JPH031434A - Ion implantation amount control method - Google Patents

Ion implantation amount control method

Info

Publication number
JPH031434A
JPH031434A JP1135064A JP13506489A JPH031434A JP H031434 A JPH031434 A JP H031434A JP 1135064 A JP1135064 A JP 1135064A JP 13506489 A JP13506489 A JP 13506489A JP H031434 A JPH031434 A JP H031434A
Authority
JP
Japan
Prior art keywords
ion beam
disk
ion
beam current
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1135064A
Other languages
Japanese (ja)
Other versions
JPH0828206B2 (en
Inventor
Kazunori Hosokawa
和則 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1135064A priority Critical patent/JPH0828206B2/en
Publication of JPH031434A publication Critical patent/JPH031434A/en
Publication of JPH0828206B2 publication Critical patent/JPH0828206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the amount of ion implantation uniform by controlling this amount of ion implantation, wherein the change in the atmospheric degree of vacuum caused by the out-gas and the change in the beam current caused by electric discharges are taken into consideration. CONSTITUTION:An ion beam passes through a slit 14 in a disc 1 and irradiates a wafer 2. The amount of ion beam implantation is dependent upon the revolving speed of this disc 1, the ion beam scanning in the radial direction, and the intensity of the beam current. The ion beam pulses are measured by a Faraday 4 located behind the disc 1. In the case of poor vacuum atmosphere due to generation of out-gas, the intensity of the ion beam pulses measured outside of the disc 1 shall be assumed as constant, and the ion beam intensity is measured through the slit 14 under a certain determined time when electric discharge has occurred, and the scanning speed is altered. In the case of good degree of vacuum the scanning speed is controlled with the ion beam pulse intensity measured through the slit 14.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は半導体集積回路等の製造の一工程に用いられる
イオン注入装置のイオン注入量制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the amount of ion implantation in an ion implanter used in a step of manufacturing semiconductor integrated circuits and the like.

〔従来の技術〕[Conventional technology]

従来のイオン注入制御方法としては、第4図に示すよう
にディスクlの径方向にあけられたスリット14を通過
したイオンビームパルスをディスクl後方に設けられた
ファラデーで受け、これをウェハ2上でのイオンビーム
電流に換算し、設定不純物注入量とビーム電流、設定不
純物注入量とビーム電流にて予め設定される走査回数に
より設定されるディスク中心からイオンビーム照射位置
までの距離に反比例した走査スピードにてディスクを走
査させることにより、均一な注入を行うものとなってい
た。
As shown in FIG. 4, in the conventional ion implantation control method, an ion beam pulse that has passed through a slit 14 formed in the radial direction of the disk L is received by a Faraday provided at the rear of the disk L, and is then transferred onto the wafer 2. Converted to ion beam current at , scanning is inversely proportional to the distance from the disk center to the ion beam irradiation position, which is set by the set impurity implantation amount and beam current, and the number of scans preset by the set impurity implantation amount and beam current. Uniform injection was achieved by scanning the disk at high speed.

[発明が解決しようとする課題] 上述した従来のイオン注入量制御方法は、ディスクの径
方向にあけられスリットを通過したイオンビームパルス
をディスク後方に設けられたファラデーで受け、これを
ウェハ上でのイオンビーム電流に換算しているため、ウ
ェハ上にレジストが塗布されていた場合、レジストにイ
オンビームが照射された瞬間レジストからガスが発生し
、このガス分子とイオンの衝突によりイオンビームが中
性化し、ウェハ上でのイオンビーム電流が見かけ上減少
してしまい、ウェハへの不純物注入量が中性化した分多
くなってしまうという欠点がある。
[Problems to be Solved by the Invention] In the conventional ion implantation amount control method described above, an ion beam pulse passed through a slit formed in the radial direction of the disk is received by a Faraday provided at the rear of the disk, and the pulse is transferred onto a wafer. Since the ion beam current is converted to ion beam current of This has the disadvantage that the ion beam current on the wafer is apparently reduced, and the amount of impurity implanted into the wafer increases by the amount of neutralization.

本発明の目的は前記課題を解決したイオン注入量制御方
法を提供することにある。
An object of the present invention is to provide an ion implantation amount control method that solves the above problems.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来のイオン注入量制御方法に対し、本発明は
レジストからのアウトガスにより真空度が悪い領域では
、ディスク走査中最も真空度が良いイオンビームがディ
スクに照射されていない状態でビーム電流を測定し、こ
のビームの安定性を確認した後、この値を一回のディス
ク走査中不変と考え、ただ一つのディスク中心からイオ
ンビーム照射位置までの距離に反比例した走査スピード
で注入を行い、真空度の変動によるビーム電流の変動を
無視し、放電による大幅なビーム電流の変動に対しては
常にこれを監視し、放電発生時の一定時間のみディスク
走査スピードを変更することでこれを補正し、レジスト
からのアウトガスが減少し真空度が良い領域では注入中
の測定ビーム電流によりディスク走査スピードを制御し
均一な注入を行うという相違点を有している。
In contrast to the conventional ion implantation amount control method described above, the present invention measures the beam current in a region where the degree of vacuum is poor due to outgassing from the resist, while the ion beam with the best degree of vacuum is not irradiating the disk during disk scanning. After confirming the stability of this beam, and assuming that this value remains unchanged during one disk scan, implantation is performed at a scanning speed that is inversely proportional to the distance from the center of a single disk to the ion beam irradiation position, and the vacuum level is We ignore changes in beam current due to fluctuations in beam current, constantly monitor changes in beam current caused by discharge, and correct this by changing the disk scanning speed only for a certain period of time when discharge occurs. The difference is that in a region where outgas from the plasma is reduced and the degree of vacuum is good, the disk scanning speed is controlled by the measurement beam current during implantation to perform uniform implantation.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するため、本発明に係るイオン注入量制
御方法は、半導体集積回路等のウェハへの不純物注入に
用いられる複数のウェハをディスク円周上に固定し回転
させながらディスク径方向に走査し均一な注入を行うタ
イプのイオン注入装置の不純物イオンビーム電流を測定
し不純物注入量を制御するイオン注入量制御方法におい
て、イオンビームが残留ガスとの衝突により中性化する
量が不純物注入精度許容範囲を超えてしまう真空度より
悪い領域では、ディスク径方向に走査する前にディスク
後方に設けられたファラデーにて不純物イオンビーム電
流を測定し、不純物注入量とビーム電流により予め設定
された走査回数と前記測定イオンビーム電流によりただ
一通りに決定されるディスク中心からイオンビーム照射
位置までの距離に反比例した走査スピードにて注入を行
い、イオンビームが残留ガスとの衝突により中性化する
量が不純物注入精度許容範囲を超えてしまう真空度より
良い領域では、ディスク径方向にあけられたスリットを
通過したイオンビームパルスをディスク後方のファラデ
ーにて測定し注入不純物イオンビーム電流に換算するこ
とにより、イオンビーム電流の変動及びイオンビーム照
射位置に応じたディスク走査スピードにてウェハへ不純
物イオンを注入するものである。また、本発明に係るイ
オン注入量制御方法においては、イオンビームが残留ガ
スとの衝突により中性化する量が不純物注入精度許容範
囲を超えてしまう真空度より悪い領域にて、不純物注入
量とビーム電流により予め設定された走査回数と測定イ
オンビーム電流によりただ一通りに決定されるディスク
中心からイオンビーム照射位置までの距離に反比例した
走査スピードにて注入を行いながらディスク径方向にあ
けられたスリットを通過したイオンビームパルスをディ
スク後方のファラデーにて測定し、注入不純物イオンビ
ーム電流に換算することにより放電によるイオンビーム
電流の減少を検出しこの減少時間に対応した走査スピー
ドに一時的に変更し得るものである。
In order to achieve the above object, the ion implantation amount control method according to the present invention fixes a plurality of wafers on the disk circumference and scans them in the disk radial direction while rotating them, which are used for implanting impurities into wafers such as semiconductor integrated circuits. In the ion implantation amount control method, which measures the impurity ion beam current and controls the impurity implantation amount using a type of ion implanter that performs uniform implantation, the impurity implantation accuracy is the amount of neutralization of the ion beam due to collision with residual gas. In areas where the degree of vacuum is worse than the allowable range, the impurity ion beam current is measured with a Faraday placed at the rear of the disk before scanning in the disk radial direction, and the scan is performed according to the amount of impurity implanted and the beam current. Implantation is performed at a scanning speed that is inversely proportional to the distance from the disk center to the ion beam irradiation position, which is uniquely determined by the number of times and the measured ion beam current, and the amount that the ion beam is neutralized by collision with residual gas. In a region with better vacuum where the impurity implantation accuracy exceeds the allowable range, the ion beam pulse passing through the slit in the radial direction of the disk is measured by a Faraday at the rear of the disk and converted to the implanted impurity ion beam current. , impurity ions are implanted into the wafer at a disk scanning speed that depends on the fluctuation of the ion beam current and the ion beam irradiation position. In addition, in the ion implantation amount control method according to the present invention, the impurity implantation amount is adjusted in a region where the degree of vacuum is worse than the degree of vacuum where the amount of the ion beam neutralized by collision with residual gas exceeds the allowable range of impurity implantation accuracy. A hole was drilled in the disk radial direction while implanting at a scanning speed that was inversely proportional to the distance from the disk center to the ion beam irradiation position, which was determined in one way by the number of scans preset by the beam current and the measured ion beam current. The ion beam pulse that has passed through the slit is measured by a Faraday at the rear of the disk, and by converting it to the implanted impurity ion beam current, a decrease in the ion beam current due to discharge is detected and the scanning speed is temporarily changed to correspond to this decrease time. It is possible.

〔実施例J 次に本発明について図面を参照し説明する。[Example J Next, the present invention will be explained with reference to the drawings.

第1図及び第2図は本発明の一実施例のディスク走査最
上位位置及びディスク走査最下位位置の断面図、第3図
はディスクとビーム電流の位置関係を示す断面図である
。ウェハ2上にレジストが塗布されている場合、イオン
ビーム照射によるレジストからのアウトガスにより注入
真空度が、イオンビームが残留ガスとの衝突により中性
化する量が不純物注入精度許容範囲を超えてしまう真空
度より悪い領域では、モーター制御部8によりモーター
9でボールスクリューlOを回動駆動しスライド部11
によりディスクlが走査最上位位置にある状態に設定し
く第1図)、ディスク1後方に設けられたファラデー4
にてイオンビーム電流3aを受は測定部5にて測定した
後、演算部6にてこの安定性を確認し、注入量とイオン
ビーム電流3aにより予め設定されたディスク1走査回
数と測定ビーム電流によりただ1通り決定されるディス
ク中心12からビーム照射位置13までの距離Rに反比
例したディスクl走査スピードにて注入を行う。その際
、ディスク走査スピード制御部7、モーター制御部8、
モーター9、ボールスクリュー10、スライド部11に
よりイオンビームに対するディスク1上のウェハ2の位
置制御等が行われる。また、この間ディスクl径方向に
あけられたスリット14を通してディスクl後方に設け
られたファラデー4にてスリット通過ビームパルス3b
を受け、測定部5にてこれを測定し、演算部6にてウェ
ハ2上でのビーム電流に換算することにより、放電によ
るビーム電流の減少を検出し、このビーム電流の減少に
対応したディスク1走査スピードに一時的に変更するこ
とにより、放電による注入均一性の悪化を補正する。
1 and 2 are cross-sectional views of the highest disk scanning position and the lowest disk scanning position in one embodiment of the present invention, and FIG. 3 is a cross-sectional view showing the positional relationship between the disk and the beam current. When resist is coated on wafer 2, the degree of implantation vacuum is increased due to outgassing from the resist due to ion beam irradiation, and the amount neutralized by the collision of the ion beam with residual gas exceeds the allowable impurity implantation accuracy range. In an area where the degree of vacuum is worse, the motor controller 8 rotates the ball screw lO with the motor 9 to rotate the slider 11.
(Fig. 1), and the Faraday 4 installed behind the disk 1.
After the ion beam current 3a is measured in the measurement unit 5, the stability is confirmed in the calculation unit 6, and the number of scans per disk and the measurement beam current are set in advance based on the implantation amount and the ion beam current 3a. Injection is performed at a disk l scanning speed that is inversely proportional to the distance R from the disk center 12 to the beam irradiation position 13, which is determined in only one way by . At that time, a disk scanning speed control section 7, a motor control section 8,
The position of the wafer 2 on the disk 1 with respect to the ion beam is controlled by the motor 9, the ball screw 10, and the slide section 11. During this time, a beam pulse 3b passing through the slit is transmitted to the Faraday 4 provided at the rear of the disk l through a slit 14 opened in the radial direction of the disk l.
The measurement unit 5 measures this, and the calculation unit 6 converts it into a beam current on the wafer 2, thereby detecting a decrease in the beam current due to discharge, and detecting a disc that corresponds to this decrease in beam current. By temporarily changing the scanning speed to 1 scan speed, deterioration in injection uniformity due to discharge is corrected.

レジストからのアウトガスによる注入真空度の悪化が経
時的に減少し、イオンビームが残留ガスとの衝突により
中性化する量が不純物注入精度許容範囲を超えてしまう
真空度より良くなった場合、ディスクl径方向にあけら
れたスリット14を通してディスク1後方に設けられた
ファラデー4にてスリット通過ビームパルス3bを受は
測定部5にてこれを測定し演算部6にてウェハ2上での
ビーム電流に換算し、ディスクl走査回数と換算ビーム
電流とディスク中心12からビーム照射位置13までの
距離Rに反比例したディスクl走査スピードに常に制御
しレジストからのアウトガスによる注入誤差を低減し均
一な注入を行う。
If the deterioration of the implantation vacuum due to outgas from the resist decreases over time, and the amount of neutralization of the ion beam due to collision with residual gas becomes better than the vacuum that exceeds the allowable impurity implantation accuracy range, the disk The slit-passing beam pulse 3b is received by the Faraday 4 provided at the rear of the disk 1 through a slit 14 opened in the radial direction, and the beam pulse 3b is measured by the measurement unit 5, and the beam current on the wafer 2 is calculated by the calculation unit 6. The disk l scanning speed is always controlled to be inversely proportional to the number of disk l scans, the converted beam current, and the distance R from the disk center 12 to the beam irradiation position 13 to reduce injection errors due to outgas from the resist and ensure uniform injection. conduct.

【発明の効果〕【Effect of the invention〕

以上説明したように本発明はレジストからのアウトガス
により注入真空度がイオンビームが残留ガスどの衝突に
より中性化する量が不純物注入精度許容範囲を超えてし
まう真空度より悪い領域では、ディスク走査前の真空度
が良い状態でのイオンビーム電流を測定しこの測定ビー
ム電流と注入量よりただ一つに決定されるディスク中心
からビーム照射位置までの距離Rに反比例したディスク
走査スピードにて注入を行い、放電によるビーム電流の
減少はディスク径方向にあけられたスリットを通して受
けたビームパルスの変動にてこれを検出し放電によるビ
ーム電流の減少に対応したディスク走査スピードに一時
的に変更し、レジストからのアウトガスが減少しイオン
ビームが残留ガスとの衝突により中性化する量が不純物
注入精度許容範囲を超えてしまう真空度より良い領域で
は、ディスク径方向にあけられたスリットを通して受け
たビームパルスをウェハへの注入ビーム電流に換算しこ
の換算ビーム電流と注入量により決定されるディスク中
心からイオンビーム照射位置までの距離に反比例した走
査スピードに常に制御することにより、レジストからの
アウトガスによるイオンビームの中性化による注入不均
一性及び注入量の変動を低減できる効果がある。
As explained above, in the present invention, in a region where the implantation vacuum due to outgas from the resist is worse than the vacuum where the ion beam neutralizes due to residual gas collision exceeds the allowable impurity implantation accuracy range, it is possible to The ion beam current is measured under a good vacuum condition, and implantation is performed at a disk scanning speed that is inversely proportional to the distance R from the disk center to the beam irradiation position, which is uniquely determined from the measured beam current and the implantation amount. The decrease in beam current due to discharge is detected by fluctuations in the beam pulse received through a slit made in the radial direction of the disk, and the disk scanning speed is temporarily changed to correspond to the decrease in beam current due to discharge. In a region with a better vacuum, where the outgassing of the ion beam decreases and the amount of neutralization of the ion beam due to collision with residual gas exceeds the allowable range of impurity implantation precision, the beam pulse received through the slit in the radial direction of the disk is By constantly controlling the scanning speed to be inversely proportional to the distance from the disk center to the ion beam irradiation position, which is determined by the converted beam current and the implantation amount, the ion beam is reduced due to outgas from the resist. This has the effect of reducing implantation non-uniformity and fluctuations in implantation amount due to neutralization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例の走査最上位位置及
びディスク走査最下位位置の断面図、第3図はディスク
とビーム電流の位置関係を示す断面図、第4図はディス
クの上面図である。 1・・・ディスク      2・・・ウェハ3a・・
・イオンビーム 3b・・・スリット通過イオンビームパルス4・・・フ
ァラデー    5・・・測定部6・・・演算部  7
・・・ディスク走査スピード制御部8・・・モーター制
御部  9・・・モーターIO・・・ボールスクリュー
 11・・・スライド部12・・・ディスク中心  1
3・・・イオンビーム照射位置14・・・スリット 第3図 第4図
1 and 2 are cross-sectional views of the highest scanning position and the lowest disk scanning position in an embodiment of the present invention, FIG. 3 is a cross-sectional view showing the positional relationship between the disk and the beam current, and FIG. 4 is the disk FIG. 1...Disk 2...Wafer 3a...
・Ion beam 3b...Slit passing ion beam pulse 4...Faraday 5...Measuring section 6...Calculating section 7
... Disk scanning speed control section 8 ... Motor control section 9 ... Motor IO ... Ball screw 11 ... Slide section 12 ... Disk center 1
3... Ion beam irradiation position 14... Slit Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)半導体集積回路等のウェハへの不純物注入に用い
られる複数のウェハをディスク円周上に固定し回転させ
ながらディスク径方向に走査し均一な注入を行うタイプ
のイオン注入装置の不純物イオンビーム電流を測定し不
純物注入量を制御するイオン注入量制御方法において、
イオンビームが残留ガスとの衝突により中性化する量が
不純物注入精度許容範囲を超えてしまう真空度より悪い
領域では、ディスク径方向に走査する前にディスク後方
に設けられたファラデーにて不純物イオンビーム電流を
測定し、不純物注入量とビーム電流により予め設定され
た走査回数と前記測定イオンビーム電流によりただ一通
りに決定されるディスク中心からイオンビーム照射位置
までの距離に反比例した走査スピードにて注入を行い、
イオンビームが残留ガスとの衝突により中性化する量が
不純物注入精度許容範囲を超えてしまう真空度より良い
領域では、ディスク径方向にあけられたスリットを通過
したイオンビームパルスをディスク後方のファラデーに
て測定し注入不純物イオンビーム電流に換算することに
より、イオンビーム電流の変動及びイオンビーム照射位
置に応じたディスク走査スピードにてウェハへ不純物イ
オンを注入することを特徴とするイオン注入量制御方法
(1) Impurity ion beam of an ion implanter used for implanting impurities into wafers such as semiconductor integrated circuits, which uses a type of ion implanter that fixes multiple wafers around the disk circumference and scans them in the disk radial direction while rotating to perform uniform implantation. In the ion implantation amount control method that measures the current and controls the impurity implantation amount,
In regions where the degree of vacuum is worse than that where the amount of neutralization of the ion beam due to collision with residual gas exceeds the allowable impurity injection accuracy range, impurity ions are removed by a Faraday installed at the rear of the disk before scanning in the disk radial direction. The beam current is measured, and at a scanning speed that is inversely proportional to the distance from the disk center to the ion beam irradiation position, which is determined solely by the number of scans preset based on the amount of impurity implantation and the beam current, and the measured ion beam current. make an injection,
In regions with better vacuum conditions, where the amount of neutralization of the ion beam due to collision with residual gas exceeds the allowable range of impurity implantation precision, the ion beam pulse that has passed through a slit in the disk's radial direction is transferred to the faraday at the rear of the disk. An ion implantation amount control method characterized in that impurity ions are implanted into a wafer at a disk scanning speed that corresponds to fluctuations in the ion beam current and the ion beam irradiation position by measuring and converting the implanted impurity ion beam current into an implanted impurity ion beam current. .
(2)イオンビームが残留ガスとの衝突により中性化す
る量が不純物注入精度許容範囲を超えてしまう真空度よ
り悪い領域にて、不純物注入量とビーム電流により予め
設定された走査回数と測定イオンビーム電流によりただ
一通りに決定されるディスク中心からイオンビーム照射
位置までの距離に反比例した走査スピードにて注入を行
いながらディスク径方向にあけられたスリットを通過し
たイオンビームパルスをディスク後方のファラデーにて
測定し、注入不純物イオンビーム電流に換算することに
より放電によるイオンビーム電流の減少を検出しこの減
少時間に対応した走査スピードに一時的に変更し得るこ
とを特徴とする請求項第1項に記載のイオン注入量制御
方法。
(2) In a region worse than a vacuum where the amount of neutralization of the ion beam due to collision with residual gas exceeds the allowable range of impurity implantation accuracy, the number of scans and measurement are preset according to the impurity implantation amount and beam current. While implanting at a scanning speed that is inversely proportional to the distance from the disk center to the ion beam irradiation position, which is uniquely determined by the ion beam current, the ion beam pulse that has passed through the slit in the disk radial direction is transferred to the rear of the disk. Claim 1: A reduction in the ion beam current due to discharge is detected by measuring with a Faraday and converting it into an implanted impurity ion beam current, and the scanning speed can be temporarily changed to correspond to this reduction time. The ion implantation amount control method described in .
JP1135064A 1989-05-29 1989-05-29 Ion implantation amount control method Expired - Lifetime JPH0828206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135064A JPH0828206B2 (en) 1989-05-29 1989-05-29 Ion implantation amount control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135064A JPH0828206B2 (en) 1989-05-29 1989-05-29 Ion implantation amount control method

Publications (2)

Publication Number Publication Date
JPH031434A true JPH031434A (en) 1991-01-08
JPH0828206B2 JPH0828206B2 (en) 1996-03-21

Family

ID=15143036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135064A Expired - Lifetime JPH0828206B2 (en) 1989-05-29 1989-05-29 Ion implantation amount control method

Country Status (1)

Country Link
JP (1) JPH0828206B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409928A (en) * 2004-01-09 2005-07-13 Applied Materials Inc Improvements relating to ion implantation and instabilities
CN109148249A (en) * 2018-10-08 2019-01-04 江苏英锐半导体有限公司 A kind of control device for wafer production ion implanting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409928A (en) * 2004-01-09 2005-07-13 Applied Materials Inc Improvements relating to ion implantation and instabilities
GB2409928B (en) * 2004-01-09 2007-03-21 Applied Materials Inc Improvements relating to ion implantation
CN109148249A (en) * 2018-10-08 2019-01-04 江苏英锐半导体有限公司 A kind of control device for wafer production ion implanting
CN109148249B (en) * 2018-10-08 2024-05-28 盐城苏高汽睿科技有限公司 Control device for ion implantation in wafer production

Also Published As

Publication number Publication date
JPH0828206B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US6903348B2 (en) Wafer holding apparatus for ion implanting system
JP4013081B2 (en) Control mechanism for dose measurement control in ion implanters
US20060240651A1 (en) Methods and apparatus for adjusting ion implant parameters for improved process control
US5861632A (en) Method for monitoring the performance of an ion implanter using reusable wafers
US7026628B2 (en) Advanced ion beam detector for ion implantation tools
US7462847B2 (en) Ion implanter and ion implantation control method thereof
JPH10226880A (en) Ion implantation equipment, method for calculating amount of ion implantation by using the equipment, and controlling method
EP1047103A2 (en) ION implant dose control
US20090035878A1 (en) Plasma Doping Method and Apparatus
US4680474A (en) Method and apparatus for improved ion dose accuracy
US6984833B2 (en) Ion implanter and method for controlling the same
US6797967B1 (en) Method and system for dose control during an ion implantation process
US11264205B2 (en) Techniques for determining and correcting for expected dose variation during implantation of photoresist-coated substrates
TWI529772B (en) Method and system for performing ion implantation
JPH031434A (en) Ion implantation amount control method
EP0263032A1 (en) Primary particle beam irradiation apparatus and method of irradiation thereof
JP5015464B2 (en) Ion implantation method and ion implantation apparatus
US20040113100A1 (en) Polarity exchanger and ion implanter having the same
JP2628602B2 (en) Ion beam irradiation equipment
JPS62177848A (en) Ion implanting control method
JPH0426456Y2 (en)
KR100835831B1 (en) Ion implanting apparatus
JPH01225051A (en) Ion implanting apparatus
JPH03229869A (en) Ion implantation device
JPH0660844A (en) Ion implantation device