JPH03139882A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPH03139882A
JPH03139882A JP1277049A JP27704989A JPH03139882A JP H03139882 A JPH03139882 A JP H03139882A JP 1277049 A JP1277049 A JP 1277049A JP 27704989 A JP27704989 A JP 27704989A JP H03139882 A JPH03139882 A JP H03139882A
Authority
JP
Japan
Prior art keywords
film
polysilicon
polysilicon film
melting point
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277049A
Other languages
Japanese (ja)
Inventor
Ikuo Kurachi
郁生 倉知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1277049A priority Critical patent/JPH03139882A/en
Publication of JPH03139882A publication Critical patent/JPH03139882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To increase the effective surface area of a polysilicon film so as to increase the capacitance of a storage capacitor by forming a polysilicon film high in phosphor concentration on a high melting point metallic silicide film, and then etching it in hot phosphoric acid solution so as to form irregularity in the surface. CONSTITUTION:A high melting point metallic silicide film, for example, a WSix (X=2.0-3.0) film 8 is formed through a silicon oxide film 6 being a first interlayer insulating film. Then, a second polysilicon film 9 is formed on the WSix film 8 by a low pressure CVD method, and this is doped with phosphor to a concentration of 6X10<20>cm<-3> or more by the thermal diffusion wherein POCl3 is used as a source. Next, the second polysilicon film 9 is immersed in phosphoric acid solution heated to about 170 deg.C. Hereby, the polysilicon at the grain boundary of the second polysilicon film 9, that is, the crystal grain boundary is etched especially, and irregularity is made at the surface of the second polysilicon film 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置、特にダイナミックランダム 
アクセス メモリ (DRAM)のメモリセルの製造方
法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to semiconductor memory devices, particularly dynamic random
The present invention relates to a method of manufacturing a memory cell of an access memory (DRAM).

〔従来の技術〕[Conventional technology]

従来、この種のメモリセルについて、第2図を参照して
述べる。尚、第2図はメモリセルの断面図を示す。
A conventional memory cell of this type will be described with reference to FIG. Incidentally, FIG. 2 shows a cross-sectional view of the memory cell.

即ち、図面において、21はp型シリコン基板であり、
この基板21の非能動領域上には、素子分離用のフィー
ルド酸化膜22が形成され、能動領域上には、ゲート酸
化膜23が形成されている。
That is, in the drawing, 21 is a p-type silicon substrate,
A field oxide film 22 for element isolation is formed on the non-active region of the substrate 21, and a gate oxide film 23 is formed on the active region.

又、これらフィールド酸化膜22上及びゲート酸化H,
23上には、第1ポリシリコンから成るワード124が
個別に形成され、ゲート酸化膜23上のワード線24の
両側方における基板21表面部には、n゛拡散層25a
、25bが形成されている。
Moreover, on these field oxide films 22 and gate oxide H,
Words 124 made of first polysilicon are individually formed on the gate oxide film 23, and n diffusion layers 25a are formed on the surface of the substrate 21 on both sides of the word line 24 on the gate oxide film 23.
, 25b are formed.

更に、ワード線24を含む基板21上には、第1層間絶
縁膜26が堆積され、上記ワード線24上及びワード線
24間上における上記第1層間絶縁膜26上には、蓄積
電極となる第2ポリシリコン層27が形成され、この第
2ポリシリコン層27の表面には、キャパシタ絶縁膜2
8が被着されている。そして、このキャパシタ絶縁膜2
8上には、セルプレート電極となる第3ポリシリコン層
29が形成されている。更に、これら構成素子上には、
第2層間絶縁膜30、ビット線となるAI膜31及びこ
の^l膜31を保護する保護膜32が順次形成されてい
る。又、上記第1層間絶縁膜26には、n゛拡散Ji2
5aと第2ポリシリコン層27とを接続する第1コンタ
クトホール33が開孔されると共に、上記第2層間絶縁
膜30には、n゛拡散層25bと^l膜31とを接続す
る第2コンタクトホール34が開孔されている。
Further, a first interlayer insulating film 26 is deposited on the substrate 21 including the word line 24, and a storage electrode is formed on the first interlayer insulating film 26 on the word line 24 and between the word lines 24. A second polysilicon layer 27 is formed, and a capacitor insulating film 2 is formed on the surface of the second polysilicon layer 27.
8 is coated. Then, this capacitor insulating film 2
A third polysilicon layer 29 is formed on top of the third polysilicon layer 29 to serve as a cell plate electrode. Furthermore, on these components,
A second interlayer insulating film 30, an AI film 31 serving as a bit line, and a protective film 32 for protecting this ^l film 31 are formed in this order. Further, in the first interlayer insulating film 26, n゛diffused Ji2
5a and the second polysilicon layer 27, and a second contact hole 33 is formed in the second interlayer insulating film 30 to connect the n' diffusion layer 25b and the ^l film 31. A contact hole 34 is opened.

斯くして、かかるメモリセルでは、1つの記憶保持用の
キャパシタと1つの選択用MOSトランジスタから構成
されて層り、メモリの高集積化、即ちセルサイズの縮小
化に対し、記憶保持時間を保持し、α線によるソフトエ
ラーに耐性を持たせるため、選択用トランジスタ上及び
素子骨RSJI域上に、ストレージキャパシタを形成し
た、所謂スタック型とし、充分なキャパシタ容量を確保
していた。
In this way, such a memory cell is composed of one memory retention capacitor and one selection MOS transistor, and is layered to maintain memory retention time even as memory becomes highly integrated, that is, cell size decreases. However, in order to provide resistance to soft errors caused by alpha rays, a so-called stack type was used in which a storage capacitor was formed on the selection transistor and on the element bone RSJI region to ensure sufficient capacitor capacity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し乍ら、上述した従来メモリセルにおいては、より高
集積度のメモリ素子を形成する場合、キャパシタ面積が
減少し、メモリ保持時間やα線の耐性に対して充分なキ
ャパシタ容量を得ることができないという問題点があっ
た。
However, in the conventional memory cell described above, when forming a memory element with a higher degree of integration, the capacitor area decreases, and there is a problem that it is not possible to obtain a sufficient capacitor capacity for memory retention time and resistance to alpha rays. There was a point.

本発明の目的は、上述した問題点に鑑み、セルサイズが
縮小化しても充分なキャパシタ容量が得られる半導体記
憶装置の製造方法を提供するものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing a semiconductor memory device that can obtain sufficient capacitor capacity even when the cell size is reduced.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上述の目的を達成するため、半導体基板上に形
成された選択用MOSトランジスタ及び素子骨#領域上
に、ストレージキャパシタを積層したスタック型メモリ
セルを有する半導体記憶装置の製造方法において、上記
MOSトランジスタ上及び上記素子分離領域上に、眉間
絶縁膜を介して高融点金属シリサイド膜を形成する工程
と、上記高融点金属シリサイド膜上に、高f4濃度のポ
リシリコン膜を形成する工程と、上記ポリシリコン膜を
、加熱した燐酸液でエツチングし、上記ポリシリコン膜
の表面に凹凸を形成する工程とを含むものである。
In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a semiconductor memory device having a stacked memory cell in which a storage capacitor is stacked on a selection MOS transistor and an element bone region formed on a semiconductor substrate. forming a high melting point metal silicide film on the MOS transistor and the element isolation region via a glabellar insulating film; forming a high f4 concentration polysilicon film on the high melting point metal silicide film; The method includes a step of etching the polysilicon film with a heated phosphoric acid solution to form irregularities on the surface of the polysilicon film.

〔作 用〕[For production]

本発明においては、高f4濃度のポリシリコン膜を加熱
した燐酸液でエツチングし、ポリシリコン膜の表面に凹
凸を形成するので、ポリシリコン膜の実効的な表面積が
増大し、ストレージキャパシタのキャパシタ容量が増大
する。又、ポリシリコン膜のウェットエツチングに際し
て、高融点金属シリサイド膜がエツチングストッパーと
して作用すると共に、凹凸形成によるポリシリコン膜の
断線を防止する。
In the present invention, a polysilicon film with a high F4 concentration is etched with a heated phosphoric acid solution to form irregularities on the surface of the polysilicon film, thereby increasing the effective surface area of the polysilicon film and increasing the capacitance of the storage capacitor. increases. Furthermore, during wet etching of the polysilicon film, the high melting point metal silicide film acts as an etching stopper and prevents disconnection of the polysilicon film due to the formation of irregularities.

〔実施例〕〔Example〕

本発明DRAMのメモリセルの製造方法における一実施
例を第1図に基づいて説明する。尚、第1図は工程断面
図を示す。
An embodiment of the method for manufacturing a DRAM memory cell according to the present invention will be described with reference to FIG. Incidentally, FIG. 1 shows a cross-sectional view of the process.

先ず、p型半導体基板l上に、LOCO3法により素子
分離を行なうためのフィールド酸化膜2を形成する。そ
の後、800〜1000℃で乾燥若しくは水蒸気酸化を
行なうことにより、100〜300人厚程度のゲート酸
化膜3を、基板1の能動領域上に形成する0次に、減圧
CVD法等により、メモリセル形成予定令頁域上に、第
1ポリシリコン層を1000〜3000人厚程度デポジ
ションした後、この第1ポリシリコン層に、poclz
をソースとする熱拡散により、燐(P)をIQ”am−
”程度の濃度にドーピングする。その後、通常のホトリ
ソグラフィ技術を用いて、レジスト(図示略す)をパタ
ーニングし、このパターン化されたレジストをマスクと
して、上記第1ポリシリコン層をエツチングし、フィー
ルド酸化11!2上及びゲート酸化lll3上に、夫々
位置するメモリセルのワード線4を形成する(第1図a
)。
First, a field oxide film 2 for element isolation is formed on a p-type semiconductor substrate l by the LOCO3 method. Thereafter, a gate oxide film 3 with a thickness of about 100 to 300 layers is formed on the active region of the substrate 1 by drying or steam oxidation at 800 to 1000°C. After depositing a first polysilicon layer with a thickness of about 1,000 to 3,000 layers on the planned page area, poclz is applied to the first polysilicon layer.
By thermal diffusion using the source, phosphorus (P) is
After that, a resist (not shown) is patterned using ordinary photolithography technology, and using this patterned resist as a mask, the first polysilicon layer is etched and field oxidized. 11!2 and on the gate oxide lll3, the word lines 4 of the memory cells located respectively are formed (see FIG. 1a).
).

次いで、上記ワード線4及びフィールド酸化膜2をマス
クとして、砒素(As)をイオン注入し、更にアニール
処理することで、基vi1表面部に、濃度がIQ”am
−3程度のn9拡散層5a、5bを形成する。その後、
常圧CVD法等により、全面に、第1の層間絶縁膜であ
るシリコン酸化膜6を、1000〜3000人厚程度堆
積し、通常のホトリソグラフィ技術により、パターン化
したレジスト(図示略す)をマスクとするドライエツチ
ング技術により、上記シリコン酸化1I16のn゛拡散
層5aの所定部分上を開孔し、コンタクトホール7を形
成する(第1図b)。
Next, using the word line 4 and the field oxide film 2 as masks, arsenic (As) is ion-implanted and further annealed so that the concentration is IQ"am on the surface of the base vi1.
N9 diffusion layers 5a and 5b of about -3 are formed. after that,
A silicon oxide film 6, which is a first interlayer insulating film, is deposited to a thickness of about 1,000 to 3,000 layers over the entire surface by atmospheric pressure CVD, etc., and then a patterned resist (not shown) is masked by ordinary photolithography. Using a dry etching technique, a contact hole 7 is formed on a predetermined portion of the silicon oxide 1I16 diffusion layer 5a (FIG. 1b).

続いて、全面に、スパッタ法又は減圧CVD法により、
メモリセルの蓄積ノードとなる高融点金属シリサイド膜
、例えばWSix (X =2.0〜3.0)膜8を1
000〜2000人厚程度形成する。その後、上記WS
ix膜8上に、減圧CVD法により、第2ポリシリコン
1l19を500〜1500人厚形成し、この第2ポリ
シリコン膜9に、POCZ3をソースとする熱拡散によ
り、燐をIQ”CIA−’程度の濃度にドーピングする
(第1図C)。
Subsequently, the entire surface is coated by sputtering or low pressure CVD.
A high melting point metal silicide film, for example, a WSix (X = 2.0 to 3.0) film 8, which becomes a storage node of a memory cell, is
Form approximately 000 to 2000 people thick. After that, the above WS
A second polysilicon film 1l19 with a thickness of 500 to 1,500 layers is formed on the ix film 8 by low pressure CVD, and phosphorus is added to the second polysilicon film 9 by thermal diffusion using POCZ3 as a source. Doping is carried out to a certain concentration (FIG. 1C).

次いで、上記第2ポリシリコン膜9を、170℃程度に
加熱した燐酸液に約10〜20分間浸漬する。これによ
り、第2ポリシリコン膜9のグレイン境界、即ち結晶粒
界でのポリシリコンが特にエツチングされ、第2ポリシ
リコン膜9の表面に凹凸が形成される。このとき、充分
な凹凸を形成するためには、第2ポリシリコン膜9の燐
濃度を少な(とも6 xlOzo、、−、以上必要とす
る。又、燐酸液による浸漬時間を長くとる程凹凸の差は
大きくなる。そして、この場合、例えば凹部のポリシリ
コンが全てエツチング除去されても下地の−Six膜8
がエツチングのストッパーとして作用し、而も−Six
膜8により第2ポリシリコンl!9は結線され、凹凸に
よる断線は生じない、続いて、通常のホトリソグラフィ
技術によりバターニングしたレジスト(図示略す)をマ
スクとするドライエツチング技術を用いて、第2ポリシ
リコン膜9及びWSix膜8をパターニングし、ワード
線4上及びワード線4間上に位置するメモリセルの蓄積
電極を形成する。その後、減圧CVD法等により、全面
に、キャパシタ絶縁膜となる5iJ4膜10を50〜1
00人厚程度形成し、更に、800〜900℃の水蒸気
雰囲気中で、約30〜60分間上記Si、N4膜10を
酸化し、SiJ、膜10の耐圧を向上させるための酸化
膜11をlO〜20人厚形成する。その後、上記酸化膜
ll上に、減圧CVD法により、第3ポリシリコン膜1
2を2000〜3000人厚形成し、この第3ポリシリ
コン膜12に、pocBをソースとする熱拡散により、
燐を4×10t0〜6X10”am−”の濃度にドーピ
ングする(第1図d) しかる後、ホトリソグラフィ技術及びドライエツチング
技術を用いて、上記第3ポリシリコン膜12をバターニ
ングし、上記蓄積電極を被うセルプレート電極とし、D
RAMメモリセルのキャパシタが形成される。しかる後
、常圧CVD法により、全面に、BPSG等から成る第
2の眉間絶縁膜13を6000〜8000人厚程度堆積
した後、900℃程度の熱処理を施すことにより、上記
第2の眉間絶縁膜13を平滑化する。そして、n゛拡散
層5bの部分上の第2の眉間絶縁膜13をエツチング除
去し、コンタクトホール14を開孔する。その後、スパ
ッタ法により、全面に、^!膜15を約10000 人
厚堆積し、これをパターニングしてビット線とする。更
に、このビット線の表面に、保護膜(図示略す)を被着
し、DRAMメモリセルが完成する(第1図e)e 〔発明の効果〕 以上説明したように本発明によれば、ポリシリコン膜の
表面に凹凸を形成するので、ポリシリコン膜の実効的な
表面積が増大し、ストレージキャパシタの容量が増大す
る。従って、より高集積度なメモリセルが得られる等の
効果により上述した課題を解決し得る。
Next, the second polysilicon film 9 is immersed in a phosphoric acid solution heated to about 170° C. for about 10 to 20 minutes. As a result, the polysilicon at the grain boundaries, that is, the crystal grain boundaries, of the second polysilicon film 9 is particularly etched, and irregularities are formed on the surface of the second polysilicon film 9. At this time, in order to form sufficient unevenness, the phosphorus concentration of the second polysilicon film 9 needs to be small (more than 6 x lOzo, -). Also, the longer the immersion time in the phosphoric acid solution, the more uneven the unevenness becomes. In this case, for example, even if all the polysilicon in the concave portion is etched away, the underlying −Six film 8
acts as an etching stopper, and -Six
The film 8 allows the second polysilicon l! 9 is connected, and no disconnection occurs due to unevenness. Next, the second polysilicon film 9 and the WSix film 8 are etched using a dry etching technique using a patterned resist (not shown) as a mask, which has been patterned by ordinary photolithography. is patterned to form storage electrodes of memory cells located on the word lines 4 and between the word lines 4. Thereafter, a 5iJ4 film 10, which will become a capacitor insulating film, is deposited on the entire surface using a low pressure CVD method or the like.
The Si, N4 film 10 is further oxidized for about 30 to 60 minutes in a steam atmosphere at 800 to 900°C to form an oxide film 11 to improve the withstand voltage of the SiJ film 10. ~20 people thick. Thereafter, a third polysilicon film 1 is formed on the oxide film 11 by low pressure CVD.
2 is formed to a thickness of 2,000 to 3,000 layers, and this third polysilicon film 12 is heated by thermal diffusion using pocB as a source.
The third polysilicon film 12 is doped with phosphorus to a concentration of 4x10t0 to 6x10"am-" (FIG. 1d). The third polysilicon film 12 is then buttered using photolithography and dry etching techniques to eliminate the accumulation. As a cell plate electrode covering the electrode, D
A capacitor for a RAM memory cell is formed. Thereafter, a second glabellar insulating film 13 made of BPSG or the like is deposited on the entire surface to a thickness of about 6,000 to 8,000 by atmospheric pressure CVD, and then heat-treated at about 900°C to form the second glabellar insulating film 13. The membrane 13 is smoothed. Then, the second glabellar insulating film 13 on the n' diffusion layer 5b is removed by etching, and a contact hole 14 is opened. After that, use sputtering method to coat the entire surface! A film 15 is deposited to a thickness of about 10,000 layers and patterned to form a bit line. Furthermore, a protective film (not shown) is deposited on the surface of this bit line, and the DRAM memory cell is completed (Fig. 1 e). [Effects of the Invention] As explained above, according to the present invention, Since irregularities are formed on the surface of the silicon film, the effective surface area of the polysilicon film increases, and the capacitance of the storage capacitor increases. Therefore, the above-mentioned problems can be solved with effects such as the ability to obtain memory cells with a higher degree of integration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例における工程断面図、第2
図は従来メモリセルの断面図である。 l・・・p型半導体基板、2・・・フィールド酸化膜、
3・・・ゲート酸化膜、4・・・ワード線、5a、5b
・・・n゛拡散層、6・・・シリコン酸化膜、7・・・
コンタクトホール、8・・・−5ix膜、9・・・第2
ポリシリコン膜、10・・・SiJg膜、11・・・酸
化膜、12・・・第3ポリシリコン膜。 λζ9−9月方3七0工程図 第1図 イ減〕政×8リセルの断面図 第2図
Fig. 1 is a process cross-sectional view in an embodiment of the method of the present invention, Fig.
The figure is a cross-sectional view of a conventional memory cell. l...p-type semiconductor substrate, 2... field oxide film,
3... Gate oxide film, 4... Word line, 5a, 5b
...n゛diffusion layer, 6...silicon oxide film, 7...
Contact hole, 8...-5ix film, 9... second
Polysilicon film, 10... SiJg film, 11... Oxide film, 12... Third polysilicon film. λζ9-September 370 Process diagram Figure 1 A reduction] Sectional diagram of x8 resel Figure 2

Claims (1)

【特許請求の範囲】 半導体基板上に形成された選択用MOSトランジスタ及
び素子分離領域上に、ストレージキャパシタを積層した
スタック型メモリセルを有する半導体記憶装置の製造方
法において、 上記MOSトランジスタ上及び上記素子分離領域上に、
層間絶縁膜を介して高融点金属シリサイド膜を形成する
工程と、 上記高融点金属シリサイド膜上に、高燐濃度のポリシリ
コン膜を形成する工程と、 上記ポリシリコン膜を、加熱した燐酸液でエッチングし
、上記ポリシリコン膜の表面に凹凸を形成する工程とを
含むことを特徴とする半導体記憶装置の製造方法。
[Scope of Claims] A method for manufacturing a semiconductor memory device having a stacked memory cell in which a storage capacitor is stacked on a selection MOS transistor and an element isolation region formed on a semiconductor substrate, comprising: on the MOS transistor and on the element; On the separation area,
forming a high melting point metal silicide film via an interlayer insulating film; forming a polysilicon film with a high phosphorous concentration on the high melting point metal silicide film; and forming the polysilicon film with a heated phosphoric acid solution. A method for manufacturing a semiconductor memory device, comprising the step of etching to form irregularities on the surface of the polysilicon film.
JP1277049A 1989-10-26 1989-10-26 Manufacture of semiconductor storage device Pending JPH03139882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277049A JPH03139882A (en) 1989-10-26 1989-10-26 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277049A JPH03139882A (en) 1989-10-26 1989-10-26 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH03139882A true JPH03139882A (en) 1991-06-14

Family

ID=17578075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277049A Pending JPH03139882A (en) 1989-10-26 1989-10-26 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH03139882A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163853A (en) * 1992-02-28 1994-06-10 Samsung Electron Co Ltd Manufacture of capacitor of semiconductor device
JPH06244378A (en) * 1993-02-03 1994-09-02 Ind Technol Res Inst Process for manufacturing high-capacity storage node
US5372962A (en) * 1992-01-31 1994-12-13 Nec Corporation Method of making a semiconductor integrated circuit device having a capacitor with a porous surface of an electrode
JPH0738062A (en) * 1993-07-22 1995-02-07 Nec Corp Manufacture of semiconductor device
JPH0774320A (en) * 1993-08-31 1995-03-17 Nec Corp Manufacture of semiconductor device
US5445986A (en) * 1993-09-03 1995-08-29 Nec Corporation Method of forming a roughened surface capacitor with two etching steps
US5597760A (en) * 1995-01-25 1997-01-28 Nec Corporation Process of fabricating semiconductor device having capacitor increased in capacitance by roughening surface of accumulating electrode
US5656529A (en) * 1995-05-11 1997-08-12 Nec Corporation Method for manufacturing highly-integrated capacitor
JPH09232543A (en) * 1996-02-28 1997-09-05 Nec Corp Manufacture of semiconductor device
US5700710A (en) * 1994-11-11 1997-12-23 Nec Corporation Process of fabricating capacitor having waved rough surface of accumulating electrode
US5811333A (en) * 1995-01-13 1998-09-22 Nec Corporation Method of roughening a polysilicon layer of a random crystal structure included in a semiconductor device
KR100227174B1 (en) * 1996-02-21 1999-10-15 다니구찌 이찌로오, 기타오카 다카시 Semiconductor memory device and fabricating method thereof
DE112011100144T5 (en) 2010-11-24 2012-09-20 France Bed Co., Ltd Wheelchair equipped with brake

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372962A (en) * 1992-01-31 1994-12-13 Nec Corporation Method of making a semiconductor integrated circuit device having a capacitor with a porous surface of an electrode
JPH06163853A (en) * 1992-02-28 1994-06-10 Samsung Electron Co Ltd Manufacture of capacitor of semiconductor device
JPH06244378A (en) * 1993-02-03 1994-09-02 Ind Technol Res Inst Process for manufacturing high-capacity storage node
JPH0738062A (en) * 1993-07-22 1995-02-07 Nec Corp Manufacture of semiconductor device
JPH0774320A (en) * 1993-08-31 1995-03-17 Nec Corp Manufacture of semiconductor device
US5445986A (en) * 1993-09-03 1995-08-29 Nec Corporation Method of forming a roughened surface capacitor with two etching steps
US5700710A (en) * 1994-11-11 1997-12-23 Nec Corporation Process of fabricating capacitor having waved rough surface of accumulating electrode
US5811333A (en) * 1995-01-13 1998-09-22 Nec Corporation Method of roughening a polysilicon layer of a random crystal structure included in a semiconductor device
US5597760A (en) * 1995-01-25 1997-01-28 Nec Corporation Process of fabricating semiconductor device having capacitor increased in capacitance by roughening surface of accumulating electrode
US5656529A (en) * 1995-05-11 1997-08-12 Nec Corporation Method for manufacturing highly-integrated capacitor
KR100227174B1 (en) * 1996-02-21 1999-10-15 다니구찌 이찌로오, 기타오카 다카시 Semiconductor memory device and fabricating method thereof
JPH09232543A (en) * 1996-02-28 1997-09-05 Nec Corp Manufacture of semiconductor device
DE112011100144T5 (en) 2010-11-24 2012-09-20 France Bed Co., Ltd Wheelchair equipped with brake

Similar Documents

Publication Publication Date Title
US5330928A (en) Method for fabricating stacked capacitors with increased capacitance in a DRAM cell
JP2761685B2 (en) Method for manufacturing semiconductor device
JP3172321B2 (en) Method for manufacturing semiconductor memory device
JPH0653412A (en) Semiconductor memory device and fabrication thereof
JP2839076B2 (en) Semiconductor device and manufacturing method thereof
JPH03139882A (en) Manufacture of semiconductor storage device
JPH04274359A (en) Dynamic random acess memory
JPS5856268B2 (en) Manufacturing method of semiconductor device
JPH0279462A (en) Semiconductor memory
JPH11111857A (en) Formation of capacity part in semiconductor device, and formation of capacity and gate parts in the semiconductor device
JP3075620B2 (en) Method for manufacturing semiconductor device
JPH02129956A (en) Manufacture of semiconductor memory device
JPH01290256A (en) Dynamic type semiconductor memory and manufacture thereof
JPH0344068A (en) Manufacture of semiconductor device
JPS6138867B2 (en)
JP3317736B2 (en) Semiconductor device and manufacturing method thereof
KR970011749B1 (en) A method for fabricating dram cells
JPS62124765A (en) Semiconductor device
JPH0888330A (en) Semiconductor device and manufacture thereof
JPH05110020A (en) Semiconductor device
JP3213442B2 (en) Semiconductor memory device and method of manufacturing the same
JPH01120862A (en) Manufacture of semiconductor memory device
JPH01290255A (en) Semiconductor memory and manufacture thereof
JPH04139761A (en) Manufacture of semiconductor memory device
JPH03224264A (en) Manufacture of semiconductor integrated circuit device