JPH03145006A - Conductive resin composition - Google Patents

Conductive resin composition

Info

Publication number
JPH03145006A
JPH03145006A JP28069389A JP28069389A JPH03145006A JP H03145006 A JPH03145006 A JP H03145006A JP 28069389 A JP28069389 A JP 28069389A JP 28069389 A JP28069389 A JP 28069389A JP H03145006 A JPH03145006 A JP H03145006A
Authority
JP
Japan
Prior art keywords
zinc oxide
tetrapod
oxide whiskers
metal fiber
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28069389A
Other languages
Japanese (ja)
Inventor
Minoru Ishikawa
石川 實
Michio Okuno
奥野 道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28069389A priority Critical patent/JPH03145006A/en
Publication of JPH03145006A publication Critical patent/JPH03145006A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a deterioration in performance in the use for a long time by adding a specific amount of a mixture mixing a specific metal fiber and a tetrapod-form of zink oxide whisker at a specific ratio, to a thermal-plastic resin. CONSTITUTION:A metal fiber of the aspect ratio 100 to 1000, and the tensile strength 80kg/mm<2>, and a tetrapod-form of zink oxide whisker 1 are mixed in the scope 2:8 to 8:2 (wt, ratio), and the resultant mixture is added 5 to 40wt.% to a thermal-plastic resin to compose a conductive resin composition. By adding the zink oxide whisker 1 and the metal fiber at a time in such a way, the electromagnetic wave shielding property of an injection moulding product is increased, and at the same time, by the synergism of both members, a deterioration in performance in the use for a long time can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気、電子機器等のハウジングに導電性を付与
するための熱可塑性樹脂に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermoplastic resin for imparting electrical conductivity to housings of electrical and electronic equipment.

(従来の技術] コンピュータ、ワードプロセッサー、ファクシミリ等の
電子機器のハウジングは、軽量化とコストダウンを目的
としてABS樹脂、ポリカーボネート樹脂等の熱可塑性
樹脂の射出成形品が多く用いられている。然しなから上
記熱可塑性樹脂のみでは、電子機器から放射される電磁
波を遮断する事が出来ず、又外部からの電磁波の侵入を
防止する事も出来ないので、電子機器相互の干渉によっ
てこれら電子機器が誤動作するという問題に大きな社会
的関心がもたれている。
(Prior Art) Injection molded products of thermoplastic resins such as ABS resin and polycarbonate resin are often used for the housings of electronic devices such as computers, word processors, and facsimile machines in order to reduce weight and cost. The above-mentioned thermoplastic resin alone cannot block electromagnetic waves emitted from electronic devices, nor can it prevent electromagnetic waves from entering from outside, so these electronic devices may malfunction due to interference with each other. There is great social interest in this issue.

電磁波の漏洩を防止する方法としては回路自体をt磁波
が発生しない様に設計変更する方法もあるが、ハウジン
グに導電性を付与して電磁波をシールドする方法が普遍
性があり望ましい、ハウジングに導電性を持たせる方法
としては、例えばZn等の低融点金属をハウジング内壁
に溶射する方法、Ni等の金属をメ・ンキする方法、A
g、Ni、Cu粉等をベースとする導電性塗料を塗布す
る方法、金属箔を貼り付ける方法等が知られている。
One way to prevent leakage of electromagnetic waves is to change the design of the circuit itself so that no magnetic waves are generated, but it is universal and desirable to shield electromagnetic waves by adding conductivity to the housing. Examples of methods for imparting properties include spraying a low melting point metal such as Zn onto the inner wall of the housing, coating the inner wall of the housing with a metal such as Ni, and A.
A method of applying a conductive paint based on G, Ni, Cu powder, etc., a method of pasting a metal foil, etc. are known.

然しなからこれらの方法は従来の射出成形の後に別の工
程が付加される事になり、製造ラインの変更等大幅なコ
ストアップをもたらすというマイナス効果が大きい。
However, these methods have the negative effect of adding another step after the conventional injection molding, resulting in a significant increase in costs such as changes in the production line.

近年、従来の製造工程をそのまま使用出来る導電性樹脂
を射出成形する方法、即ち熱可塑性樹脂の中に金属繊維
を添加配合し、金属繊維同士のからみ合いによって導電
性を持たせる方法が有力視されている。
In recent years, a method of injection molding conductive resin that allows conventional manufacturing processes to be used as is, that is, a method of adding metal fibers to thermoplastic resin and making it conductive by intertwining the metal fibers, has become a promising method. ing.

前記熱可塑性樹脂に添加される金属繊維としては、アル
ミニウム、銅、黄銅等の銅合金、ステンレス、タングス
テン、モリブテン等があり、5〜5QBφの直径のもの
を100〜10000本束ねた金属繊維束即ち金属フィ
ラーが使用される。これらの金属繊維束はその周囲を樹
脂で被覆一体化され、これを3〜30mの長さに切断し
たものがマトリックスとなる熱可塑性樹脂ベレット中に
適当量配合され、射出成形に供せられている。
The metal fibers added to the thermoplastic resin include aluminum, copper alloys such as brass, stainless steel, tungsten, molybdenum, etc., and metal fiber bundles of 100 to 10,000 fibers with a diameter of 5 to 5 QBφ are used. Metal fillers are used. These metal fiber bundles are integrally coated with resin around them, and cut into lengths of 3 to 30 m, which are blended in appropriate amounts into thermoplastic resin pellets that serve as a matrix, and then subjected to injection molding. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記金属繊維の内、アルミニウムや銅、黄銅等の銅合金
は導電性に優れていると共に比較的安価であるという利
点を有しているが、射出成形品の電磁波シールド特性が
長期間使用中に劣化するという問題があり、導電性があ
まり良好でなく、コスト面でも不利なステンレスが一般
に使用されてきた。然しなから当該ステンレスの特にコ
スト面での問題は本方式の長所である低コストで製造出
来るという利点を打ち消すものであり、その為導電性樹
脂の使用の普及が遅れていた。この様に前記導電性樹脂
を射出成形する方法は原理的には優れていると認識され
ているものの、コストと電磁波シールド特性とが両立す
る金属繊維がなく、上記問題点の解決が強く望まれてい
る。
Among the metal fibers mentioned above, copper alloys such as aluminum, copper, and brass have the advantage of having excellent conductivity and being relatively inexpensive, but the electromagnetic shielding properties of injection molded products may deteriorate during long-term use. Stainless steel has been commonly used because it has problems of deterioration, poor conductivity, and is disadvantageous in terms of cost. However, the problem with the stainless steel, particularly in terms of cost, negates the advantage of this method, which is that it can be manufactured at low cost, and as a result, the widespread use of conductive resin has been delayed. Although the method of injection molding the conductive resin is recognized to be excellent in principle, there is no metal fiber that is compatible with both cost and electromagnetic shielding properties, and a solution to the above problems is strongly desired. ing.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、安価で且つ導電性が良
好であり、しかも長期間使用しても射出成形品の電磁波
シールド特性が劣化する事がない信頼性に優れた導電性
樹脂&II或物を提供する事である。
The present invention was made as a result of intensive studies in view of the above points, and its purpose is to provide an injection molded product that is inexpensive, has good conductivity, and maintains the electromagnetic shielding properties of an injection molded product even after long-term use. It is an object of the present invention to provide a highly reliable conductive resin & II material that does not deteriorate.

即ち本発明は、アスペクト比100〜1000でかつ引
張強さ80kg/−以上の金属繊維とテトラポット状の
酸化亜鉛ウィスカーを2:8〜8:2(重量比)の範囲
で混合した混合物を、熱可塑性樹脂に5〜40−t%添
加した導電性樹脂組成物である。
That is, the present invention provides a mixture of metal fibers with an aspect ratio of 100 to 1000 and a tensile strength of 80 kg/- or more and tetrapod-shaped zinc oxide whiskers in a range of 2:8 to 8:2 (weight ratio), It is a conductive resin composition in which 5 to 40-t% is added to a thermoplastic resin.

〔作用〕[Effect]

酸化亜鉛ウィスカーと金属繊維を同時に添加する事によ
って射出成形品の電磁波シールド特性を高めると共に、
これらの両者の相乗効果によって長期間使用時における
特性劣化を防止したものである。
By adding zinc oxide whiskers and metal fibers at the same time, we can improve the electromagnetic shielding properties of injection molded products.
The synergistic effect of these two prevents characteristic deterioration during long-term use.

即ち、酸化亜鉛ウィスカーと金属繊維を同時に添加する
ことが重要であって、酸化亜鉛ウィスカーのみ添加した
場合は長期間使用時における特性劣化は多少少なくはな
るものの、実用上問題がない程度に迄特性劣化を防止す
ることは出来ない。
In other words, it is important to add zinc oxide whiskers and metal fibers at the same time; if only zinc oxide whiskers are added, the deterioration of properties during long-term use will be somewhat reduced, but the properties will not deteriorate to the point where there is no practical problem. Deterioration cannot be prevented.

次に本発明における限定理由について説明する。Next, the reasons for limitations in the present invention will be explained.

アスペクト比を100〜1000としたのは酸化亜鉛ウ
ィスカーと金属繊維は上述の様に電磁波シールド特性を
改善するものであるが、金属繊維のアスペクト比が10
0未満では、射出成形品内での金属繊維同士のからみ合
いが不十分になり電磁波シールド効果が低下する。又1
000を超えると金属繊維の長さが長くなり射出成形が
困難になる。
The reason why the aspect ratio is set to 100 to 1000 is that zinc oxide whiskers and metal fibers improve the electromagnetic shielding properties as mentioned above, but the aspect ratio of metal fibers is 10.
If it is less than 0, the intertwining of the metal fibers within the injection molded product will be insufficient and the electromagnetic shielding effect will be reduced. Again 1
If it exceeds 000, the length of the metal fiber becomes long and injection molding becomes difficult.

又金属繊維の引張強さが80kg/−未満では、金属繊
維の強度が低すぎるため射出成形時の剪断力によって細
かく破断してしまい、やはり電磁波シールド効果が低下
する。
If the tensile strength of the metal fiber is less than 80 kg/-, the strength of the metal fiber is so low that it will break into small pieces due to the shearing force during injection molding, which will also reduce the electromagnetic shielding effect.

酸化亜鉛ウィスカーはテトラポット状、即ち第1図にそ
の概略を示す様に、A、B、C,Dを頂点とする正四面
体の重心OからA、B、C,Dの4方向に針状に伸びた
形状であり、この独特の形状が電磁波シールド特性を改
善するものであるが、一般的な針状結晶の酸化亜鉛ウィ
スカーでは電磁波シールド特性を改善する効果が小さい
Zinc oxide whiskers are tetrapod-shaped, that is, as shown schematically in Figure 1, they form needles in four directions A, B, C, and D from the center of gravity O of a regular tetrahedron with vertices A, B, C, and D. This unique shape improves the electromagnetic shielding properties, but the effect of improving the electromagnetic shielding properties is small with typical needle-shaped zinc oxide whiskers.

金属繊維と酸化亜鉛ウィスカーの混合比を2=8〜8:
2としたのは、金属繊維が少なすぎたり多すぎたり、又
酸化亜鉛ウィスカーが少なすぎたり多すぎたりすると金
属繊維と酸化亜鉛ウィスカーの共存効果が低下し電磁波
シールド特性が低下する為である。
The mixing ratio of metal fibers and zinc oxide whiskers is 2=8 to 8:
The reason why it is set as 2 is because if there are too few or too many metal fibers, or if there are too few or too many zinc oxide whiskers, the coexistence effect of the metal fibers and zinc oxide whiskers will decrease, and the electromagnetic shielding properties will deteriorate.

金属繊維と酸化亜鉛ウィスカーの熱可塑性樹脂への配合
量は5〜40wt%が適当であって、5wt%未満であ
ると、射出成形品内での金属繊維とテトラポット状の酸
化亜鉛ウィスカー同士の接合点の数が少なくなって電磁
波シールド効果、特にその長期間安定性が低下する。又
40wt%を超えると、電磁波シールド特性は良好であ
るがハウジングの重量が太き(なりすぎて、軽量である
という熱可塑性樹脂の長所が失われてしまう。
The appropriate blending amount of metal fibers and zinc oxide whiskers in the thermoplastic resin is 5 to 40 wt%, and if it is less than 5 wt%, the metal fibers and tetrapod-shaped zinc oxide whiskers will not interact with each other in the injection molded product. As the number of junction points decreases, the electromagnetic shielding effect, especially its long-term stability, decreases. If it exceeds 40 wt%, the electromagnetic shielding properties are good, but the weight of the housing becomes too thick (so that the advantage of the thermoplastic resin, which is its light weight, is lost).

[実施例] 次に本発明を実施例により更に具体的に説明する。[Example] Next, the present invention will be explained in more detail with reference to Examples.

実施例1 引張強さ100kg/−〇〇。05閣φの65/35黄
銅線を400本の束にして、この金属繊維の束にABS
樹脂を押出被覆した後、長さ3鵬、5n、Low。
Example 1 Tensile strength 100 kg/-〇〇. A bundle of 400 pieces of 65/35 brass wire with a diameter of 05 mm is made, and ABS is applied to this bundle of metal fibers.
After extrusion coating with resin, the length is 3h, 5n, Low.

50ma+、 60m5の5種類に切断したものを作製
した。
It was cut into five types: 50ma+ and 60m5.

それぞれのアスペクト比は60、100.200.10
00゜1200である。
The respective aspect ratios are 60, 100.200.10
00°1200.

当該ベレットとテトラポット状の酸化亜鉛ウィスカーを
金属繊維とテトラポット状状の酸化亜鉛ウィスカーの重
量比が1:1になる様に混合した後、ABS樹脂のペレ
ットに金属繊維とテトラポット状の酸化亜鉛ウィスカー
の配合量が20w t%になる様に配合して、導電性樹
脂組成物とした。この様にして製造した導電性樹脂&I
l威物を射出成形機に装填して、60x60x 3 m
の板状に射出成形した。
After mixing the pellet and the tetrapod-shaped zinc oxide whiskers so that the weight ratio of the metal fibers and the tetrapod-shaped zinc oxide whiskers is 1:1, the metal fibers and the tetrapod-shaped oxide whiskers are mixed into the ABS resin pellet. A conductive resin composition was prepared by blending zinc whiskers in an amount of 20 wt%. Conductive resin &I produced in this way
60 x 60 x 3 m by loading the material into the injection molding machine
It was injection molded into a plate shape.

この様にして得られた板状成形体について、−40°C
〜80’Cのヒートサイクル試験を100回繰返して行
い、ヒートサイクル試験前後の電磁波シールド特性を測
定し、第1表に示した。尚比較の為タフピッチ銅と77
3黄銅についても上記実施例と同様な評価を行い、その
結果も第1表に併記した。
Regarding the plate-shaped molded product obtained in this way, -40°C
The heat cycle test at ~80'C was repeated 100 times, and the electromagnetic shielding characteristics before and after the heat cycle test were measured and shown in Table 1. For comparison, tough pitch copper and 77
No. 3 brass was also evaluated in the same manner as in the above example, and the results are also listed in Table 1.

第1表から明らかな様に本発明別品Nα2〜4は、初期
(ヒートサイクル前)の電磁波シールド特性が優れてい
ると共に、ヒートサイクルを受けても(即ち長期間使用
しても)その特性が僅かしか低下しない。
As is clear from Table 1, the products Nα2 to 4 according to the present invention have excellent electromagnetic shielding properties at the initial stage (before heat cycling), and even after being subjected to heat cycling (that is, even after long-term use). decreases only slightly.

一方アスペクト比を60としたNtllは、電磁波シー
ルド特性が余り良好でなく、しかもヒートサイクルによ
りその特性が著しく低下する。又アスペクト比を120
0としたNα5は、ノズルが詰まって射出成形が出来な
かった。又従来別品として評価したNα6のタフピッチ
銅とNα7の7/3黄銅はヒートサイクルによる電磁波
シールド特性の劣化が顕著であった。
On the other hand, Ntll with an aspect ratio of 60 does not have very good electromagnetic shielding properties, and furthermore, the properties deteriorate significantly due to heat cycling. Also, the aspect ratio is 120
When Nα5 was set to 0, the nozzle was clogged and injection molding could not be performed. In addition, Nα6 tough pitch copper and Nα7 7/3 brass, which were previously evaluated as separate products, showed significant deterioration in electromagnetic shielding properties due to heat cycling.

実施例2 0.05aφの引張強さが60kg/d、80kg/d
、100 kg/lJ、120 kg / mJのリン
青銅繊維を、実施例1と同様な方法で同じ引張強さごと
に集束して、400本の束とした0次にこの金属繊維の
束にABS樹脂を押出被覆した後、アスペクト比が20
0になる長さ10ma+のベレットに切断し、当該ベレ
ッI・とテトラポット状の酸化亜鉛ウィスカーを金i繊
維とテトラポット状の酸化亜鉛ウィスカーの重量比がt
riになる様に混合した後、ABS樹脂のベレットに金
I21E繊維とテトラポット状の酸化亜鉛ウィスカーの
配合量が20wt%になる様に配合して、導電性樹脂組
成物とした。この様にして製造した導電性樹脂組成物を
実施例1と同様な形状に射出成形し、実施例1と同様な
方法でその電磁波シールド特性を評価した。その結果を
第2表に示した。
Example 2 Tensile strength of 0.05aφ is 60kg/d, 80kg/d
, 100 kg/lJ, and 120 kg/mJ were bundled into 400 bundles by the same method as in Example 1, each having the same tensile strength. After extrusion coating the resin, the aspect ratio is 20.
The pellet I and the tetrapod-shaped zinc oxide whiskers are cut into pellets with a length of 10 ma+ so that the weight ratio of the gold I fibers and the tetrapod-shaped zinc oxide whiskers is t.
After mixing to obtain ri, gold I21E fibers and tetrapod-shaped zinc oxide whiskers were mixed in an ABS resin pellet in an amount of 20 wt % to obtain a conductive resin composition. The conductive resin composition thus produced was injection molded into the same shape as in Example 1, and its electromagnetic shielding properties were evaluated in the same manner as in Example 1. The results are shown in Table 2.

第2表から明らかな様にテトラポット状の酸化亜鉛ウィ
スカーと混合する金属繊維の引張強さが80kg/−の
磁2.100kg/−の臘3.120ぺ/−のN(L4
は初期(ヒートサイクル前)の電磁波シールド特性が優
れていると共に、ヒートサイクルを受けても(即ち長期
間使用しても)その特性が僅かしか低下しない、しかし
金属繊維の引張強さが60kg/−の?hlは、射出成
形時の剪断力によって11維が破断し、1を磁波シール
ド特性が余り良好でなかった。
As is clear from Table 2, the tensile strength of the metal fibers mixed with the tetrapod-shaped zinc oxide whiskers is 2.100 kg/- and 3.120 p/- of N (L4
has excellent initial electromagnetic shielding properties (before heat cycling), and its properties only slightly deteriorate even after heat cycling (that is, even after long-term use). However, the tensile strength of the metal fiber is 60 kg/ -? In hl, 11 fibers were broken due to shearing force during injection molding, and 1 had poor magnetic shielding properties.

実施例3 引張強さが100kg/−の0.05IIIlφ65/
35黄銅線を多数本集束して400本の束とした。
Example 3 0.05IIIlφ65/ with tensile strength of 100kg/-
A large number of 35 brass wires were bundled into a bundle of 400 wires.

実施例1と同じ方法でこの金属繊維の束にABS樹脂を
押出被覆した後で、アスペクト比が200になる長さ1
0mmのベレットに切断した。当該ベレットとテトラポ
ット状又は針状結晶の酸化亜鉛ウィスカーを金属繊維と
テトラポット状又は針状結晶の酸化亜鉛ウィスカーの重
量比が1:1になる様に混合した後、ABS樹脂のベレ
・ントに金属繊維とテトラポット状又は針状結晶の酸化
亜鉛ウィスカーの配合量が20w t%になる様にして
配合して導電性樹脂組成物とした。
After extrusion coating this metal fiber bundle with ABS resin in the same manner as in Example 1, a length of 1 with an aspect ratio of 200 was obtained.
It was cut into 0 mm pellets. After mixing the beret and the zinc oxide whiskers in the form of tetrapods or needles so that the weight ratio of the metal fibers and the zinc oxide whiskers in the form of tetrapods or needles is 1:1, the beret of the ABS resin is mixed. A conductive resin composition was prepared by blending metal fibers and tetrapod-shaped or needle-shaped zinc oxide whiskers in an amount of 20 wt %.

この様にして製造した導電性樹脂組成物を実施例1と同
様な形状に射出成形し、実施例1と同様な方法でその電
磁波シールド特性を評価した。その結果を第3表に示し
た。
The conductive resin composition thus produced was injection molded into the same shape as in Example 1, and its electromagnetic shielding properties were evaluated in the same manner as in Example 1. The results are shown in Table 3.

第3表から明らかな様にテトラポット状の酸化亜鉛ウィ
スカーを添加したf’h2は、金属繊維とテトラポット
状の酸化亜鉛ウィスカーの接合が確実になってtfn波
シールド特性が向上しており、特にヒートサイクルを受
けても特性劣化を生じなく、長期安定性に優れている。
As is clear from Table 3, f'h2 containing tetrapod-shaped zinc oxide whiskers has improved TFN wave shielding properties due to the secure bonding between the metal fiber and the tetrapod-shaped zinc oxide whiskers. In particular, it exhibits excellent long-term stability with no characteristic deterioration even when subjected to heat cycles.

針状結晶の酸化亜鉛ウィスカーを添加したN(11は、
酸化亜鉛ウィスカー同士の連結がない為初期(ヒートサ
イクル前)のt磁波シールド特性が劣り、又ヒートサイ
クルによる電磁波シールド特性の劣化が顕著であった。
N (11 is
Since the zinc oxide whiskers were not connected to each other, the initial (before heat cycle) t-magnetic wave shielding properties were poor, and the electromagnetic wave shielding properties deteriorated significantly due to the heat cycle.

実施例4 引張強さが100kg/−の0.05mφ65/35黄
銅線を多数本集束し、400本の束にして、実施例1と
同じ方法でこの金属繊維の束にABS樹脂を押出被覆し
た後、アスペクト比が200になる長さ10mのベレッ
トに切断した。当3亥ベレットとテトラポット状の酸化
亜鉛ウィスカーを金属繊維とテトラポット状の酸化亜鉛
ウィスカーの重量比が1+9.2:8.5:5.8:2
.9:lになる様に混合した後、ABS樹脂のベレット
に金属繊維とテトラポ・ント状の酸化亜鉛ウィスカーの
配合量が20@t%になる様に配合して、導電性樹脂組
成物とした。
Example 4 A large number of 0.05 mφ65/35 brass wires with a tensile strength of 100 kg/- were bundled into 400 bundles, and the metal fiber bundle was extruded and coated with ABS resin in the same manner as in Example 1. Thereafter, it was cut into pellets with a length of 10 m and an aspect ratio of 200. The weight ratio of the pellet and the tetrapod-shaped zinc oxide whisker to the metal fiber and the tetrapod-shaped zinc oxide whisker is 1+9.2:8.5:5.8:2.
.. After mixing at a ratio of 9:1, metal fibers and tetraponte-shaped zinc oxide whiskers were mixed into an ABS resin pellet at a blending amount of 20@t% to obtain a conductive resin composition. .

この様にして製造した導電性樹脂組成物を実施例1と同
様な形状に射出成形し、実施例1と同様な方法でその電
磁波シールド特性を評価した。その結果を第4表に示し
た。
The conductive resin composition thus produced was injection molded into the same shape as in Example 1, and its electromagnetic shielding properties were evaluated in the same manner as in Example 1. The results are shown in Table 4.

第4表から明らかな様に金属繊維:テトラポット状の酸
化亜鉛ウィスカー−2:SのN[L2.5:5の?41
13.8:2の磁4は初期(ヒートサイクル前)の電磁
波シールド特性が優れていると共に、ヒートサイクルを
受けても(即ち長期間使用しても)その特性が低下しな
い、一方、金属繊維:テトラポット状の酸化亜鉛ウィス
カー−1:9の隠1や9+1の磁5は金属繊維とテトラ
ポット状の酸化亜鉛ウィスカーの両者の相乗効果が低い
ため、ヒートサイクルによる電磁波シールド特性の劣化
が顕著であった。
As is clear from Table 4, metal fibers: tetrapod-shaped zinc oxide whiskers - 2:S of N[L2.5:5? 41
13.8:2 magnetic 4 has excellent electromagnetic shielding properties at the initial stage (before heat cycling), and its properties do not deteriorate even after being subjected to heat cycling (i.e., even after long-term use).On the other hand, metal fiber : Tetrapod-shaped zinc oxide whiskers - 1:9 Hidden 1 and 9+1 Magnetic 5 have a low synergistic effect between the metal fiber and tetrapod-shaped zinc oxide whiskers, so the electromagnetic shielding properties deteriorate significantly due to heat cycles. Met.

実施例5 引張強さが100kg/−の0.05mφ65/351
銅線を多数本集束し、400本の束にして、実施例1と
同じ方法でこの金属繊維の束にABS樹脂を押出被覆し
た後で、アスペクト比が200になる長さ1〇−のベレ
ットに切断した。当該ベレットとテトラポット状の酸化
亜鉛ウィスカーを金属繊維とテトラポット状の酸化亜鉛
ウィスカーの重量比が1:1になる欅に混合した混合物
をABS樹脂のベレットに3wt%、5wt%、2〇w
t%、40−t%、60w t%に配合して、導電性樹
脂組成物とした。この様にして製造した導電性樹脂Mi
戒物を実施例1と同様な形状に射出成形し、実施例1と
同様な方法でその電磁波シールド特性を評価した。その
結果を第5表に示した。
Example 5 0.05mφ65/351 with tensile strength of 100kg/-
A large number of copper wires are bundled into a bundle of 400 wires, and the bundle of metal fibers is extruded and coated with ABS resin in the same manner as in Example 1, and then a 10-length pellet with an aspect ratio of 200 is obtained. It was cut into A mixture of the pellet and tetrapod-shaped zinc oxide whiskers mixed in keyaki with a weight ratio of metal fiber and tetrapod-shaped zinc oxide whisker of 1:1 was added to the ABS resin pellet at 3wt%, 5wt%, and 20w.
t%, 40-t%, and 60wt% to prepare a conductive resin composition. Conductive resin Mi produced in this way
The samurai was injection molded into the same shape as in Example 1, and its electromagnetic shielding characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 5.

第5表から明らかな様に配合量が5wt%のNCL2.
20wt%のNt13.40w t%のNa4.60w
t%の阻5は、初期(ヒートサイクル前)のT4磁波シ
ールド特性が優れていると共にヒートサイクルを受けて
も(即ち長期間使用しても)その特性が低下しない。
As is clear from Table 5, NCL2.
20wt% Nt 13.40w t% Na4.60w
The t% ratio of 5 is that the initial T4 magnetic wave shielding properties (before heat cycle) are excellent, and the properties do not deteriorate even after being subjected to heat cycle (that is, even after long-term use).

ぬ5は電磁波シールド特性に優れているが、配合量が6
0wt%と多いため射出成形品の重量が大きくなりtm
波をシールドするハウジングには適当でない。
Nu5 has excellent electromagnetic shielding properties, but the blended amount is 6.
Since the amount is 0wt%, the weight of the injection molded product becomes large.
Not suitable for wave shielding housings.

配合量が3−1%のNα1は射出成形品内での金属繊維
とテトラポット状の酸化亜鉛ウィスカーとの接合点の数
が少なくなって電磁波シールド特性の改善するまでは至
らなかった。
When Nα1 was added in an amount of 3-1%, the number of bonding points between the metal fiber and the tetrapod-shaped zinc oxide whiskers in the injection molded product was reduced, and the electromagnetic shielding properties were not improved.

〔発明の効果〕〔Effect of the invention〕

以上述べた如(本発明による金属繊維は低コストであっ
て、しかも当該金riJ4繊維を熱可塑性樹脂に配合し
た導電性樹脂組成物を射出成形して得られる成形品は優
れた電磁波シールド効果を有していて、長期間使用して
もその特性が劣化する事がない、従って本発明による金
属繊維を電気、電子機器等のハウジングの熱可塑性樹脂
に添加する事によって、電磁波障害を効率良く解消する
事が出来、工業上顕著な効果を奏するものである。
As stated above, the metal fibers of the present invention are low in cost, and the molded products obtained by injection molding of the conductive resin composition in which the gold RIJ4 fibers are blended with a thermoplastic resin have excellent electromagnetic shielding effects. Therefore, by adding the metal fiber according to the present invention to the thermoplastic resin of the housing of electrical and electronic equipment, electromagnetic interference can be efficiently eliminated. It is possible to do this, and it has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はテトラポット状酸化亜鉛ウィスカーの形状の概
略説明図である。
FIG. 1 is a schematic illustration of the shape of tetrapot-shaped zinc oxide whiskers.

Claims (1)

【特許請求の範囲】[Claims]  アスペクト比100〜1000でかつ引張強さ80k
g/mm^2以上の金属繊維とテトラポット状の酸化亜
鉛ウィスカーを2:8〜8:2(重量比)の範囲で混合
した混合物を、熱可塑性樹脂に5〜40wt%添加した
導電性樹脂組成物。
Aspect ratio 100-1000 and tensile strength 80k
A conductive resin in which 5 to 40 wt% of a mixture of metal fibers of g/mm^2 or more and tetrapod-shaped zinc oxide whiskers in a range of 2:8 to 8:2 (weight ratio) is added to a thermoplastic resin. Composition.
JP28069389A 1989-10-28 1989-10-28 Conductive resin composition Pending JPH03145006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28069389A JPH03145006A (en) 1989-10-28 1989-10-28 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28069389A JPH03145006A (en) 1989-10-28 1989-10-28 Conductive resin composition

Publications (1)

Publication Number Publication Date
JPH03145006A true JPH03145006A (en) 1991-06-20

Family

ID=17628630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28069389A Pending JPH03145006A (en) 1989-10-28 1989-10-28 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPH03145006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289004A (en) * 1990-04-04 1991-12-19 Matsushita Electric Ind Co Ltd Conductive resin composite
JPH05117447A (en) * 1991-10-31 1993-05-14 Matsushita Electric Ind Co Ltd Conductive resin composition and container for electronic part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289004A (en) * 1990-04-04 1991-12-19 Matsushita Electric Ind Co Ltd Conductive resin composite
JPH05117447A (en) * 1991-10-31 1993-05-14 Matsushita Electric Ind Co Ltd Conductive resin composition and container for electronic part

Similar Documents

Publication Publication Date Title
EP0131067B1 (en) Conductive synthetic resin molding material
JPH03145006A (en) Conductive resin composition
JPH0419644B2 (en)
JPH03138808A (en) Electrically conductive resin component material and its moldings
JPS60134500A (en) Electromagnetic wave shielding material
JPS5922710A (en) Manufacture of electroconductive molding material
JPH02250203A (en) Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JPH0319862B2 (en)
JPS61287962A (en) Electrically conductive composite resin composition
JPS6392672A (en) Conductive thermoplastic resin composition
JPH0757489B2 (en) Method for producing conductive fiber composite resin
JPH0344434A (en) Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPH03200874A (en) Conductive resin composition
JPH03138330A (en) Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPH02155724A (en) Manufacture of molded electromagnetic shield product
JPS61265803A (en) Manufacture of electromagnetic-wave shielding material
JPS5923595A (en) Electromagnetic shielding material
JP2633920B2 (en) Molding resin composition having conductivity and electromagnetic wave shielding structure
JP2004027097A (en) Thermoplastic resin composition
JPH03268398A (en) Pellet for electromagnetic shield molding and manufacture of enclosure of electromagnetic shield type
JPH0344435A (en) Copper alloy fiber and copper alloy fiber bundle for adding to conductive resin
JPH03200873A (en) Conductive thermoplastic resin composition
JPS62109853A (en) Electrically conductive resin composition
JPS63235368A (en) Electrically conductive resin composition and molded product thereof
JPS61100415A (en) Electrically-conductive molding material