JPH0314279A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH0314279A
JPH0314279A JP14836589A JP14836589A JPH0314279A JP H0314279 A JPH0314279 A JP H0314279A JP 14836589 A JP14836589 A JP 14836589A JP 14836589 A JP14836589 A JP 14836589A JP H0314279 A JPH0314279 A JP H0314279A
Authority
JP
Japan
Prior art keywords
substrate
conductivity type
layer
gaas
current blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14836589A
Other languages
Japanese (ja)
Inventor
Junji Noma
淳史 野間
Masanori Hirose
広瀬 正則
Kazunari Ota
一成 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14836589A priority Critical patent/JPH0314279A/en
Publication of JPH0314279A publication Critical patent/JPH0314279A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/168Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising current blocking layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To keep the characteristics of broad-area structure, reduce light absorption near the end face as compared before, and achieve higher output by forming a conductivity type impurities diffusion region of different conductivity type as compared with a substrate which penetrates from a current blocking layer into a quantum well active layer and the reaches a clad layer. CONSTITUTION:There are an AlGaAs clad layer 2 and a GaAs quantum well active layer 3 of the same conductivity type as that of a substrate 1, an AlGaAs clad layer 4 of the different conductivity type from that of the substrate 1, and a GaAs current blocking layer 5 of the same conductivity type as that of the substrate 1 on the conductivity type GaAs substrate 1, an impurities diffusion region 8 of a different conductivity type from that of the substrate 1 reaching from the GaAs current blocking layer 5 to the AlGaAs clad layer 4 in stripe shape vertical to the end face at areas except those closer to the end face is formed, and the above impurities diffusion region 8 of different conductivity type from that of the substrate 1 penetrating the GaAs current blocking layer 5 and the GaAs quantum well active layer 3, reaching the AlGaAs clad layer 2 is formed near the end face.

Description

【発明の詳細な説明】 (受業十の利用分野) 本発明はレーザ光を用いた各種の情報処理や情報伝送の
ための光源として用いることのできる半導体レーザ装置
に関するものである。
Detailed Description of the Invention (Ten Fields of Application) The present invention relates to a semiconductor laser device that can be used as a light source for various information processing and information transmission using laser light.

(従来の技術) 近年、固体レーザの励起用あるいは光通信用の光源とし
て、高出力半導体レーザ装置の需要が高まっている。こ
の要求を満たすべく、各種の構造を有する半導体レーザ
装置が研究・開発され実用化されてきた。、その中で、
ブロー1へエリア構造を有する半導体レーザ装置は、発
光領域断面積を広げることにより、数Wもの高出力化を
達成している。
(Prior Art) In recent years, there has been an increasing demand for high-power semiconductor laser devices as light sources for excitation of solid-state lasers or for optical communications. In order to meet this demand, semiconductor laser devices having various structures have been researched, developed, and put into practical use. ,among them,
A semiconductor laser device having a blow 1 area structure achieves a high output of several watts by increasing the cross-sectional area of the light emitting region.

以下、図面を参照しながら、」二連したようなブロー1
−エリア構造を有する従来の半導体レーザ装置について
説明する。。
Below, while referring to the drawings, "double blow 1"
- A conventional semiconductor laser device having an area structure will be explained. .

第4図は、従来のブロードエリア構造を有する半導体レ
ーザ装置の斜視図(a)とその中央部分(dd切断)の
断面図(b)を示す。第4図において、1はn −Ga
As基板、2はn−AlGaAsクラッド層、3はGa
As活性層、4はp−AlGaAsクラッド層、5はn
  G +1ΔS電流ブロッキンク層、6.7はオーミ
ック電極、8はZn拡散領域である。
FIG. 4 shows a perspective view (a) of a semiconductor laser device having a conventional broad area structure and a cross-sectional view (b) of its central portion (cut by dd). In Figure 4, 1 is n-Ga
As substrate, 2 is n-AlGaAs cladding layer, 3 is Ga
As active layer, 4 p-AlGaAs cladding layer, 5 n
G +1ΔS current blocking layer, 6.7 is an ohmic electrode, and 8 is a Zn diffusion region.

その製作工程はn−GaAs基板」」二に、nA Q 
G a A sクラッド層2、G a A s活性層3
、pA Q G a A sクラッド層4、n−GaA
s電流ブロッキング層5を順次成長させた後、5j3N
4膜をマスクとして端面と垂直な幅]00pmのストラ
イブ状に、n−GaAs層5からp−AlGaAs層4
に達するまで7.nを拡散8させ、最後にオーミック電
極6,7を形成する。
The manufacturing process is based on the n-GaAs substrate.
GaAs cladding layer 2, GaAs active layer 3
, pA Q Ga As cladding layer 4, n-GaA
After sequentially growing the s current blocking layers 5, 5j3N
Using the 4 film as a mask, the n-GaAs layer 5 to the p-AlGaAs layer 4 are formed in stripes with a width perpendicular to the end surface]00 pm.
7. until it reaches 7. n is diffused 8 and finally ohmic electrodes 6 and 7 are formed.

以」二のように製作された、ブロードエリア構造を有す
る半導体レーザ装置について、以下その動作を説明する
The operation of the semiconductor laser device having a broad area structure manufactured as described above will be described below.

ブロードエリア構造を有する半導体レーザ装置を順方向
にバイアスすると、ス1〜ライブ状のZn拡散領域8及
びその直下のp−AlGaAsクラッド層4では、電位
障壁がないために電流が効率良く流れるのに対し、Zn
拡散領域8以外の領域ては、n−GaAs電流ブロッキ
ング層5とpA Q G a A sクララ1〜層4の
間が逆バイアスになるため、電流はほとんど流れない。
When a semiconductor laser device having a broad area structure is biased in the forward direction, current flows efficiently in the strip 1 to the live Zn diffusion region 8 and the p-AlGaAs cladding layer 4 immediately below it because there is no potential barrier. On the other hand, Zn
In the region other than the diffusion region 8, almost no current flows because the n-GaAs current blocking layer 5 and the pA Q Ga As Clara 1 to 4 are reverse biased.

この結果、電流はZn拡散領域8直下の活性層にのみ効
率良く注入され、電流注入基がしきい値に達するとレー
ザ発振が起こる。ブロードエリア構造を有する半導体レ
ーザ装置では、Zn拡散領域8のストライプ幅を100
μmと大きくすることにより、発光領域断面積が広がっ
ているため、高出力動作が可能である。
As a result, current is efficiently injected only into the active layer immediately below the Zn diffusion region 8, and when the current injection base reaches a threshold value, laser oscillation occurs. In a semiconductor laser device having a broad area structure, the stripe width of the Zn diffusion region 8 is set to 100 mm.
By increasing the size to .mu.m, the cross-sectional area of the light emitting region is expanded, so high output operation is possible.

(発明が解決しようとする課題) しかしながら、」−記のような、端面までG a A 
s活性層3を有する半導体レーザ装置では、光出力を増
大させていくに従って、端面での光吸収が増大し、端面
温度が」−昇し、ついには端面破壊が生じる。この現象
が半導体レーザ装置の光出力の上限を決定する一つの要
因となっている。
(Problem to be solved by the invention) However, as shown in "-", up to the end face G a A
In the semiconductor laser device having the active layer 3, as the optical output increases, light absorption at the end face increases, the end face temperature rises, and end face breakage occurs. This phenomenon is one of the factors that determines the upper limit of the optical output of a semiconductor laser device.

本発明は上記欠点に鑑み、ブロードエリア構造の特性を
生かしつつ、従来のものに比べて、端面近傍での光吸収
が少なく、より高出力を実現でき:3 る半導体レーザ装置を提供することを目的とするもので
ある。
In view of the above-mentioned drawbacks, the present invention aims to provide a semiconductor laser device that takes advantage of the characteristics of the broad area structure, has less light absorption in the vicinity of the end face, and can achieve higher output than conventional devices. This is the purpose.

(課題を解決するための手段) 本発明は」1記課題を解決するために、導電型G a 
A s基板十に該基板と同一の導電型を有するA (l
 G a A sクラッド層(1)、G a A s量
子井戸活性層(II)、前記基板と異なる導電型を有す
るA Q G a A Sクラッド層(III)、前記
基板と同一の導電型を有するG a A s電流ブロッ
キング層(IV)を有し、端面近傍以外では、端面と垂
直なス1〜ライブ状に前記G a A s電流ブロッキ
ング層(IV)から前記A(lGaAsクラッド層(I
II)まで達する前記基板と異なる導電型の不純物拡散
領域が形成されており、かつ端面近傍では、前記G a
 A s電流ブロッキング層(IV)から前記G a 
A、 s量子井戸活性、1(11)を貫通し、前記A 
Q G a A sクラッド層(1)まで達する前記基
板と異なる導電型の前記不純物拡散領域を有することを
特徴としている。
(Means for Solving the Problems) The present invention solves the problems described in 1.
A (l
A GaAs cladding layer (1), a GaAs quantum well active layer (II), an AQ GaAs cladding layer (III) having a conductivity type different from that of the substrate, and a GaAs quantum well active layer (III) having the same conductivity type as the substrate. The GaAs current blocking layer (IV) has a GaAs current blocking layer (IV) having
An impurity diffusion region having a conductivity type different from that of the substrate is formed, and near the end surface, the impurity diffusion region reaches up to the Ga
From the A s current blocking layer (IV) to the Ga
A, s quantum well activity, penetrating 1 (11), said A
It is characterized in that the impurity diffusion region has a conductivity type different from that of the substrate and reaches the QGaAs cladding layer (1).

(作 用) 本発明は十記した構成によって、端面近傍の不− 鈍物拡散領域内におけるGaAs量子井戸活性層の禁制
帯幅は、レーザ光のエネルギーよりも大きくなり、以下
の実施例で示すように、端面近傍では内部で生じたレー
ザ光が吸収されにくい非吸収領域(ウィンド)構造が形
成され、端面破壊が起こりにくくなり、より高出力が得
られる。
(Function) According to the present invention, the forbidden band width of the GaAs quantum well active layer in the inert diffusion region near the end face is larger than the energy of the laser beam, as shown in the following examples. As such, a non-absorbing region (wind) structure is formed in the vicinity of the end face, in which the laser light generated inside is difficult to be absorbed, making it difficult for end face breakage to occur, and higher output can be obtained.

(実施例) 第1図は本発明の一実施例における半導体レーザ装置の
構成を示す図で、(a)は斜視図、(b)は共振器に平
行方向(e−e線切断)の断面図、(C)は(a)図の
中心付近(d−d線切断)の断面図である。
(Example) FIG. 1 is a diagram showing the configuration of a semiconductor laser device in an example of the present invention, in which (a) is a perspective view, and (b) is a cross section in the direction parallel to the resonator (cut along line ee). FIG. 3C is a cross-sectional view of the vicinity of the center of FIG.

図において、1はnまたはp型の導電型GaAs基板、
2は基板]と同一の導電型を有するAlGaAsクラッ
ド層(r)、3はGaAs量子井戸活性層(If)、4
は基板1とは異なるpまたn型の導電型を有するA Q
 G a A sクラッド層(III)、5は基板1と
同一の導電型を有する電流ブロッキング層(IV)、6
及び7はオーミック電極、8はストライプ状のZn拡散
領域(不純物拡散領域)である。
In the figure, 1 is an n- or p-type conductivity type GaAs substrate;
2 is an AlGaAs cladding layer (r) having the same conductivity type as the substrate; 3 is a GaAs quantum well active layer (If); 4 is a GaAs quantum well active layer (If);
has a p- or n-type conductivity type different from that of the substrate 1 Q
G a As cladding layer (III), 5 is a current blocking layer (IV) having the same conductivity type as the substrate 1, 6
and 7 are ohmic electrodes, and 8 is a striped Zn diffusion region (impurity diffusion region).

本実施例は従来の構成(第4図)と異なり、端面近傍以
外では端面と垂直なストライプ状にG a A s電流
ブロッキング層(■)5からA Q G a A sク
ラッド層(■)4まで達する基板]と異なる導電型の不
純物拡散領域8が形成されている。そして、端面近傍で
はG a A s電流ブロッキング層(■)5からG 
a A s量子井戸活性層(■)3を貫通し、A Q 
G a A sクラッド層(■)2まで達する基板1と
異なる導電型の不純物拡散領域8で構成されている。
This embodiment differs from the conventional configuration (FIG. 4) in that, except near the end face, the Ga As current blocking layer (■) 5 to the AQ Ga As cladding layer (■) 4 are formed in stripes perpendicular to the end face. An impurity diffusion region 8 of a conductivity type different from that of the substrate] is formed. In the vicinity of the end face, the G a As current blocking layer (■) 5 is
a A s Penetrates quantum well active layer (■) 3, A Q
It is composed of an impurity diffusion region 8 of a conductivity type different from that of the substrate 1, which reaches the GaAs cladding layer (■) 2.

ここで1はn−GaAs基板を例示しであるが、p=G
aAs基板としてもよく、この場合、2のn−A D 
G a A sクラッド層(1)も同じくpA Q G
 a A sクラッド層とする。また、4のPAlGa
Asクラッド層(H)はn−A(lGaAsクラッド層
とし、5のn−GaAs電流ブロッキング層(■)は、
p−GaAs電流ブロッキング層とする。
Here, 1 is an example of an n-GaAs substrate, and p=G
It may also be an aAs substrate, in which case 2 nA D
The Ga As cladding layer (1) is also pA Q G
aAs cladding layer. In addition, 4 PAlGa
The As cladding layer (H) is an n-A (lGaAs cladding layer), and the n-GaAs current blocking layer (■) of 5 is
A p-GaAs current blocking layer is used.

つぎに、製造工程について第2図により説明する。Next, the manufacturing process will be explained with reference to FIG. 2.

第2図(a)に示すように、n−GaAs基板1上にn
−A+1.5Gao5A、sクララド層2(I)を1.
.071m、G ;+ A s M子井戸活性層3(n
)を0.0257Jm、 pA Qo、 −、G aO
、5A Sクラッド層4(■)を1.0μm、  n 
−GaAs電流ブロッキング層5(■)を0.5pmを
MOCVD法により順次成長させる。
As shown in FIG. 2(a), an n
-A+1.5Gao5A, s Clarado layer 2(I) 1.
.. 071m, G ;+A s M well active layer 3 (n
) is 0.0257Jm, pA Qo, -, GaO
, 5A S cladding layer 4 (■) 1.0 μm, n
- A GaAs current blocking layer 5 (■) is sequentially grown to a thickness of 0.5 pm by MOCVD.

前記のG a A s量子井戸活性層3は、第3図(a
)に示すように、100人のA Qo 2G aH、B
 A Sバリヤ層と50人のG a A s量子井戸活
性層で構成されている。
The GaAs quantum well active layer 3 described above is shown in FIG.
), 100 people A Qo 2G aH, B
It consists of an A S barrier layer and a 50 G a S quantum well active layer.

次に第2図(b)に示すように、Si3N、膜をマスク
として、端面近傍30μmの領域に、端面に垂直な幅1
00μmのストライプ状に、n−GaAs電流ブロッキ
ング層5からG a A s量子井戸活性層3を貫通し
、n  AQg、5Gan、sAsクラッド層2まで達
するように、Znを拡散8させる。
Next, as shown in FIG. 2(b), using the Si3N film as a mask, a 30 μm area near the end face is coated with a width of 1 perpendicular to the end face.
Zn is diffused 8 in a stripe shape of 00 μm from the n-GaAs current blocking layer 5 to penetrate through the GaAs quantum well active layer 3 and reach the nAQg, 5Gan, sAs cladding layer 2.

次に第2図(c)に示すように、513N4をマスクと
して、端面近傍以外の領域に、端面に垂直な幅100μ
mのストライプ状に、n  GaAs電流ブロッキング
層5からP  AQn、5Gan、sAsクラッド層3
まで達するようにZnを拡散8させ、最後にn側、r)
側各面にオーミック電極6,7を形成する。
Next, as shown in Fig. 2(c), using 513N4 as a mask, apply a 100 μm width perpendicular to the end face to the area other than the vicinity of the end face.
m stripes from the n GaAs current blocking layer 5 to the P AQn, 5Gan, sAs cladding layer 3.
Zn is diffused so as to reach 8, and finally on the n side, r)
Ohmic electrodes 6 and 7 are formed on each side surface.

以にのような本実施例によれば、端面近傍では、レーザ
光の吸収がなく端面温度の」1昇を防いだ非吸収領域(
ウィンド)構造のブロードエリア型半導体レーザ装置が
得られる。その理由を以下に説明する。
According to this embodiment as described above, in the vicinity of the end face, there is a non-absorption region (
A broad area semiconductor laser device with a window structure is obtained. The reason for this will be explained below.

第2図(b)に示すように、端面近傍では、G a A
 s量子井戸活性層3を貫通してn−Al1.5Gao
、5Asクラッド層2までZnが拡散8する。Zn拡散
フロン1〜面がn  A Qo 、 6 G an 、
 5A sクララド層2内に位置するよう制御すると、
この拡散フロント面では端面近傍以外のG a A s
量子井戸活性層3よりもワイドギャップになるため、順
バイアス時に端面近傍には電流が流れない。ところで、
第3図(、)に示すようなG a A s量子井戸活性
層3にZnが拡散8すると、拡散するZnがバリヤ層・
量子井戸活性層間のGaとAnの相互拡散を促すことに
より、Q a A s量子井戸活性層は無秩序化され、
層内のAQ組成比は層全体にわたって平均的な値をとる
ことがわかっている。
As shown in FIG. 2(b), near the end face, G a A
n-Al1.5Gao through the s quantum well active layer 3
, Zn is diffused 8 to the 5As cladding layer 2. Zn diffused Freon 1 ~ surface is n A Qo , 6 G an ,
When controlled to be located within the 5A s Clarado layer 2,
On this diffusion front surface, Ga A s other than the vicinity of the end surface
Since the gap is wider than that of the quantum well active layer 3, no current flows near the end face during forward bias. by the way,
When Zn is diffused 8 into the GaAs quantum well active layer 3 as shown in FIG.
By promoting interdiffusion of Ga and An between the quantum well active layers, the Q a As quantum well active layer is disordered,
It is known that the AQ composition ratio within a layer takes an average value over the entire layer.

本実施例では、バリヤ層のAQ組成比を0.2としたの
で、端面近傍の無秩序化されたGaAs量子井戸活性層
3のAQ組成比は、第3図(b)に示すように、0.1
6となる。端面近傍以外のG a A s量子井戸活性
層3ではG a A s層のエネルギー帯が量子化され
ており、G a A s量子井戸活性層3からは1.5
0aVのエネルギーに対応するレーザ光が生じるが、端
面近傍の無秩序化されたG a A s量子井戸活性層
3の禁制帯幅はAQ組成比0.16に対応する1、62
eVとなっているため、端面近傍のG a A s量子
井戸活性層は内部で生じたレーザ光に対して非吸収領域
(ウィンド)となる。また、端面近傍のZnの拡散フロ
ント面がn  A Qo、 s G an、 s A、
sクララド層2内に位置するよう制御すると、そのため
、レーザ装置の最大光出力を決定する一つの要因である
端面破壊が起こりにくく、非常に大きな光出力を得るこ
とができる。事実、本実施例に基づいて作成したウィン
ド構造ブロードエリア型半導体レーザ装置では、最大光
出力3W以」二という高出力を実現した。
In this example, since the AQ composition ratio of the barrier layer is set to 0.2, the AQ composition ratio of the disordered GaAs quantum well active layer 3 near the end face is 0, as shown in FIG. 3(b). .1
It becomes 6. In the GaAs quantum well active layer 3 other than the vicinity of the end face, the energy band of the GaAs layer is quantized, and the energy band from the GaAs quantum well active layer 3 is 1.5.
A laser beam corresponding to an energy of 0 aV is generated, but the forbidden band width of the disordered GaAs quantum well active layer 3 near the end face is 1.62, which corresponds to an AQ composition ratio of 0.16.
eV, the GaAs quantum well active layer near the end face becomes a non-absorption region (wind) for the laser light generated inside. In addition, the Zn diffusion front surface near the end face is n A Qo, s G an, s A,
If controlled so as to be located within the s-Clarad layer 2, edge destruction, which is one of the factors that determines the maximum optical output of a laser device, is less likely to occur, and a very large optical output can be obtained. In fact, the window structure broad area semiconductor laser device fabricated based on this example achieved a high output of more than 3W maximum optical output.

なお、本実施例ではn型基板を用いたが、p型基板登用
いて半導体レーザを構成した場合も、同様の効果を有す
る。
Although an n-type substrate is used in this embodiment, similar effects can be obtained even if a semiconductor laser is constructed using a p-type substrate.

また、本実施例では、G a A s量子井戸活性層3
の構成を第3図(a)のようにしたが、バリヤ層を介し
て複数のG a A sあるいはA Q G a A 
s量子井戸活性層を積層し、多重量子井戸活性層として
も同様である。
Furthermore, in this example, the GaAs quantum well active layer 3
The structure is as shown in FIG. 3(a), but a plurality of Ga A s or A Q Ga A
The same can be said of laminating s-quantum well active layers to form a multi-quantum well active layer.

(発明の効果) 以上説明したように本発明は、−導電型GaAs基板上
に基板と導電型が同じA Q G a A sクラッド
層(I)、G a A s量子井戸活性層(1)、基板
と導電型が異なるA Q G a A sクラッド層(
III)、基板と導電型が同じG a A s電流ブロ
ッキング層(IV)を有し、端面近傍以外では端面と垂
直なス1〜ライブ状にGaAs電流ブロッキング層(I
V)からA Q G a A sクラッド層(III)
に達する不純物拡散領域を有し、端面近傍では、G a
 A s電流ブロッキング層(IV)からG a A 
s量子井戸活性層(n)を貫通し、 A Q G a 
A sクラッド層(I)まで達するように上記不純物を
拡散させ、G a A s量子井戸活性層(H)が無秩
序化された領域を形成することにより、端面でのレーザ
光の吸収を減少させ端面温度の上昇を防ぐことにより、
最大光出力を高めた半導体レーザ装置を提供するもので
あり、その実用的効果は大なるものがある。
(Effects of the Invention) As explained above, the present invention provides an AQ GaAs cladding layer (I) and a GaAs quantum well active layer (1) having the same conductivity type as the substrate on a -conductivity type GaAs substrate. , an A Q Ga As cladding layer with a conductivity type different from that of the substrate (
III), it has a GaAs current blocking layer (IV) of the same conductivity type as the substrate, and a GaAs current blocking layer (IV) is formed in strips perpendicular to the end face except near the end face.
V) to A Q Ga As cladding layer (III)
Ga
A s current blocking layer (IV) to G a A
s through the quantum well active layer (n), A Q G a
By diffusing the impurity so as to reach the As cladding layer (I) and forming a disordered region of the GaAs quantum well active layer (H), absorption of laser light at the end face is reduced. By preventing the rise in end surface temperature,
A semiconductor laser device with increased maximum optical output is provided, and its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における半導体レーザ装置の
、(a)斜視図、(b)共振器に平行方向の断面図、(
c)中心付近の断面図を示す。第2図(a)。 (b)、 (c)は本発明の一実施例における半導体レ
ーザ装置の製造工程における斜視図、第3図は作製した
ウィンド構造を有するブロードエリア型半導体レーザ装
置におけるG a A s量子井戸活性層3の、(a)
中心伺近、(b)端面近傍での構成を示す図、第4図は
従来のブロードエリア型半導体レーザ装置の、(a)斜
視図、(b)中心付近の断面図である。 ’L−n  GaAs基板、  2− nAQ(1,p
、Gan4ASクラッド層(1)、  3・・・G a
 A、 s量子井戸活性層(TI)、 4・PA Qo
5Gao5A s(III )、 5− n −GaA
s電流ブロッキング層(IV)、  6・・p型オー1 ミック電極、  7・・n型オーミック電極、8・・・
Zn拡散領域。 2
FIG. 1 shows (a) a perspective view, (b) a cross-sectional view parallel to the resonator, and (
c) Shows a cross-sectional view near the center. Figure 2(a). (b) and (c) are perspective views of the manufacturing process of a semiconductor laser device according to an embodiment of the present invention, and FIG. 3 is a GaAs quantum well active layer in the fabricated broad area semiconductor laser device having a window structure. 3, (a)
FIG. 4 is a perspective view of a conventional broad area semiconductor laser device, and FIG. 4 is a cross-sectional view of a conventional broad area semiconductor laser device. 'L-n GaAs substrate, 2-nAQ(1,p
, Gan4AS cladding layer (1), 3...G a
A, s quantum well active layer (TI), 4・PA Qo
5Gao5As(III), 5-n-GaA
s current blocking layer (IV), 6...p-type ohmic electrode, 7...n-type ohmic electrode, 8...
Zn diffusion region. 2

Claims (1)

【特許請求の範囲】[Claims] 導電型GaAs基板上に、該基板と同一の導電型を有す
るAlGaAsクラッド層( I )、GaAs量子井戸
活性層(II)、前記基板と異なる導電型を有するAlG
aAsクラッド層(III)、前記基板と同一の導電型を
有するGaAs電流ブロッキング層(IV)を有し、端面
近傍以外では、端面と垂直なストライプ状に前記GaA
s電流ブロッキング層(IV)から前記AlGaAsクラ
ッド層(III)まで達する前記基板と異なる導電型を有
する不純物拡散領域が形成されており、かつ、端面近傍
では、前記GaAs電流ブロッキング層(IV)から前記
GaAs量子井戸活性層(II)を貫通し前記AlGaA
sクラッド層( I )まで達する前記基板と異なる導電
型を有する前記不純物拡散領域を有することを特徴とす
る半導体レーザ装置。
On a conductivity type GaAs substrate, an AlGaAs cladding layer (I) having the same conductivity type as the substrate, a GaAs quantum well active layer (II), and an AlG having a conductivity type different from that of the substrate.
It has an aAs cladding layer (III), a GaAs current blocking layer (IV) having the same conductivity type as the substrate, and the GaAs current blocking layer (IV) has the same conductivity type as the substrate.
An impurity diffusion region having a conductivity type different from that of the substrate is formed reaching from the GaAs current blocking layer (IV) to the AlGaAs cladding layer (III), and near the end face, the impurity diffusion region extends from the GaAs current blocking layer (IV) to the AlGaAs cladding layer (III). The AlGaA layer penetrates through the GaAs quantum well active layer (II).
A semiconductor laser device characterized in that the impurity diffusion region has a conductivity type different from that of the substrate and reaches up to the cladding layer (I).
JP14836589A 1989-06-13 1989-06-13 Semiconductor laser device Pending JPH0314279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836589A JPH0314279A (en) 1989-06-13 1989-06-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836589A JPH0314279A (en) 1989-06-13 1989-06-13 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH0314279A true JPH0314279A (en) 1991-01-22

Family

ID=15451136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836589A Pending JPH0314279A (en) 1989-06-13 1989-06-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH0314279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486490A (en) * 1992-12-15 1996-01-23 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor laser
US5964063A (en) * 1996-07-22 1999-10-12 Honda Giken Kogyo Kabushiki Kaisha Motor-vehicle door having window winder, method of assembling the door, and window sash assembly suitable for use in the door

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486490A (en) * 1992-12-15 1996-01-23 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor laser
US5964063A (en) * 1996-07-22 1999-10-12 Honda Giken Kogyo Kabushiki Kaisha Motor-vehicle door having window winder, method of assembling the door, and window sash assembly suitable for use in the door

Similar Documents

Publication Publication Date Title
CA1152623A (en) Semiconductor laser device
US5488233A (en) Semiconductor light-emitting device with compound semiconductor layer
KR100773677B1 (en) Semiconductor laser device and manufacturing method thereof
US6700912B2 (en) High-output semiconductor laser element, high-output semiconductor laser apparatus and method of manufacturing the same
JPH0243351B2 (en)
JP2815769B2 (en) Manufacturing method of semiconductor laser
JPH06302908A (en) Semiconductor laser
JP2003209324A (en) Semiconductor light element and manufacturing method thereof
JP2686306B2 (en) Semiconductor laser device and manufacturing method thereof
JP4011640B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
US4759025A (en) Window structure semiconductor laser
US5173913A (en) Semiconductor laser
EP0178912B1 (en) A semiconductor laser
JPH0314279A (en) Semiconductor laser device
JP2616185B2 (en) Semiconductor laser
JPH10294533A (en) Nitride compound semiconductor laser and its manufacture
JPS59145590A (en) Semiconductor laser device
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JPH11168256A (en) Light-emitting element and its manufacturing method
JPH10163561A (en) Semiconductor laser element
JPS5968989A (en) Semiconductor laser device
JPS6356979A (en) Semiconductor light receiving device
KR20010085186A (en) Semiconductor laser device and method for manufacturing thereof
JPH04398B2 (en)