP2798280B2 (en) 1989-10-31 1989-10-31 Temperature gradient addition sintering method and apparatus

Country Status (1)

Country Link
JP (1) JP2798280B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
CN103785835A (en) * 2014-03-04 2014-05-14 山东大学 Manufacturing method for preventing deforming and cracking when large-size complex titanium alloy parts are in three-dimensional printing
CN104772460A (en) * 2015-04-17 2015-07-15 华中科技大学 Ionized cluster beam 3D (Three-Dimensional) printing device and ionized cluster beam 3D printing method
CN106001575A (en) * 2016-07-25 2016-10-12 中北大学 Selective laser sintering SLS laid powder preheating device
CN106623928A (en) * 2016-12-18 2017-05-10 北京工业大学 Device for entering and exiting of shielding gas on two sides of forming bin of metal 3D printing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815985B (en) * 2015-04-22 2018-01-05 华南理工大学 A kind of microplasma 3D printing apparatus and method for

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502890A (en) * 1986-10-17 1989-10-05 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム How to manufacture parts by selective sintering

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502890A (en) * 1986-10-17 1989-10-05 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム How to manufacture parts by selective sintering

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
CN103785835A (en) * 2014-03-04 2014-05-14 山东大学 Manufacturing method for preventing deforming and cracking when large-size complex titanium alloy parts are in three-dimensional printing
CN104772460A (en) * 2015-04-17 2015-07-15 华中科技大学 Ionized cluster beam 3D (Three-Dimensional) printing device and ionized cluster beam 3D printing method
CN106001575A (en) * 2016-07-25 2016-10-12 中北大学 Selective laser sintering SLS laid powder preheating device
CN106623928A (en) * 2016-12-18 2017-05-10 北京工业大学 Device for entering and exiting of shielding gas on two sides of forming bin of metal 3D printing equipment

Also Published As

Publication number Publication date
JP2798280B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US11446766B2 (en) Layered manufacturing of single crystal alloy components
US8502107B2 (en) Method and apparatus for making products by sintering and/or melting
CN105026076B (en) Apparatus and method for producing the workpiece with customization microstructure
JP3630678B2 (en) Powder sintering equipment
US6617546B2 (en) Method and device for selective laser sintering
US20150050463A1 (en) Rapid prototyping model, powder rapid prototyping apparatus and powder rapid prototyping method
JP2798281B2 (en) Particle array laser sintering method and apparatus
US20130055568A1 (en) Method and device for producing a component
CN109622954A (en) Styling apparatus is laminated and the manufacturing method of moulder is laminated
JP2017185804A (en) Apparatus and method for selective laser sintering of object with void
US11279082B2 (en) Generative manufacturing of components with a heatable building platform and apparatus for implementing this method
ATE171099T1 (en) PRODUCTION OF OBJECTS BY COMPOUNDING PRE-TREATED POWDERS
EP3670031A1 (en) Method and system for generating a three-dimensional workpiece
JP6157002B2 (en) Molten layer laminated structure manufacturing apparatus, molten layer laminated structure manufacturing method, and molten layer laminated structure
JPH03146603A (en) Sintering method for adding temperature gradation and device thereof
Benda Temperature-controlled selective laser sintering
JP2003321704A (en) Lamination shaping method and lamination shaping apparatus used in the same
KR100841039B1 (en) Microwave sintering system
JPH0686337B2 (en) Degreasing method for powder molded products
EP3670030A1 (en) Method and system for generating a three-dimensional workpiece
Cubero et al. Large enhancement of thermal conductance at ambient and cryogenic temperatures by laser remelting of plasma-sprayed Al2O3 coatings on Cu
TWI781362B (en) Metal three-dimensional printing method with variable sintering thermal energy
US6663826B1 (en) Method of high-density foil fabrication
KR102323066B1 (en) Dental furnace
Streek et al. Laser micro sintering of SiO2 with an NIR-Laser

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term