JPH03142883A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH03142883A
JPH03142883A JP28131589A JP28131589A JPH03142883A JP H03142883 A JPH03142883 A JP H03142883A JP 28131589 A JP28131589 A JP 28131589A JP 28131589 A JP28131589 A JP 28131589A JP H03142883 A JPH03142883 A JP H03142883A
Authority
JP
Japan
Prior art keywords
film
conductive layer
layer
amorphous
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28131589A
Other languages
Japanese (ja)
Inventor
Haruyoshi Yagi
八木 春良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28131589A priority Critical patent/JPH03142883A/en
Publication of JPH03142883A publication Critical patent/JPH03142883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the grain boundary diffusion of a barrier layer under heat treatment and maintain a favorable contact between a substrate and aluminum interconnection by providing a non-crystal film, which inhibits mutual diffusion and has conductivity performance, between a semiconductor substrate and a conductive layer. CONSTITUTION:An insulation film 3 of Sio2 is formed on a silicon substrate 1 by a CVD process and a contact region is removed by etching. After a natural oxidation film inside a contact hole is removed by hydrofluoric acid or the like, a first conductive layer 4 or a titanium layer is formed in a processing chamber equipped with titanium target for a sputtering device having a plurality of sputtering processing chambers in order to lower the contact resistance. In succession with the formation, reactive sputtering process is carried out in a processing chamber equipped with Ta-10wt.% Ti alloy target so as to grow a Ta-Ti-N amorphous alloy film so that its thickness may be thinner than the prior art barrier layer 5. Then, aluminum is formed as a second conductive layer 6 in a processing chamber equipped with Al target. Then, a specified interconnection pattern is processed by eliminating the conductivity layer 4, the non-crystal film 7, and the conductivity layer 6.

Description

【発明の詳細な説明】 〔概要〕 半導体集積回路装置において半導体基板とコンタクトを
有するアルミニウム配線を形成する際、シリコンとアル
電ニウムの反応を防止するためのバリアー層の形成方法
に関し、バリアー層の粒界拡散を防止することにより基
板とアルミニウム配線とのコンタクトを良好に維持する
半導体装置の製造方法を提供することを目的とし、半導
体基板と電気的に接続する導電層を備えた半導体装置に
おいて、該半導体基板と該導電層との間に該半導体基板
と該導電層の相互拡散を抑えかつ導電性を有する非晶質
膜を具備してなることを特徴とするように構成するか、
または前記非晶質膜が窒素を含んだ非晶質合金膜である
ことを特徴とするように構成するか、または半導体基板
と電気的に接続する導電層を備えた半導体装置において
半導体基板上に該半導体基板と該導tN間の相互拡散を
抑えかつ導電性を有する非晶質膜を形成する工程と該非
晶質膜上に該導電層を形成する工程とを含むように構成
する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for forming a barrier layer to prevent a reaction between silicon and aluminum when forming an aluminum wiring having contact with a semiconductor substrate in a semiconductor integrated circuit device. The purpose of the present invention is to provide a method for manufacturing a semiconductor device that maintains good contact between a substrate and aluminum wiring by preventing grain boundary diffusion. An amorphous film is provided between the semiconductor substrate and the conductive layer, which suppresses interdiffusion between the semiconductor substrate and the conductive layer and has conductivity;
Alternatively, the amorphous film is an amorphous alloy film containing nitrogen, or the semiconductor device is provided with a conductive layer electrically connected to the semiconductor substrate. The method is configured to include a step of forming an amorphous film that suppresses interdiffusion between the semiconductor substrate and the conductor and has conductivity, and a step of forming the conductive layer on the amorphous film.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体集積回路装置において半導体(シリコ
ン)基板とコンタクトを有するアルミニウム配線を形成
する際、シリコンとアルミニウムの反応を防止するため
のバリアー層を有する半導体装置及びその製造方法に関
する。
The present invention relates to a semiconductor device having a barrier layer for preventing a reaction between silicon and aluminum when forming an aluminum wiring having contact with a semiconductor (silicon) substrate in a semiconductor integrated circuit device, and a method for manufacturing the same.

近年の半導体装置の高集積化の要求に伴い、半導体(例
えばシリコン)基板に形成される接合の深さは著しく浅
くなっている。これに伴って基板とコンタクトを有する
アルミニウム配線中のアルミニウムが拡散N(ソース或
いはドレイン)を突き抜は接合の短絡やリーク電流の増
大を招くのでこれを防止するためにアルミニウム中に予
めシリコン(Si)を含んだAl−5i配線が広く用い
られている。しかしながら、このAl−5i配線は熱処
理後にアル逅ニウム中のシリコンがコンタクトホール内
の基板シリコン上に析出しコンタクト抵抗をあげてしま
う、近年、半導体装置の高集積化によってコンタクト面
積も縮小化し、それに伴ってコンタクト抵抗も上がって
いるので、さらにコンタクト抵抗を上げてしまうこの方
法は微細コンタクトを有する半導体装置には適さない、
そこで、近年はアルミニウムのシリコン基板への突き抜
けを防止するために基板とアルミニウムを含む電極・配
線層との間にバリアー層を付ける方法がとられている。
With the recent demand for higher integration of semiconductor devices, the depth of junctions formed in semiconductor (eg, silicon) substrates has become significantly shallower. Along with this, if the aluminum in the aluminum wiring that has contact with the substrate penetrates the diffused N (source or drain), it will cause a short circuit at the junction and an increase in leakage current. ) is widely used. However, in this Al-5i wiring, after heat treatment, the silicon in the aluminum precipitates on the substrate silicon in the contact hole, increasing the contact resistance. Since the contact resistance also increases accordingly, this method, which further increases the contact resistance, is not suitable for semiconductor devices with fine contacts.
Therefore, in recent years, a method has been adopted in which a barrier layer is provided between the substrate and the electrode/wiring layer containing aluminum in order to prevent aluminum from penetrating into the silicon substrate.

〔従来の技術〕[Conventional technology]

このバリアー層としては、スパッタ法で形成されるチタ
ン(Ti)、ジルコニウム(Zr)タングステン(W)
、タンタル(Ta)、チタン−タングステン(Ti−W
)合金等の高融点金属及びその窒化物が用いられている
。第2図を用いてこのバリアー層の形成方法を説明する
。第2図は従来技術による半導体集積回路装置の要部断
面図である。まず、シリコン基板1上にCVD (Ch
emical  Vapour  1)epositi
This barrier layer is made of titanium (Ti), zirconium (Zr), tungsten (W), etc. formed by sputtering.
, tantalum (Ta), titanium-tungsten (Ti-W
) High melting point metals such as alloys and their nitrides are used. The method of forming this barrier layer will be explained using FIG. 2. FIG. 2 is a sectional view of a main part of a conventional semiconductor integrated circuit device. First, CVD (Ch
Chemical Vapor 1) Epositi
.

n)法を用いて厚さ0.6〜1. 0μm程度の絶縁膜
3、例えばシリコン酸化膜(SiOz)を形成しコンタ
クト領域となるべき部分を除去し、基板1を表出させる
。そして、イオン注入法を用いて不純物拡散領域2を形
成した後、コンタクト抵抗を下げるため第1の導電層4
、例えばチタン膜を厚さ200〜500人スパッタリン
グ法を用いて形成する。その上に、スパッタリング法を
用いて厚さ1000〜2000人のバリアー層5を形成
する。バリアー層5の材料としては、上に述べたような
高融点金属及びその窒化物が使われる。一般的に純金属
よりその窒化物の方がアルミニウムとシリコンとの反応
を抑えるバリアー性という観点からは優れている。尚、
窒化物の場合はアルゴン−窒素(−Ar  N2)を用
いた反応性スパッタリング法で形成するのが一般的であ
る。最後にバリアー層の上にスパッタリング法を用いて
厚さ1゜OI1m程度の第2の導電層6、例えばAI配
線またはAl−3i配線を形成する0以上、説明したよ
うな製造方法を用いて従来は基板1と配線6のコンタク
ト領域を形成していた。
n) thickness of 0.6 to 1. An insulating film 3, such as a silicon oxide film (SiOz), having a thickness of approximately 0 μm is formed, and a portion to be a contact region is removed to expose the substrate 1. After forming the impurity diffusion region 2 using ion implantation, a first conductive layer 4 is formed to reduce contact resistance.
For example, a titanium film is formed to a thickness of 200 to 500 using a sputtering method. A barrier layer 5 having a thickness of 1,000 to 2,000 layers is formed thereon using a sputtering method. As the material of the barrier layer 5, the above-mentioned high melting point metal and its nitride are used. In general, nitrides are better than pure metals from the viewpoint of barrier properties that suppress the reaction between aluminum and silicon. still,
In the case of nitride, it is generally formed by a reactive sputtering method using argon-nitrogen (-Ar N2). Finally, a second conductive layer 6 with a thickness of about 1° OI 1 m, for example, an AI wiring or an Al-3i wiring, is formed using a sputtering method on the barrier layer. formed a contact area between the substrate 1 and the wiring 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、こうした高融点金属やその窒化物薄膜は
膜の厚さ方向に平行な粒界をもつ柱状晶組織8を形成す
るため、熱処理中粒界を拡散路とした粒界拡散により第
2図中、矢印で示すように配線6中のAIと基板1中S
iとの反応が徐々に進行してしまう。従って、バリアー
N5が本来のバリアー効果を発揮するためには1000
〜2000人の厚さが必要である。しかし、多層配線の
平坦化が求められている現在、段差はなるべく低減する
必要があるため、このような厚いバリアー層は適当では
ない。従って、バリアー層を厚くしないで粒界拡散を防
止する方法を考える必要がある。その一つは、バリアー
層を形成後、酸素を含む雰囲気中で熱処理をすることに
より粒界に酸化物を形成させ粒界をふさぐ”方法であり
、また反応性スパッタリング法でバリアー層を形成する
際、酸素を混入させて粒界に酸化物を形成させ粒界をふ
さぐ方法である。しかし、これらの方法はバリアー層の
抵抗率の上昇、アルミニウム配線パターン加工の際のド
ライエツチング工程でエツチングが充分にできずエツチ
ング残が残る等の欠点があり好ましくない。
However, since these high melting point metals and their nitride thin films form a columnar crystal structure 8 with grain boundaries parallel to the thickness direction of the film, grain boundary diffusion using the grain boundaries as diffusion paths occurs during heat treatment, as shown in Figure 2. , AI in the wiring 6 and S in the board 1 as shown by the arrows.
The reaction with i proceeds gradually. Therefore, in order for Barrier N5 to exhibit its original barrier effect, it is necessary to
A thickness of ~2000 people is required. However, with the current demand for flattening of multilayer wiring, it is necessary to reduce the level difference as much as possible, so such a thick barrier layer is not appropriate. Therefore, it is necessary to consider a method of preventing grain boundary diffusion without making the barrier layer thick. One method is to form a barrier layer and then perform heat treatment in an oxygen-containing atmosphere to form oxides at the grain boundaries to block the grain boundaries.Alternatively, the barrier layer is formed using a reactive sputtering method. In this process, oxygen is mixed in to form oxides at the grain boundaries to block the grain boundaries. However, these methods increase the resistivity of the barrier layer and cause problems such as etching during the dry etching process during aluminum wiring pattern processing. This is not preferable because it has drawbacks such as insufficient etching and etching residue remains.

本発明は、上記問題点を解決し、従来より薄くても熱処
理中のバリアー層の粒界拡散を防止できる薄膜を形成し
、基板とアルミニウム配線とのコンタクトを良好に維持
する半導体装置及びそ の製造方法を提供することを目
的とする。
The present invention solves the above-mentioned problems, and provides a semiconductor device that forms a thin film that can prevent grain boundary diffusion of a barrier layer during heat treatment even if it is thinner than before, and maintains good contact between a substrate and aluminum wiring, and the same. The purpose is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はバリアー層に非晶質(アモルファス)膜を用い
ることによって従来技術で生じていた結晶粒界からの粒
界拡散を防止しAIとStの反応を抑える。そして、半
導体基板と電気的に接続する導電層を備えた半導体装置
において、該半導体基板と該導電層との間に該半導体基
板と該導電層の相互拡散を抑えかつ導電性を有する非晶
質膜を具備してなることを特徴とするように構成するか
、または前記非晶質膜が窒素を含んだ非晶質合金膜であ
ることを特徴とするように構成するか、または半導体基
板と電気的に接続する導電層を備えた半導体装置におい
て半導体基板上に該半導体基板と該導電層間の相互拡散
を抑えかつ導電性を有する非晶質膜を形成する工程と該
非晶質膜上に該導電層を形成する工程とを含むように構
成する。
The present invention uses an amorphous film for the barrier layer to prevent grain boundary diffusion from crystal grain boundaries, which occurs in the prior art, and to suppress the reaction between AI and St. In a semiconductor device including a conductive layer electrically connected to a semiconductor substrate, an amorphous material having conductivity and suppressing mutual diffusion between the semiconductor substrate and the conductive layer is provided between the semiconductor substrate and the conductive layer. the amorphous film is an amorphous alloy film containing nitrogen; or the amorphous film is an amorphous alloy film containing nitrogen; In a semiconductor device including a conductive layer that is electrically connected, a step of forming an amorphous film on a semiconductor substrate that suppresses mutual diffusion between the semiconductor substrate and the conductive layer and has conductivity; The method is configured to include a step of forming a conductive layer.

〔作用〕[Effect]

本発明ではバリアー層を非晶質膜で形成するため結晶粒
界が存在しないので従来の粒界拡散によるAtとSiの
反応を防止できる。従って、シリコン基板とアルミニウ
ム配線とのコンタクト′を良好に維持することが可能と
なる。
In the present invention, since the barrier layer is formed of an amorphous film, there are no grain boundaries, so that the reaction between At and Si due to conventional grain boundary diffusion can be prevented. Therefore, it is possible to maintain good contact between the silicon substrate and the aluminum wiring.

〔実施例〕〔Example〕

第1図を用いて本発明の一実施例を説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図は本発明による半導体集積回路装置の要部断面図
である。図中、■はシリコン基板、2は不純物拡散領域
、3は絶縁膜、4は第1の導電層、6は第2の導電層(
配線)、7は非晶質膜である。
FIG. 1 is a sectional view of a main part of a semiconductor integrated circuit device according to the present invention. In the figure, ■ is a silicon substrate, 2 is an impurity diffusion region, 3 is an insulating film, 4 is a first conductive layer, and 6 is a second conductive layer (
(wiring), 7 is an amorphous film.

まず、シリコン基板1上にCVD法を用いて厚さ例えば
066〜1.0μmのSiO2からなる絶縁膜3を形成
し、コンタクト領域となるべき部分をエツチング除去す
る0次に、コンタクトホール内のシリコン基板上の自然
酸化膜をフッ酸等で除去後、複数のスパッタ処理室を有
するスパッタ装置を用いて以下の工程を連続的に行う、
まず、チタンターゲットを装着した処理室において、コ
ンタクト抵抗を下げるため第1の導電N4例えば厚さ2
00〜500大のチタン膜(タングステンやアルミニウ
ムも可能)を形成する。続けて、Ta−10wt%Ti
合金ターゲットを装着した処理室においてスパッタガス
としてAr−50%N2混合ガスを用いた反応性スパッ
タリング法を行い、非晶質膜7としてTa −T i−
Nアモルファス合金膜を従来のバリアー層5より薄く例
えば500人程皮酸長させる。この際スパッタ圧力は5
mTorr、パワーは3kw、基板温度は250 ’C
であった。最後に、AIフタ−ットが装着5された処理
室において厚さ例えば1μmのアルミニウムを第2の導
電N6として形成した。尚、Ta−Ti−Nアモルファ
ス合金膜は上面のアルミニウム配線とも下面のチタン膜
とも接合性、加工性がよい。最後に通常のフォトリソグ
ラフィ技術と塩素を含むガスを用いたドライエツチング
法によりチタン膜4、非晶質膜7、第2の導電N6をエ
ツチング除去し所望の配線パターンに加工する。以上の
ような製造工程を経て本発明の半導体装置は完成する。
First, an insulating film 3 made of SiO2 with a thickness of 0.66 to 1.0 μm, for example, is formed on a silicon substrate 1 using the CVD method, and a portion that will become a contact region is etched away. After removing the natural oxide film on the substrate with hydrofluoric acid, etc., the following steps are performed continuously using a sputtering device having multiple sputtering chambers.
First, in a processing chamber equipped with a titanium target, a first conductive layer with a thickness of, for example, 2
00 to 500 titanium film (tungsten or aluminum is also possible). Next, Ta-10wt%Ti
A reactive sputtering method using an Ar-50% N2 mixed gas as a sputtering gas was performed in a processing chamber equipped with an alloy target, and the amorphous film 7 was formed using Ta-Ti-
The N amorphous alloy film is made thinner than the conventional barrier layer 5, for example, by about 500 layers. At this time, the sputtering pressure was 5
mTorr, power is 3kw, substrate temperature is 250'C
Met. Finally, aluminum having a thickness of, for example, 1 μm was formed as the second conductive material N6 in the processing chamber to which the AI cover 5 was attached. Note that the Ta-Ti-N amorphous alloy film has good bondability and workability with both the aluminum wiring on the upper surface and the titanium film on the lower surface. Finally, the titanium film 4, the amorphous film 7, and the second conductive layer N6 are etched away by a normal photolithography technique and a dry etching method using a gas containing chlorine to form a desired wiring pattern. The semiconductor device of the present invention is completed through the manufacturing process as described above.

尚、ここで非晶質膜7の材料としてTa−Ti−Nアモ
ルファス合金膜を用いたのは理由がある。
Note that there is a reason why a Ta-Ti-N amorphous alloy film is used as the material for the amorphous film 7 here.

それは、このように窒素をふくんだアモルファス合金膜
の方がニオブ−ニッケル(Nb−Ni)アモルファス合
金膜やモリブデン−ニッケル(M。
This is because an amorphous alloy film containing nitrogen is better than a niobium-nickel (Nb-Ni) amorphous alloy film or a molybdenum-nickel (M) film.

−Ni)アモルファス合金膜等の窒素を含まないアモル
ファス合金膜よりも薄く形成できるからである。なぜな
らば、ニオブ−ニッケルアモルファス合金膜やモリブデ
ン−ニッケルアモルファス合金膜は粒界拡散を起こすよ
うな結晶粒界が存在しなくとも合金自体アルミニウムと
の反応性が高いため、バリアー層として用いるためには
厚く形成する必要があるからである。これに比べて本実
施例のように窒素を含んだアモルファス合金膜はアルミ
ニウムとの反応性が低いので薄く形成できる。
-Ni) This is because it can be formed thinner than an amorphous alloy film that does not contain nitrogen, such as an amorphous alloy film. This is because niobium-nickel amorphous alloy films and molybdenum-nickel amorphous alloy films are highly reactive with aluminum even if there are no grain boundaries that would cause grain boundary diffusion, so they cannot be used as barrier layers. This is because it needs to be formed thickly. In contrast, the amorphous alloy film containing nitrogen as in this embodiment has low reactivity with aluminum and can therefore be formed thinly.

従って、窒素を含めたアモルファス合金膜の方が多層配
線に適しているといえる。
Therefore, it can be said that an amorphous alloy film containing nitrogen is more suitable for multilayer wiring.

また、もう−点本実施例のような窒素を含んだアモルフ
ァス合金膜がニオブ−ニッケルアモルファス合金膜やモ
リブデン−ニッケルアモルファス合金膜に比べて優れて
いる点は、工程最後に行うアモルファス配線パターン形
成の際、エツチング除去し易いという点である。なぜな
らば、ニオブ、モリブデン、ニッケル等の塩化物の蒸気
圧が低いためアルミニウム配線パターン形成時に使用す
る塩素を含んだガスを用いるドライエツチングではエン
チング除去が困難であるからである。その点本実施例の
ようなアモルファス合金膜は塩素を含んだガスを用いる
ドライエツチングをし易いという利点があるので、アル
ミニウムのドライエツチングプロセスとも両立しうる。
Another point is that the nitrogen-containing amorphous alloy film as shown in this example is superior to the niobium-nickel amorphous alloy film and the molybdenum-nickel amorphous alloy film. In fact, it is easy to remove by etching. This is because chlorides such as niobium, molybdenum, and nickel have low vapor pressures and are difficult to remove by dry etching using a chlorine-containing gas used in forming aluminum wiring patterns. In this respect, the amorphous alloy film as in this embodiment has the advantage of being easily dry etched using a gas containing chlorine, so it is compatible with the dry etching process for aluminum.

また、本実施例のアモルファス合金膜はニオブ−ニッケ
ルアモルファス合金膜やモリブデン−ニッケルアモルフ
ァス合金膜に比べてスパッタリングを行う際、・薄膜成
長させやすいという利点ももっている。尚、本実施例の
Ta−Ti−Nアモルファス合金膜では、窒素の量が3
0%以上の時に完全なアモルファス合金膜となり、粒界
拡散防止に大きな効果を有する。以下にその根拠を示す
Furthermore, the amorphous alloy film of this embodiment has the advantage that it is easier to grow a thin film when sputtering, compared to a niobium-nickel amorphous alloy film or a molybdenum-nickel amorphous alloy film. Note that in the Ta-Ti-N amorphous alloy film of this example, the amount of nitrogen was 3
When it is 0% or more, it becomes a complete amorphous alloy film, which has a great effect on preventing grain boundary diffusion. The basis for this is shown below.

(1)30%以上の窒素を含むアモルファス合金膜と3
0%未満の窒素を含むアモルファス合金膜を比較した場
合、窒素が30%以下の膜をX線回折法、電子線回折法
で分析すると、回折ピークが存在し結晶性のTaが認め
られたのに対して、窒素が30%以上の膜を同じ方法で
分析すると、回折ピークは存在せず完全に非晶質になっ
ていることが確認できた。
(1) Amorphous alloy film containing 30% or more nitrogen and 3
When comparing amorphous alloy films containing less than 0% nitrogen, when a film containing less than 30% nitrogen was analyzed by X-ray diffraction and electron diffraction, a diffraction peak was observed and crystalline Ta was observed. On the other hand, when a film containing 30% or more of nitrogen was analyzed using the same method, it was confirmed that there was no diffraction peak and that the film was completely amorphous.

このことを第3図(a)〜(d)を用いて説明する。第
3図(a)〜(d)はX線回折の結果を示すチャート図
である。(a)はTaN、(b)はTa、(C)は窒素
(N2)を50%含んだTa−Ti−Nアモルファス合
金膜、(d)は窒素(N2)を25%含んだTa−Ti
−Nアモルファス合金膜をそれぞれ示すチャートである
。このチャートで横軸は格子面間隔d〔入〕、縦軸は回
折の強さ(Intensity)を表している。
This will be explained using FIGS. 3(a) to 3(d). FIGS. 3(a) to 3(d) are charts showing the results of X-ray diffraction. (a) is TaN, (b) is Ta, (C) is Ta-Ti-N amorphous alloy film containing 50% nitrogen (N2), (d) is Ta-Ti containing 25% nitrogen (N2)
3 is a chart showing each of -N amorphous alloy films. In this chart, the horizontal axis represents the lattice spacing d [in], and the vertical axis represents the intensity of diffraction.

(C)図をみてもわかるとおり窒素を30%以上含んだ
本発明のアモルファス合金膜では回折ピークが認められ
ない。従って、完全に非晶質膜が形成されたと考えられ
る0以上のように窒素を30%以上含むときTa−Ti
−Nアモルファス合金膜は完全な非晶質膜となり粒界拡
散を防止する効果が顕著である。
(C) As can be seen from the figure, no diffraction peak is observed in the amorphous alloy film of the present invention containing 30% or more of nitrogen. Therefore, when the Ta-Ti film contains 30% or more of nitrogen, such as 0 or more, it is considered that a completely amorphous film has been formed.
The -N amorphous alloy film becomes a completely amorphous film and has a remarkable effect of preventing grain boundary diffusion.

(2)2つのシリコン基板上にバリアー層として、それ
ぞれ窒素30%未満の膜と窒素30%以上の膜を500
人程皮酸威し、続けてその上にそれぞれアルミニウム層
を1μm形成する。そして、550°Cで30分熱処理
後アルミニウム層とバリアー層を除去し、コンタクト領
域の表出したシリコン基板lの表面を観察すると窒素3
0%未満で形成した場合はシリコン基板とアルミニウム
層との合金化に起因するアロイビットが存在したのに対
して窒素30%以上で形成した場合はアロイビットは存
在しなかった。従って、窒素30%以上含んだアモルフ
ァス合金膜の方が、よりバリアー性が高いことがわかっ
た。従って、前記(1)で述べた窒素30%以上含むと
き完全なアモルファスになることと考え合わせると窒素
30%以上含むアモルファス合金膜は完全な非晶質膜と
なるためバリアー効果が高いことが証明された。そして
、550°C130分熱処理後、窒素30%未満の一膜
ではアロイビットに起因する接合部リーク電流が増加し
、コンタクト抵抗も増加したのに対して、窒素30%以
上の膜では熱処理後も接合部リーク電流の増加、コンタ
クト抵抗の増加も認められなかったこともこのことを裏
付けている。以上の理由により本実施例のTa−Ti−
Nアモルファス合金膜は窒素が30%以上含まれている
場合に完全な非晶質膜となり粒界拡散防止に大きな効果
が認められることがわかった。このように本実施例によ
れば従来に比べて薄い500Å程度の厚さでも550°
Cの熱処理に対して粒界拡散を防止できる薄いバリアー
層の形成が可能になる。
(2) As barrier layers on two silicon substrates, a film containing less than 30% nitrogen and a film containing 30% or more nitrogen were deposited at 500% each.
The skin was acidified to a human degree, and then an aluminum layer of 1 μm thick was formed on each layer. After heat treatment at 550°C for 30 minutes, the aluminum layer and barrier layer were removed, and the exposed contact area of the silicon substrate l was observed.
When the nitrogen content was less than 0%, alloy bits were present due to alloying of the silicon substrate and the aluminum layer, whereas when the nitrogen content was 30% or more, no alloy bits were present. Therefore, it was found that an amorphous alloy film containing 30% or more of nitrogen has higher barrier properties. Therefore, considering that the film becomes completely amorphous when it contains 30% or more nitrogen as mentioned in (1) above, it is proven that an amorphous alloy film containing 30% or more nitrogen becomes a completely amorphous film and has a high barrier effect. It was done. After heat treatment at 550°C for 130 minutes, one film with less than 30% nitrogen increased the junction leakage current due to alloy bits and the contact resistance, while the film with more than 30% nitrogen increased even after heat treatment. This is also supported by the fact that neither an increase in junction leakage current nor an increase in contact resistance was observed. For the above reasons, the Ta-Ti-
It has been found that when the N amorphous alloy film contains 30% or more of nitrogen, it becomes a completely amorphous film and is highly effective in preventing grain boundary diffusion. In this way, according to this embodiment, even with a thickness of about 500 Å, which is thinner than the conventional method, the angle of 550°
It becomes possible to form a thin barrier layer that can prevent grain boundary diffusion against C heat treatment.

尚、本実施例では非晶質膜7にTa−Ti−Nアモルフ
ァス合金膜を用いたが、これに他の元素を付は加えた非
晶質膜でもよい。また、非晶質膜はこれに限定されず他
のアモルファス合金膜を用いてもよい。例えば、Zr(
ジルコニウム)−Ti−N等が掲げられる。但し、その
場合、本実施例のように塩素でエツチング可能な遷移金
属と窒素を含んだ材料がよい、なぜならば、窒素を含め
れば先に述べたようにアルミニウムとの反応を抑えられ
るし、アルミニウムのドライエツチングプロセスとも両
立しうるからである。また、窒素を入れることにより遷
移金属とアモルファスを形成し易いからである。しかし
、一つの遷移金属と窒素、例えばTiN等は窒化物にな
ってしまい組成の制御が難しくアモルファスを形成しに
くい。従って、遷移金属を複数にしTa−Ti−Nのよ
うに3元系にすることによりアモルファスが比較的容易
にでき、アルミニウムのドライエツチングプロセスとも
両立し、かつ従来よりも薄いバリアー層を形成できる。
In this embodiment, a Ta-Ti-N amorphous alloy film is used as the amorphous film 7, but an amorphous film containing other elements may also be used. Further, the amorphous film is not limited to this, and other amorphous alloy films may be used. For example, Zr(
zirconium)-Ti-N, etc. However, in that case, it is better to use a material containing nitrogen and a transition metal that can be etched with chlorine, as in this example, because containing nitrogen can suppress the reaction with aluminum, and This is because it is compatible with the dry etching process. This is also because adding nitrogen tends to form an amorphous state with a transition metal. However, one transition metal and nitrogen, such as TiN, become a nitride, making it difficult to control the composition and making it difficult to form an amorphous state. Therefore, by using a plurality of transition metals and forming a ternary system such as Ta-Ti-N, an amorphous state can be formed relatively easily, it is compatible with the dry etching process of aluminum, and it is possible to form a barrier layer thinner than before.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように本発明によれば従来より薄くバリ
アー層を形成しても接合部リーク電流の増加及びコンタ
クト抵抗の増加を防止できるのでLSI多層配線の歩留
り向上とその信頼性の向上に寄与するところが大きい。
As explained above, according to the present invention, an increase in junction leakage current and an increase in contact resistance can be prevented even if the barrier layer is formed thinner than before, contributing to an improvement in the yield and reliability of LSI multilayer wiring. There's a lot to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による半導体集積回路装置の要部断面
図、第2図は従来技術による半導体集積回路装置の要部
断面図、第3図はX線回折法の結果を示すチャート図で
ある。 図中、 l:半導体基板 2 不純物拡散領域 3:絶縁膜 4、第1の導電層 5:バリアー層 6:第2の導電層(配vA) 7:非晶質膜 二柱状晶組織 本発明1:よう牛導捧訃貴俳様置膚鈴島滅寥  1  
FIG. 1 is a sectional view of a main part of a semiconductor integrated circuit device according to the present invention, FIG. 2 is a sectional view of a main part of a semiconductor integrated circuit device according to the prior art, and FIG. 3 is a chart showing the results of an X-ray diffraction method. be. In the figure, l: semiconductor substrate 2 impurity diffusion region 3: insulating film 4, first conductive layer 5: barrier layer 6: second conductive layer (distribution vA) 7: amorphous film bicolumnar crystal structure Present invention 1 :Yōgyūdō dedicated Kihai-sama Okada Suzushima destruction 1
figure

Claims (1)

【特許請求の範囲】 1、半導体基板と電気的に接続する導電層を備えた半導
体装置において、該半導体基板と該導電層との間に該半
導体基板と該導電層の相互拡散を抑えかつ導電性を有す
る非晶質膜を具備してなることを特徴とする半導体装置
。 2、前記非晶質膜が窒素を含んだ非晶質合金膜であるこ
とを特徴とする請求項1記載の半導体装置。 3、半導体基板と電気的に接続する導電層を備えた半導
体装置において、 半導体基板上に該半導体基板と該導電層間の相互拡散を
抑えかつ導電性を有する非晶質膜を形成する工程と、 該非晶質膜上に該導電層を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
[Claims] 1. In a semiconductor device including a conductive layer electrically connected to a semiconductor substrate, there is provided a structure between the semiconductor substrate and the conductive layer that suppresses mutual diffusion between the semiconductor substrate and the conductive layer and conducts electricity. 1. A semiconductor device comprising an amorphous film having an amorphous property. 2. The semiconductor device according to claim 1, wherein the amorphous film is an amorphous alloy film containing nitrogen. 3. In a semiconductor device including a conductive layer electrically connected to a semiconductor substrate, forming an amorphous film on the semiconductor substrate that suppresses interdiffusion between the semiconductor substrate and the conductive layer and has conductivity; A method for manufacturing a semiconductor device, comprising the step of forming the conductive layer on the amorphous film.
JP28131589A 1989-10-27 1989-10-27 Semiconductor device and manufacture thereof Pending JPH03142883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28131589A JPH03142883A (en) 1989-10-27 1989-10-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28131589A JPH03142883A (en) 1989-10-27 1989-10-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03142883A true JPH03142883A (en) 1991-06-18

Family

ID=17637384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28131589A Pending JPH03142883A (en) 1989-10-27 1989-10-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03142883A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048154A1 (en) * 1998-03-13 1999-09-23 Siemens Aktiengesellschaft Capacitor in an integrated circuit
KR100351450B1 (en) * 1999-12-30 2002-09-09 주식회사 하이닉스반도체 Non-volatile memory device and method for fabricating the same
WO2002079546A1 (en) * 2001-03-29 2002-10-10 Honeywell International Inc. Methods for electrolytically forming materials; and mixed metal materials
JP2007027392A (en) * 2005-07-15 2007-02-01 Denso Corp Semiconductor device and its manufacturing method
JP2010123586A (en) * 2008-11-17 2010-06-03 Nec Electronics Corp Semiconductor device, and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048154A1 (en) * 1998-03-13 1999-09-23 Siemens Aktiengesellschaft Capacitor in an integrated circuit
KR100351450B1 (en) * 1999-12-30 2002-09-09 주식회사 하이닉스반도체 Non-volatile memory device and method for fabricating the same
WO2002079546A1 (en) * 2001-03-29 2002-10-10 Honeywell International Inc. Methods for electrolytically forming materials; and mixed metal materials
US6827828B2 (en) * 2001-03-29 2004-12-07 Honeywell International Inc. Mixed metal materials
US7252751B2 (en) 2001-03-29 2007-08-07 Honeywell International Inc. Methods for electrically forming materials
JP2007027392A (en) * 2005-07-15 2007-02-01 Denso Corp Semiconductor device and its manufacturing method
JP2010123586A (en) * 2008-11-17 2010-06-03 Nec Electronics Corp Semiconductor device, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3704427B2 (en) Method for forming copper metal wiring of semiconductor device
KR910007108B1 (en) Intergrate semiconductor circuit comprising at least two metallization levels composed of aluminium or aluminium compounds and a method for the manufacture of same
KR0179822B1 (en) Interconnections structure of semiconductor device and method for manufacturing thereof
KR0152370B1 (en) Semiconductor device having an interconnection of a laminate structure and a method for manufacturing the same
CA1306072C (en) Refractory metal - titanium nitride conductive structures and processes for forming the same
JP2006210511A (en) Semiconductor device
JP4729661B2 (en) Aluminum layer free from hillocks and method for forming the same
JPS58500680A (en) Semiconductor device with low resistance synthetic metal conductor and method for manufacturing the same
JPS61133646A (en) Manufacture of semiconductor device
JPH03142883A (en) Semiconductor device and manufacture thereof
JPH09283624A (en) Manufacture of semiconductor device
JPH10209156A (en) Semiconductor device and its manufacture
JPH0193149A (en) Semiconductor device
JPH06204218A (en) Manufacturing method of semiconductor device
JP4221737B2 (en) Metal wiring manufacturing method
JPH11102877A (en) Conversion method of nitride metal, and manufacture of semiconductor device
JP2003309082A (en) Structure of semiconductor device
JPH11233517A (en) Copper wiring in semiconductor devices
JP4006720B2 (en) Semiconductor device and manufacturing method thereof
JPH1154507A (en) Manufacture of semiconductor device
JP2998454B2 (en) Method for manufacturing semiconductor device
JPS63129662A (en) Semiconductor device
JPH0399471A (en) Semiconductor device
JPS61135156A (en) Semiconductor device and manufacture thereof
JPH04324636A (en) Semiconductor device and its manufacture