JPH03142353A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH03142353A
JPH03142353A JP1282485A JP28248589A JPH03142353A JP H03142353 A JPH03142353 A JP H03142353A JP 1282485 A JP1282485 A JP 1282485A JP 28248589 A JP28248589 A JP 28248589A JP H03142353 A JPH03142353 A JP H03142353A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
insulating layer
electrodes
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1282485A
Other languages
Japanese (ja)
Inventor
Gentaro Kaji
源太郎 梶
Satoshi Tanaka
智 田中
Tsuyoshi Nomura
野村 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1282485A priority Critical patent/JPH03142353A/en
Publication of JPH03142353A publication Critical patent/JPH03142353A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Abstract

PURPOSE:To decrease the generation of the stresses occurring in a difference in thermal expansion at the time of calcination and operation by selecting ceramics essentially consisting of forsterite as an insulating layer to be formed between leader electrodes and a solid electrolyte. CONSTITUTION:An electrode 2 for measurement and an electrode 3 for reference are deposited and formed on both surfaces of the zirconia-based solid electrolyte plate 1, by which a sensor cell part is formed. The electrodes 2, 3 are electrically connected to terminals 2b, 3b via a pair of the leader electrodes 2a, 3a. An atm. air introducing hole 4 which is sealed on the side formed with the sensor cell part and is opened on the side formed with terminals is fitted and provided in the solid electrolyte plate 1a. The gas to be measured comes into contact with the electrode 2 and the atm. air comes into contact with the electrode 3 through the introducing hole 4. The electrical insulating layer 5 essentially consisting of the foresterite is interposed between the electrodes 2a, 3a in the leader electrode part and the electrolyte plate 1. The generation of the stresses by the difference in thermal expansion between the electrolyte plate 1 and the insulating layer 5 at the time of operation is, therefore, suppressed and the failure of the sensor is substantially eliminated.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、内燃機関等の排気ガス中の酸素濃度等を測定
する酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to an oxygen sensor that measures oxygen concentration, etc. in exhaust gas from an internal combustion engine or the like.

(従来技術) 従来から、ジルコニア焼結体等の固体電解質(イオン伝
導固体質)の表面に一対の電極を設け、1つの電極には
被測定ガス中の酸素分圧を、他方の電極には大気中の酸
素分圧を印加し、これら被測定ガス中の酸素分圧と基準
となる大気中の酸素分圧との差によって生しる起電力を
検出し、これによって酸素濃度を測定する酸素センサが
一般に広く利用されている。
(Prior art) Conventionally, a pair of electrodes is provided on the surface of a solid electrolyte (ion-conducting solid material) such as a zirconia sintered body, and one electrode measures the oxygen partial pressure in the gas to be measured, and the other electrode measures the oxygen partial pressure in the gas to be measured. The oxygen concentration is measured by applying the oxygen partial pressure in the atmosphere and detecting the electromotive force generated by the difference between the oxygen partial pressure in the gas being measured and the reference oxygen partial pressure in the atmosphere. Sensors are generally widely used.

また、上記の如き酸素センサにおいて固体電解質表面や
電極近傍には排気ガス中に存在するカーボンや未燃焼粒
子等が付着し易く、測定誤差を生じたり、特性の劣化を
招くことから、酸素センサ自体を800°C程度に加熱
するためのヒータを併設したものも広く使用されている
In addition, in oxygen sensors such as those mentioned above, carbon and unburned particles present in the exhaust gas tend to adhere to the solid electrolyte surface and near the electrodes, causing measurement errors and deterioration of characteristics, so the oxygen sensor itself Those equipped with a heater for heating the water to about 800°C are also widely used.

そこで、従来の酸素センサの一部切欠斜視図を第3図に
示す。第3図によれば、酸素センサAは、ジルコニア質
固体電解質板lと、該固体電解質板lの両面に被着形成
されたセンサ電極、即ち、測定用電極2と基準用電極3
とを具備したセンサセル部と、前記センサ電極2.3と
それぞれ電気的に接続された一対の引き出し電極2a、
3aとから構成される。また、固体電解質板1にはその
内部に片側が開放された大気導入孔4が形成されている
FIG. 3 shows a partially cutaway perspective view of a conventional oxygen sensor. According to FIG. 3, the oxygen sensor A includes a zirconia solid electrolyte plate 1 and sensor electrodes formed on both sides of the solid electrolyte plate 1, that is, a measurement electrode 2 and a reference electrode 3.
a pair of extraction electrodes 2a each electrically connected to the sensor electrode 2.3;
3a. Further, the solid electrolyte plate 1 is provided with an atmosphere introduction hole 4 that is open on one side.

この酸素センサは、作動時、測定用電極2に被測定ガス
が、基準用電極3には前記大気導入孔4を通して大気が
接触するよう構成されており、両ガスの酸素分圧差によ
り電極間に起電力が生し、この起電力は引き出し電極2
a、3aを経由して端子2b、3bより取り出される。
During operation, this oxygen sensor is configured so that the measurement electrode 2 is in contact with the gas to be measured, and the reference electrode 3 is in contact with the atmosphere through the atmosphere introduction hole 4.The oxygen partial pressure difference between the two gases causes a gap between the electrodes. An electromotive force is generated, and this electromotive force is applied to the extraction electrode 2.
It is taken out from terminals 2b and 3b via terminals a and 3a.

(発明が解決しようとする問題点) ところが、上記構成の酸素センサによれば、作動時にセ
ンサセル部の測定用電極2と基準電極3との間に起重力
が発生し、その電圧が引き出し電極2a、3aを経由し
て端子2b、3bから取り出される際、引き出し電極形
成部もセル部と同様に、固体電解質板の両側に電極が形
成された構造であることから、この引き出し電極形成部
が素子として作動し、端子2b、3bから取り出される
起重力に誤差が生しるという問題があった。
(Problems to be Solved by the Invention) However, according to the oxygen sensor having the above configuration, an electromotive force is generated between the measurement electrode 2 and the reference electrode 3 in the sensor cell portion during operation, and the voltage is applied to the extraction electrode 2a. , 3a from the terminals 2b and 3b, the extraction electrode formation part has a structure in which electrodes are formed on both sides of the solid electrolyte plate, similar to the cell part. There was a problem in that an error occurred in the movable force taken out from the terminals 2b and 3b.

そこで、引き出し電極と固体電解質との間に絶縁層を介
在させ、引き出し電極間の電圧リークを阻止しようとす
る試みがなされている。ところが絶縁層を形成する場合
、絶縁層は固体電解質並びに電極と同時に焼成可能であ
ることが要求され、さらに絶縁層が介在する場合、焼成
時や作動時に画材質問の熱膨張差に起因する応力の発生
を極力避ける必要があることから、絶縁層自体の熱膨張
率が固体電解質や電極と近似していることが要求される
Therefore, attempts have been made to interpose an insulating layer between the extraction electrode and the solid electrolyte to prevent voltage leakage between the extraction electrodes. However, when forming an insulating layer, it is required that the insulating layer can be fired at the same time as the solid electrolyte and the electrode, and furthermore, if the insulating layer is interposed, stress caused by the difference in thermal expansion of the art material during firing and operation can be reduced. Since it is necessary to avoid this occurrence as much as possible, it is required that the coefficient of thermal expansion of the insulating layer itself is similar to that of the solid electrolyte or electrode.

しかし、絶縁層の材料として上記の要求を十分に満たす
ものが得られておらず、上記の要求を満足する材料の開
発が望まれている。
However, a material for the insulating layer that fully satisfies the above requirements has not been obtained, and there is a desire to develop a material that satisfies the above requirements.

(問題を解決するための手段) 本発明者等は、上記の問題点に対し、検討を重ねた結果
、一対の引き出し電極のうち少なくとも一方の電極と固
体電解質との間にフォルステライトを主成分とする電気
絶縁層を介在させることによって、作動時何ら問題なく
引き出し電極部からの起重力リークの発生を未然に防止
することができるとともに製造上も十分に同時焼成がで
きることを知見した。
(Means for Solving the Problem) As a result of repeated studies regarding the above-mentioned problems, the present inventors have discovered that forsterite is the main component between at least one of a pair of extraction electrodes and a solid electrolyte. It has been found that by interposing an electrically insulating layer, it is possible to prevent the occurrence of electromotive force leakage from the extraction electrode part without any problems during operation, and it is also possible to perform simultaneous firing to a sufficient extent in terms of manufacturing.

以下、本発明を第1図及び第2図を参照して説明する。The present invention will be explained below with reference to FIGS. 1 and 2.

図中、従来の酸素センサを示す第3図の構成中、同一の
機能を有する部分には同一の符号を付与した。
In the figure, parts having the same functions in the configuration of FIG. 3 showing the conventional oxygen sensor are given the same reference numerals.

第1図によれば、本発明の酸素センサは、Y2O3等の
安定化剤を含むジルコニア質固体電解質板1の両面にセ
ンサ電極、即ち、測定用電極2と基準用電極3とを被着
形成され、センサセル部が形成される。また、センサセ
ル部のセンサ電極2.3は一対の引き出し電極2a、3
aを経由して端子2b、3bと電気的に接続される。固
体電解質板1aにはその内部にはセンサセル部形成側が
封止され、端子形成側が開放される大気導入孔4が嵌設
され、作動時、測定用電極2に被測定ガスが、基準用電
極3には前記大気導入孔4を通して大気が接触するよう
構成される。
According to FIG. 1, the oxygen sensor of the present invention has sensor electrodes, that is, a measurement electrode 2 and a reference electrode 3, adhered to both sides of a zirconia solid electrolyte plate 1 containing a stabilizer such as Y2O3. Then, a sensor cell portion is formed. Moreover, the sensor electrode 2.3 of the sensor cell part is a pair of extraction electrodes 2a, 3.
It is electrically connected to terminals 2b and 3b via a. The solid electrolyte plate 1a is fitted with an air inlet hole 4 in which the sensor cell forming side is sealed and the terminal forming side is open. is configured so that the atmosphere comes into contact with it through the atmosphere introduction hole 4.

本発明における特徴は、第1図並びに第1図におけるX
−Y線断面図である第2図に示すように弓き出し電極部
における引き出し電極2a、3aと固体電解質板lとの
間にフォルステライトを主成分とする霊気絶縁層5を介
在させることにある。
The features of the present invention are as shown in FIG.
As shown in FIG. 2, which is a sectional view taken along the -Y line, an aether insulating layer 5 containing forsterite as a main component is interposed between the extraction electrodes 2a, 3a and the solid electrolyte plate l in the bowed electrode portion. be.

この絶縁層5は一対の引き出し電極2a、3aのうちい
ずれか一方にのみ形成されることで足りるが、特にいず
れか片方の引き出し電極の全長に亘って形成されること
が望ましい。また、この電気絶縁層5は引き出し電極と
固体電解質lとの間に5〜100μmの厚みで設けられ
ることが望ましく、厚みが薄い場合、絶縁層形成時にプ
リントムラの生成により引き出し電極形成部における起
電力リークの発生を充分に防止できない恐れがある。
Although it is sufficient that this insulating layer 5 is formed only on one of the pair of extraction electrodes 2a and 3a, it is particularly desirable that it be formed over the entire length of either one of the extraction electrodes. Further, it is desirable that this electrical insulating layer 5 is provided between the extraction electrode and the solid electrolyte 1 with a thickness of 5 to 100 μm. If the thickness is thin, printing unevenness may occur at the extraction electrode forming part when forming the insulation layer. There is a possibility that the occurrence of power leakage cannot be sufficiently prevented.

また、本発明によれば、電気絶縁層としてフォルステラ
イトを主成分とするセラミックを用いることも大きな特
徴である。即ち、フォルステライトはそれ自体、2Mg
0・SiO□で表される組成では100XIO−’の熱
膨張率を有し、ジルコニアセラミックスの熱膨張率であ
る110 Xl0−’に非常に近似する。よって、酸素
センサ作動時に固体電解質板1と霊気絶縁層5間に熱膨
張差に起因する応力の発生を極力抑えることができ、セ
ンサの破損はほとんど解消される。さらに、焼成時の収
縮率が12〜18%とジルコニアセラミックスの収縮率
とほぼ同程度であることから、焼成時の収縮率の差によ
る応力及びソリの発生をも小さくすることができる。
Another major feature of the present invention is that a ceramic containing forsterite as a main component is used as the electrical insulating layer. That is, forsterite itself contains 2Mg
The composition represented by 0.SiO□ has a coefficient of thermal expansion of 100XIO-', which is very close to the coefficient of thermal expansion of zirconia ceramics, 110XIO-'. Therefore, during the operation of the oxygen sensor, the generation of stress due to the difference in thermal expansion between the solid electrolyte plate 1 and the aether insulating layer 5 can be suppressed as much as possible, and damage to the sensor is almost eliminated. Furthermore, since the shrinkage rate during firing is 12 to 18%, which is approximately the same as the shrinkage rate of zirconia ceramics, it is possible to reduce the stress and warp caused by the difference in shrinkage rate during firing.

本発明で用いるフォルステライトの特に望ましい組成は
SiO□42.3〜39.4重量%、Mg051.2〜
55.9重量%、Ah032.8〜3.0重量%、Ba
01.4〜3゜0重量%、Ca00.5重量%以下であ
り、このような組成に設定することにより固体電解質で
あるジルコニアセラミックスに対する熱膨張差を4×1
07以内に抑えることができる。
A particularly desirable composition of forsterite used in the present invention is SiO□42.3-39.4% by weight, Mg051.2-39.4% by weight.
55.9% by weight, Ah032.8-3.0% by weight, Ba
By setting this composition, the thermal expansion difference with respect to zirconia ceramics, which is a solid electrolyte, is 4×1.
It can be kept within 0.07.

また、このフォルステライトを主成分とする電気絶縁層
は、その焼成温度が1300−1400°Cであり、固
体電解質であるジルコニアの焼成温度とほぼ同レベルで
あることから、ジルコニアと同時に焼成することができ
る。
In addition, the firing temperature of this electrical insulating layer mainly composed of forsterite is 1300-1400°C, which is approximately the same level as the firing temperature of zirconia, which is a solid electrolyte, so it can be fired at the same time as zirconia. Can be done.

よって、 本発明の酸素センサを製造する場合は、ドク
ターブレード法等の成形手段によって作製された酸素セ
ンサ本体用成形体に対し、前記の組成からなるフォルス
テライトを主成分とするセラミックペーストを引き出し
電極2a、3aが形成される部位に先に塗布し、乾燥す
る。次に、周知の厚膜手法によって第1図におけるセル
部電極2.3、引き出し電極2a、3a、端子2b、3
bとして白金微粉末を含有する電極形成用ペーストを塗
布形成する。その後、ペーストが塗布されたシート状成
形体1aに第1図における大気導入孔4等を形成する孔
が中心部に設けられたシーI・状戒形体1b及び他のシ
ート状成形体1Cを積層し、大気中で1300〜140
0°Cの温度で焼成することによって容易に得ることが
できる。
Therefore, when manufacturing the oxygen sensor of the present invention, a ceramic paste containing forsterite as a main component having the above-mentioned composition is extracted from a molded body for the oxygen sensor body produced by a molding method such as a doctor blade method, and then used as an electrode. It is first applied to the areas where 2a and 3a are to be formed and dried. Next, by using a well-known thick film method, the cell part electrode 2.3, the extraction electrodes 2a, 3a, and the terminals 2b, 3 in FIG.
As b, an electrode forming paste containing fine platinum powder is applied and formed. After that, on the sheet-like molded body 1a coated with the paste, a sheet I-shaped body 1b having holes in the center that form the air introduction holes 4, etc. in FIG. 1, and another sheet-like molded body 1C are laminated. 1300-140 in the atmosphere
It can be easily obtained by firing at a temperature of 0°C.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) Y2O2を8モル%の割合で含むジルコニア(ZrO□
)質共沈原料を用いて、ドクターブレード法によって厚
さ200μmのシート状成形体1aを作成した。
(Example) Zirconia (ZrO□
) A sheet-like molded body 1a having a thickness of 200 μm was prepared using a coprecipitated raw material by a doctor blade method.

この成形体1aの表面のうち、引き出し電極が形成され
る第1図及び第2図に示す部分に第1表の組成からなる
絶縁層ペーストを焼成後の厚みが10μmとなるように
塗布した。次に、粒径0.8μmの白金微粉末と適量の
2rO□、バインダー等からなる白金ペーストを用いて
絶縁ペースト上の第1.2図に示すような部位に測定用
電極と基準用電極をスクリーン印刷した。その後、その
中心に大気導入孔を有する成形体1bを先に作成した厚
さ200μmの成形体1aを積層し、酸素センサ用成形
体を作成した。
An insulating layer paste having the composition shown in Table 1 was applied to the surface of the molded body 1a on the portion shown in FIGS. 1 and 2 where the extraction electrodes were formed so that the thickness after firing was 10 μm. Next, using platinum paste consisting of fine platinum powder with a particle size of 0.8 μm, an appropriate amount of 2rO□, a binder, etc., measurement electrodes and reference electrodes were placed on the insulating paste at the locations shown in Figure 1.2. Screen printed. Thereafter, the molded body 1b having an air introduction hole in the center and the previously produced molded body 1a having a thickness of 200 μm were laminated to form a molded body for an oxygen sensor.

このようにして得られたセンサ成形体を第1表に示す条
件で焼成した。なお、各サンプルについて200個作成
し、その良品率を算出した。
The sensor molded body thus obtained was fired under the conditions shown in Table 1. Note that 200 pieces of each sample were prepared, and the non-defective rate was calculated.

結果は第1表に示した。The results are shown in Table 1.

また、比較例として絶縁層としてアルミナを用いたもの
を焼威し、同様に評価した。
In addition, as a comparative example, a product using alumina as an insulating layer was burned and evaluated in the same manner.

(以下余白) 第1表の結果によれば、フォルステライトを主成分とす
る絶縁層を有する本発明の酸素センサはいずれのサンプ
ルも1200〜1400°Cで同時焼成が可能であり、
且つ焼成時の割れは何ら認められず、生産外に優れるこ
とがわかった。
(Left below) According to the results in Table 1, all samples of the oxygen sensor of the present invention having an insulating layer mainly composed of forsterite can be fired at 1200 to 1400°C.
Moreover, no cracks were observed during firing, and it was found that the product was excellent in production.

これに対し、アルミナを絶縁層として用いたものは、焼
成時に固体電解質の割れが認められ、しかもその焼成温
度は1500〜1600°Cが最適焼成温度であり、そ
れより低いと焼結しなかった。
On the other hand, in those using alumina as an insulating layer, cracks in the solid electrolyte were observed during firing, and the optimal firing temperature was 1500 to 1600°C, and sintering did not occur at lower temperatures. .

(発明の効果) 以」二述べた通り、本発明の酸素センサは、引き出し電
極と固体電解質との間に形成される絶縁層としてフォル
ステライトを主成分とするセラミックを選択することに
よって、製造上において他の固体電解質や白金電極との
同時焼成が可能であり、またその熱膨張率が固体電解質
や電極と近似することから、焼成時や作動時に熱膨張差
に起因する応力の発生が低減され、十分に絶縁層として
の役割を果たすことができ、酸素センサを提供すること
ができる。
(Effects of the Invention) As described above, the oxygen sensor of the present invention has manufacturing advantages by selecting a ceramic containing forsterite as the main component for the insulating layer formed between the extraction electrode and the solid electrolyte. It can be fired simultaneously with other solid electrolytes and platinum electrodes, and because its coefficient of thermal expansion is similar to that of solid electrolytes and electrodes, stress caused by differences in thermal expansion during firing and operation is reduced. , can sufficiently serve as an insulating layer and provide an oxygen sensor.

安価で且つ量産性ならびに測定精度に優れた酸素センサ
を提供できる。
It is possible to provide an oxygen sensor that is inexpensive and has excellent mass productivity and measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酸素センサの構造を説明するための一
部切欠斜視図であり、第2図は第1図におけるX−Y線
断面図、第3図は従来の酸素センサの一部切欠斜視図で
ある。 A  ・・・酸素センサ l  ・・・固体電解質 2.3・・・センサ電極 2a、3a・・・引き出し電極 4  ・・・大気導入孔 5  ・・・電気絶縁層
Fig. 1 is a partially cutaway perspective view for explaining the structure of the oxygen sensor of the present invention, Fig. 2 is a sectional view taken along the X-Y line in Fig. 1, and Fig. 3 is a part of a conventional oxygen sensor. FIG. 3 is a cutaway perspective view. A...Oxygen sensor l...Solid electrolyte 2.3...Sensor electrodes 2a, 3a...Extractor electrode 4...Atmosphere introduction hole 5...Electrical insulating layer

Claims (1)

【特許請求の範囲】[Claims] (1)ジルコニア質固体電解質板と、該固体電解質板の
両面に形成された一対のセンサ電極とからなるセンサセ
ル部と、前記固体電解質板の両面にそれぞれ各センサ電
極と電気的に接続するようにして形成された一対の引き
出し電極とを具備する酸素センサにおいて、前記一対の
引き出し電極の少なくとも一方と前記固体電解質板との
間にフォルステライトを主成分とする電気絶縁層が介在
することを特徴とする酸素センサ。
(1) A sensor cell portion consisting of a zirconia solid electrolyte plate and a pair of sensor electrodes formed on both sides of the solid electrolyte plate, and electrically connected to each sensor electrode on both sides of the solid electrolyte plate, respectively. An oxygen sensor comprising a pair of lead-out electrodes formed by using an electrically insulating layer comprising forsterite as a main component is interposed between at least one of the pair of lead-out electrodes and the solid electrolyte plate. oxygen sensor.
JP1282485A 1989-10-30 1989-10-30 Oxygen sensor Pending JPH03142353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282485A JPH03142353A (en) 1989-10-30 1989-10-30 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282485A JPH03142353A (en) 1989-10-30 1989-10-30 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPH03142353A true JPH03142353A (en) 1991-06-18

Family

ID=17653053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282485A Pending JPH03142353A (en) 1989-10-30 1989-10-30 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPH03142353A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018553A1 (en) * 1993-02-09 1994-08-18 Robert Bosch Gmbh Solid electrolyte sensor with integrated heater
WO1995016199A1 (en) * 1993-12-09 1995-06-15 Robert Bosch Gmbh Insulating layer system for gavanically separating circuits
EP1760461A1 (en) * 2005-09-01 2007-03-07 Delphi Technologies, Inc. Gas sensor and method for forming same
WO2016002807A1 (en) * 2014-06-30 2016-01-07 株式会社デンソー Gas sensor element and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018553A1 (en) * 1993-02-09 1994-08-18 Robert Bosch Gmbh Solid electrolyte sensor with integrated heater
WO1995016199A1 (en) * 1993-12-09 1995-06-15 Robert Bosch Gmbh Insulating layer system for gavanically separating circuits
EP1760461A1 (en) * 2005-09-01 2007-03-07 Delphi Technologies, Inc. Gas sensor and method for forming same
US7722749B2 (en) 2005-09-01 2010-05-25 Delphi Technologies, Inc. Gas sensor and method for forming same
WO2016002807A1 (en) * 2014-06-30 2016-01-07 株式会社デンソー Gas sensor element and production method therefor
JP2016011884A (en) * 2014-06-30 2016-01-21 株式会社デンソー Gas sensor element and gas sensor element manufacturing method
US10591438B2 (en) 2014-06-30 2020-03-17 Denso Corporation Gas sensor element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4559126A (en) Electrochemical device
JP4050593B2 (en) Gas sensor element and gas sensor using the same
EP0134709A1 (en) An oxygen sensor element
US6676817B2 (en) Solid electrolyte containing insulating ceramic grains for gas sensor
JPH06300731A (en) Manufacture of oxygen sensor
US6936148B2 (en) Gas sensor element having at least two cells
KR100322981B1 (en) Insulation layer system for circuit electrical insulation
JPH106324A (en) Preparation of ceramic structure
US4747930A (en) Air/fuel ratio sensor
JP2603373B2 (en) Electrochemical element
JPH03142353A (en) Oxygen sensor
JP3572241B2 (en) Air-fuel ratio sensor element
KR102568419B1 (en) Limiting current type oxygen sensor and method of manufacturing the same
US4713166A (en) Pump cell element for air-fuel ratio sensor
US6797138B1 (en) Gas senior design and method for forming the same
JP3931783B2 (en) Gas sensor element
JP3860768B2 (en) Oxygen sensor element
JP4061125B2 (en) Method for manufacturing oxygen sensor element
JP3310358B2 (en) Solid electrolyte device and method for manufacturing the same
JP2001041922A (en) Oxygen sensor element integrated with heater
JPH0390851A (en) Oxygen sensor with heater and production thereof
JP4113479B2 (en) Oxygen sensor element
JP4007892B2 (en) Gas sensor element and gas sensor using the same
JP4698041B2 (en) Air-fuel ratio sensor element
KR100413783B1 (en) CERAMIC HEATER FOR HEATING SENSOR, INCLUDING HEATER SUBSTRATE PRODUCED BY ADDING MgO POWDER TO HIGH PURITY ALUMINA POWDER OF 99.999% OR HIGHER