JPH03139566A - Ion-conductive material and its preparation - Google Patents

Ion-conductive material and its preparation

Info

Publication number
JPH03139566A
JPH03139566A JP1277835A JP27783589A JPH03139566A JP H03139566 A JPH03139566 A JP H03139566A JP 1277835 A JP1277835 A JP 1277835A JP 27783589 A JP27783589 A JP 27783589A JP H03139566 A JPH03139566 A JP H03139566A
Authority
JP
Japan
Prior art keywords
group
integer
conductive material
formula
alkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277835A
Other languages
Japanese (ja)
Inventor
Takashi Nakamura
隆司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Silicone Co Ltd filed Critical Dow Corning Toray Silicone Co Ltd
Priority to JP1277835A priority Critical patent/JPH03139566A/en
Publication of JPH03139566A publication Critical patent/JPH03139566A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prepare an ion-conductive material improved in the ionic conductivity and suitable for the use as a solid electrolyte of an electronic device by dispersing a metal ion of the group I or II of the periodic table in a specific crosslinked copolymer. CONSTITUTION:An organopolysiloxane of formula I (wherein R<1> is a monovalent org. group; R<2> is an alkylene or arylene group; R<3> is a divalent org. group; R<4> is an alkylene group; R<5> is R<1>; (l) is 0-1000; (m) is 2-1000; (n) is 1-1000; and (p) is 1-100), a polyoxyalkylene of formula II (wherein Z is an aliph. unsatd. hydrocarbon group; R<6> is a divalent hydrocarbon group; R<7> is an alkylene group; and (q) is 1-100), and a metal ion of the group I or II of the periodic table are compounded. The resulting compsn. is irradiated with ultraviolet rays to conduct the crosslinking reaction between the organopolysiloxane and the polyoxyalkylene, thus producing an ion-conductive material wherein the metal ions are dispersed in the crosslinked copolymer of the organopolysiloxane and the polyoxyalkylene.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はイオン導電性材料およびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ionically conductive material and a method for producing the same.

[従来の技術および発明が解決しようとする課題] 近年、電池、表示素子(ECD等)等の電子デバイスは
、高性能化、小形化、薄型化が一段と進んでいる。それ
に伴いそれらに用いられるイオン導電性材料も高性能化
はもちろんのこと、固体化、高信頼性、高柔軟性、高成
形加工性、耐湿性等種々の高度な要求がなされている。
[Background Art and Problems to be Solved by the Invention] In recent years, electronic devices such as batteries and display elements (ECDs, etc.) have become more sophisticated, smaller, and thinner. Along with this, the ion conductive materials used in these materials are required to have various high-level requirements such as high performance, solidification, high reliability, high flexibility, high moldability, and moisture resistance.

従来、このようなイオン導電性材料としては、(1)電
解質を水、水性溶剤または有機溶剤に溶解した電解質溶
液: (2)ベータ・アルミナ(β−A120a)、窒化リチ
ウム(Li3N)、ヨウ化リチウム−アルミナ(目lA
1203)、ヨウ化銀ルビジウム等の無機質からなる固
体電解質材料: (3)高分子樹脂マ) IJソックス周期律表第■族ま
たは第■族金属の塩を溶解、分散させた固体電解質材料
: 等が知られている。
Conventionally, such ionically conductive materials include (1) electrolyte solutions in which electrolytes are dissolved in water, aqueous solvents, or organic solvents; (2) beta alumina (β-A120a), lithium nitride (Li3N), and iodide; Lithium-alumina
1203), a solid electrolyte material made of an inorganic substance such as silver rubidium iodide: (3) Polymer resin polymer) A solid electrolyte material in which a salt of a metal of Group ■ or Group ■ of the IJ Socks periodic table is dissolved and dispersed: etc. It has been known.

しかし、(1)の電解質溶液は、材料に水または有機溶
剤等の液体を用いているため、電子デノくイス外部への
漏液という問題が常に存在し、この漏液によりデバイス
の性能劣化や周辺部品の損傷を引き起こす場合がある。
However, since the electrolyte solution in (1) uses a liquid such as water or an organic solvent as a material, there is always the problem of the liquid leaking to the outside of the electronic device, and this leakage deteriorates the performance of the device. or damage to surrounding parts.

この欠点を改善するために、電解質溶液中に高分子化合
物を混合して糊状あるいはゲル状にしたイオン導電性材
料もあるが、この材料にしても漏液の問題を完全に払拭
できるものではなかった。また、(2)の固体電解質材
料は本質的に高信頼性の長寿命な電子デバイスに適用で
き、かつ、小形、薄型化の要求に応じつる材料である。
In order to improve this drawback, some ion conductive materials are made by mixing a polymer compound into an electrolyte solution to form a paste or gel, but even these materials cannot completely eliminate the problem of leakage. There wasn't. Furthermore, the solid electrolyte material (2) is essentially a material that can be applied to electronic devices with high reliability and long life, and can meet the demands for miniaturization and thinning.

しかし、現状では室温で十分に導電性のある材料は得ら
れておらす、広く実用化されるまでに至っていない。ま
た、(3)の固体電解質材料は本質的に(2)と同様、
漏液という問題が解決されうるばかりか、有機高分子特
有の高柔軟性、高成形加工性といった優れた特性の付与
が期待できるので、前述の電子デバイスの広範な要求に
応じうる材料として注目を浴びている。かかる固体電解
質材料に用いられる高分子のイオン導電性材料に要求さ
れる特性としては、 イ)含有させる電解質(金属塩)の溶解量が十分に大き
く、かつ、イオンに解離させる能力が大きいこと。
However, at present, materials that are sufficiently conductive at room temperature have not yet been widely put into practical use. In addition, the solid electrolyte material in (3) is essentially the same as in (2),
Not only can it solve the problem of leakage, but it can also be expected to provide excellent properties such as high flexibility and high moldability unique to organic polymers, so it is attracting attention as a material that can meet the wide range of demands of electronic devices mentioned above. Bathing. The characteristics required of the polymeric ionically conductive material used in such solid electrolyte materials are: (a) The amount of dissolved electrolyte (metal salt) to be contained is sufficiently large and the ability to dissociate into ions is large.

口)解離したイオンが高分子マトリックス中を移動し易
いこと等があげられる。以上の条件を満たす高分子構造
としてはPEO(ポリエチレンオキシド)等のポリエー
テルセグメントを含む架橋体が比較的よい導電性を示す
ため、種々検討がなされている。しかし、PEOの単体
を架橋しただけでは分子運動性に限界があり、室温で十
分な導電率が得られていない。そこで、この欠点を改良
するために、分子運動性の極めて高いシロキサンセグメ
ントとPEOセグメントとを組み合わせた固体電解質の
合成が試みられている。例えば、特開昭6O−2164
G3号広報、特開昭GO−2172G3号広報および特
開昭63−1420GI号広報には5l−0−C結合に
より結合されたシロキサンとPEOとの共重合体の架橋
物にリチウムイオン等を分散させてイオン導電性材料と
したものが記されている。しかし、S+−0−C結合は
水の存在により容易に切断されるため、材料としての取
扱が極めて不便である。また、ソリ・ソドステートアイ
オニクス(Solid  5tate Ionlcs)
、15,233(1985)等にはポリエチレングリコ
ールを側鎖に有するポリシロキサンを2官能性イソシア
ナートにより架橋固化させ、金属イオンを分散させてイ
オン導電性材料としたものが開示されている。しかし、
この場合、十分な強度を出すまで固化させるにはNGO
基の量をOH基に対して十分に過剰に加えなければなら
ないが、残存NGO基は電池等のデバイスに組み込んだ
場合、電極材と反応を起こす恐れがあり、実用化には問
題があった。さらに、特開昭62−209169号広報
にはシロキサンとPEOとの架橋物の製造方法として白
金触媒によるヒドロシリル化反応や放射線(電子線等)
の照射による架橋方法を挙げ、これらに、金属イオンを
分散させて、イオン導電性材料としたものが開示されて
いる。
(1) Dissociated ions can easily move through the polymer matrix. As a polymer structure that satisfies the above conditions, various studies have been made because crosslinked bodies containing polyether segments such as PEO (polyethylene oxide) exhibit relatively good conductivity. However, simply crosslinking PEO alone has a limit in molecular mobility, and sufficient electrical conductivity cannot be obtained at room temperature. Therefore, in order to improve this drawback, attempts have been made to synthesize a solid electrolyte that combines a siloxane segment with extremely high molecular mobility and a PEO segment. For example, JP-A-6O-2164
G3 Publication, JP-A-2172-G3 Publication, and JP-A-63-1420GI Publication contain lithium ions etc. dispersed in a cross-linked copolymer of siloxane and PEO bonded by 5l-0-C bonds. It is described that the material is made into an ion-conductive material. However, since the S+-0-C bond is easily broken in the presence of water, it is extremely inconvenient to handle it as a material. Also, Solid 5tate Ionlcs
, 15, 233 (1985), etc., disclose an ion-conductive material in which a polysiloxane having polyethylene glycol in a side chain is cross-linked and solidified with a bifunctional isocyanate, and metal ions are dispersed therein. but,
In this case, NGO
The amount of groups must be added in sufficient excess relative to the OH groups, but when the remaining NGO groups are incorporated into devices such as batteries, there is a risk of reaction with the electrode material, which poses a problem for practical use. . Furthermore, in JP-A No. 62-209169, methods for producing a crosslinked product of siloxane and PEO include a hydrosilylation reaction using a platinum catalyst and radiation (electron beam, etc.).
A method of crosslinking by irradiation is disclosed, and a method in which metal ions are dispersed in these to form an ion-conductive material is disclosed.

しかし、これらの方法の場合、まず、白金触媒を用いる
場合は、系内に白金が残留することになり、得られた固
体電解質は着色を呈するので、表示素子には適さないば
かりか、リチウムイオン等のキャリアイオンの移動度を
低下させる恐れがあった。また、放射線による架橋方法
は以」−のような欠点は除去できるが、設備に莫大な費
用がかかるため、実用化には至っていない。
However, in the case of these methods, if a platinum catalyst is used, platinum will remain in the system and the obtained solid electrolyte will be colored, so it is not only unsuitable for display elements, but also There was a risk that the mobility of carrier ions such as Furthermore, although the crosslinking method using radiation can eliminate the following drawbacks, it has not been put to practical use because it requires a huge amount of equipment.

また特開昭62−2091[i9号広報等に開示された
イオン導電性材料の製造方法は、2種以上の原料を相溶
させるために有機溶剤を用いる必要があった。有機溶剤
の使用は一部の製品には適用できないばかりか工程の煩
雑化を拓き、また作業環境の悪化、周辺材料の損傷、最
終生成物への溶剤の残留等を起こす恐れがあった。また
溶剤により原料が相溶できても、溶剤が蒸発する過程な
どで相分離を起こす等により架橋反応の完結性が完全に
は保証されず、結局製品の品質の低下、再現性のなさ等
に結び付くため実用化には問題があった。
Further, the method for manufacturing an ion conductive material disclosed in JP-A No. 62-2091 [i9] requires the use of an organic solvent in order to make two or more raw materials compatible. The use of organic solvents not only cannot be applied to some products, but also complicates the process, and there is a risk of deterioration of the working environment, damage to surrounding materials, and residual solvent in the final product. Furthermore, even if the raw materials are compatible with the solvent, the completeness of the crosslinking reaction cannot be guaranteed due to phase separation occurring during the evaporation process of the solvent, resulting in a decline in product quality, lack of reproducibility, etc. There was a problem in practical application because of the connection.

このように、現在まで提案されたポリシロキサンと他の
高分子材料の架橋物からなる固体電解質は、いずれも特
性あるいは製造方法に欠点を有しており、前述の電子デ
バイスへの応用としては滴定すべきものではなかった。
As described above, the solid electrolytes made of cross-linked polysiloxane and other polymeric materials that have been proposed to date all have drawbacks in their properties or manufacturing methods, and titration is the only method for applying them to the electronic devices mentioned above. It wasn't something that should have been done.

本発明者らはかかる問題点を解決すべく悦意検討した結
果、特定の共重合体架橋物中に特定の金属イオンを分散
させてなる材料が、上記のような欠点がなくイオン導電
性に優れ、またその製造方法が上記のような欠点を払拭
できることを見出し本発明に到達した。
The inventors of the present invention have conducted extensive research to solve these problems, and have found that a material made by dispersing specific metal ions in a specific cross-linked copolymer has ionic conductivity without the above-mentioned drawbacks. The inventors have discovered that the method for producing the same can eliminate the above-mentioned drawbacks, and have arrived at the present invention.

本発明の目的は電池、表示素子等の電子デバイスの固体
電解質として好適に使用可能なイオン導電性材料および
その製造方法を提供するにある。
An object of the present invention is to provide an ion conductive material that can be suitably used as a solid electrolyte for electronic devices such as batteries and display elements, and a method for producing the same.

[課題の解決手段とその作用コ かかる本発明は、 (A)一般式 %式%) (式中、R1は1価の有機基、R2はアルキレン基もし
くはアリーレン基X  R3は2価の有機基、R4はア
ルキレン基、R6は1価の有機基、9は0〜+000の
整数1mは2〜1000の整数、 nは 1〜+000
の整数、pはl−100の整数である。)で示されるオ
ルガノポリシロキサンとCB)一般式Z−R’−IR”
0)q−R’−Z  (式中、Zは脂肪族不飽和炭化水
素基I  R”は2価の炭化水素基+  R’はアルキ
レン基、qは!〜100の整数である。)で示されるポ
リオキシアルキレンとを反応させてなる共重合体架橋物
と、(C)周期律表第1族または第■族の金属イオンか
らなり、該金属イオンが前記共重合体架橋物中に分散し
ていることを特徴とするイオン導電性材料に関する。
[Means for Solving the Problems and Their Effects] The present invention has the following features: (A) General formula % Formula %) (In the formula, R1 is a monovalent organic group, R2 is an alkylene group or an arylene group X, and R3 is a divalent organic group , R4 is an alkylene group, R6 is a monovalent organic group, 9 is an integer of 0 to +000, 1m is an integer of 2 to 1000, n is 1 to +000
p is an integer of 1-100. ) and CB) general formula Z-R'-IR"
0) q-R'-Z (wherein, Z is an aliphatic unsaturated hydrocarbon group IR" is a divalent hydrocarbon group + R' is an alkylene group, and q is an integer from ! to 100.) A crosslinked copolymer obtained by reacting the polyoxyalkylene shown below, and (C) a metal ion of Group 1 or Group II of the periodic table, and the metal ion is dispersed in the crosslinked copolymer. The present invention relates to an ion conductive material characterized by:

これについて説明するに、(A)成分のオルガノポリシ
ロキサンは、本発明のイオン導電性材料の共重合体架橋
物を構成する主剤となるものであって、該共重合体架橋
物を形成するためには1分子中に2個以上のメルカプト
基含有炭化水素基を有することが必要であり、また、優
れたイオン導電性を示すためにはオキシアルキレン基を
有することが必要である。
To explain this, the organopolysiloxane (A) component is a main ingredient constituting the crosslinked copolymer of the ionically conductive material of the present invention, and is used to form the crosslinked copolymer. It is necessary to have two or more mercapto group-containing hydrocarbon groups in one molecule, and in order to exhibit excellent ionic conductivity, it is necessary to have an oxyalkylene group.

かかるオルガノポリシロキサンは上式中、R1は、メチ
ル基、エチル基、プロピル基等のアルキル基; フェニ
ル基、トリル基、キシリル基等のアリール基;ベンジル
基、フェネチル基等のアラルキル基で例示される1価の
有機基であり、これら R1は経済性および良好な共重
合体架橋物の形成性の観点からはその半数以上がメチル
基であることが好ましい。R2はメチレン基。
Such an organopolysiloxane is exemplified by an alkyl group such as a methyl group, an ethyl group, or a propyl group; an aryl group such as a phenyl group, a tolyl group, or a xylyl group; or an aralkyl group such as a benzyl group or a phenethyl group. It is preferable that half or more of these R1 groups are methyl groups from the viewpoint of economical efficiency and good ability to form a crosslinked copolymer. R2 is a methylene group.

エチレン基、プロピレン基等のアルキレン基もしくはフ
ェニレン基、 トリレン基、キシリレン基等のアリーレ
ン基である。R3は式R2−3−(式中、 R2は前記
と同じ)、前記のようなアルキレンバ、アリーレン基等
で例示される2価の有機基である。R4はメチレン基、
エチレン基。
These are alkylene groups such as ethylene group and propylene group, or arylene groups such as phenylene group, tolylene group and xylylene group. R3 is a divalent organic group exemplified by the formula R2-3- (wherein R2 is the same as above), the above-mentioned alkylene groups, arylene groups, and the like. R4 is a methylene group,
Ethylene group.

プロピレン基、フチレン基、ペンチレン基、ヘキシレン
基、ヘプチレン基等のアルキレン基である。R5はメチ
ル基、エチル基、プロピル基等のアルキル人に アセチ
ル基またはプロピオニル基等のアシル基で例示される1
価の有機基である。9はθ〜+000の範囲内、mは2
〜l000の範囲内、nは1〜+00(+の範囲内であ
り、これらは特に限定されないが、(A)成分と(B)
成分が相溶するためには(R十m)とnの比率は(1:
5)〜(5:1)の範囲内が好ましい。また、製造の容
易さ、共重合体架橋物としての適度の硬さを得るために
は、(+l+n)とmの比率は0.01−100の範囲
内であり、(Ω十m+n)はlO〜100の範囲内が好
ましい。
These are alkylene groups such as propylene group, phtylene group, pentylene group, hexylene group, and heptylene group. R5 is an alkyl group such as a methyl group, an ethyl group, a propyl group, or an acyl group such as an acetyl group or a propionyl group.
It is a valent organic group. 9 is within the range of θ~+000, m is 2
~1000, n is within the range of 1 to +00 (+, and these are not particularly limited, but (A) component and (B)
In order for the components to be compatible, the ratio of (R0m) and n must be (1:
5) to (5:1) is preferable. In addition, in order to obtain ease of production and appropriate hardness as a crosslinked copolymer, the ratio of (+l+n) and m is within the range of 0.01-100, and (Ω10m+n) is lO The range of 100 to 100 is preferable.

かかる共重合体の合成方法としては種々の方法があるが
、その1つの方法としては側鎖にメルカプトアルキル基
を有するジオルガノポリシロキサンと、片末端に不飽和
炭化水素基を有し他末端に非反応性の有機基を有するポ
リオキシアルキレンとを、不飽和炭化水素基のモル数が
メルカプト基のモル数よりも下回る比率で付加させる方
法が挙げられる。この付加反応は光照射またはラジカル
開始剤の存在下で溶液内で容易に行える。
There are various methods for synthesizing such copolymers, one of which is to use a diorganopolysiloxane having a mercaptoalkyl group in the side chain and a diorganopolysiloxane having an unsaturated hydrocarbon group at one end and the other end. One example is a method in which polyoxyalkylene having a non-reactive organic group is added at a ratio in which the number of moles of unsaturated hydrocarbon groups is lower than the number of moles of mercapto groups. This addition reaction can be easily carried out in solution under irradiation with light or in the presence of a radical initiator.

(B)成分のポリオキシアルキレンは、上記(A)成分
の架橋剤であり、架橋剤としての働きをするためには、
1分子中に少なくとも2個の脂肪族不飽和炭化水素基を
含有することが必要である。また、(B)成分は共重合
体架橋物中にPEO単位を導入し、高イオン導電性を発
現する役割を果たす。
The polyoxyalkylene component (B) is a crosslinking agent for the component (A) above, and in order to function as a crosslinking agent,
It is necessary to contain at least two aliphatic unsaturated hydrocarbon groups in one molecule. In addition, component (B) introduces PEO units into the crosslinked copolymer and plays the role of exhibiting high ionic conductivity.

かかるポリオキシアルキレンは上式中、Zはビニル基、
アリル基、プロペニル基等の脂肪族不飽和炭化水素基で
ある。R6はメチレン基。
Such polyoxyalkylene in the above formula, Z is a vinyl group,
It is an aliphatic unsaturated hydrocarbon group such as an allyl group or a propenyl group. R6 is a methylene group.

エチレン基、プロピレン基、ブチレン基、ペンチレン基
、ヘキシレン基、ヘプチレン基等のアルキレン基あるい
はフェニルプロピレン基、プロピルフェニレン基等のア
リール基とアルキレン基またはアルキル基とアリーレン
基の連鎖基等の2価の炭化水素基である。R7はメチレ
ン基、エチレン基、プロピレン基、ブチレン基。
Divalent groups such as alkylene groups such as ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, aryl group and alkylene group such as phenylpropylene group, propylphenylene group, or chain group of alkyl group and arylene group. It is a hydrocarbon group. R7 is a methylene group, ethylene group, propylene group, or butylene group.

ベンチレン基、ヘキシレン基、ヘプチレン基等のアルキ
レン基である。qはl−100の範囲内であり、5〜2
0の範囲内が好ましい。
It is an alkylene group such as a bentylene group, a hexylene group, or a heptylene group. q is in the range l-100, 5 to 2
It is preferably within the range of 0.

CB)成分は上記のような1分子中に少なくとも2個の
脂肪族不飽和炭化水素基を含有するポリオキシアルキレ
ンであるが、このポリオキシのイ?1; アルキレン枯一般式 Q−R”−、(R”0)rR”  (式中、Qは脂肪族
不飽和炭化水素基I  RQは2価の炭化水素基I  
R”はアルキレン基+  R+sは1価の有機基、rは
1〜100の整数である。)で示される分子鎖片末端の
みに脂肪族不飽和炭化水素基を有するポリオキシイ井 アルキレンを含有するものを使用してもよい。
Component CB) is a polyoxyalkylene containing at least two aliphatic unsaturated hydrocarbon groups in one molecule as described above. 1; Alkylene general formula Q-R"-, (R"0)rR" (wherein, Q is an aliphatic unsaturated hydrocarbon group I RQ is a divalent hydrocarbon group I
R'' is an alkylene group + R+s is a monovalent organic group, r is an integer from 1 to 100) Containing polyoxyalkylene having an aliphatic unsaturated hydrocarbon group only at one end of the molecular chain may be used.

この一般式で示される分子鎖片末端のみに脂肪族不飽和
炭化水素基を有するポリオキシアルキレンは上記(A)
成分のメルカプト基に付加反応し、共重合体架橋物中に
ポリオキシアルキレンのグラフト鎖を形成させる働きを
する。本発明においては、かかるグラフト鎖が若干存在
した方がイオン導電性が向上する傾向にあるので、より
高いイオン導電性が要求される場合は、(B)成分とし
てこの種のポリオキシアノ−キレンを含有することが好
ましい。かかる分子鎖片末端のみに脂肪族不飽和炭化水
素基を有するポリオキシアルキレンは上式中、QはZと
同様な脂肪族不飽和炭化水素基I  RQはR6と同様
な2価の炭化水素基+  RQはR7と同様なアルキレ
ン基。
The polyoxyalkylene having an aliphatic unsaturated hydrocarbon group only at one end of the molecular chain represented by this general formula is the above (A).
It performs an addition reaction on the mercapto groups of the components to form polyoxyalkylene graft chains in the crosslinked copolymer. In the present invention, the presence of a small amount of such graft chains tends to improve ionic conductivity, so when higher ionic conductivity is required, this type of polyoxyano-kylene is included as component (B). It is preferable to do so. Such polyoxyalkylene having an aliphatic unsaturated hydrocarbon group only at the end of one molecular chain is represented by the above formula, where Q is an aliphatic unsaturated hydrocarbon group I similar to Z and RQ is a divalent hydrocarbon group similar to R6. + RQ is an alkylene group similar to R7.

R1”はメチル基、エチル基、プロピル基等のアルキル
基;フェニル基、ナフチル基等のアリール基;アセチル
基またはプロピオニル基等のアシル基である。
R1'' is an alkyl group such as a methyl group, an ethyl group or a propyl group; an aryl group such as a phenyl group or a naphthyl group; an acyl group such as an acetyl group or a propionyl group.

本発明のイオン導電性材料は、上記のような(A)成分
と(B)成分とを反応させてなる共重合体架橋物と(C
)周期律表第1族または第■族の金属イオンからなるも
のであるが、この共重合体架橋物は、主に(A)成分中
のメルカプト基と(B)成分中の脂肪族不飽和炭化水素
基との付加反応によって形成されるものであって、その
反応手段としてはメルカプト基と脂肪族不飽和炭化水素
基との付加反応に用いられている従来公知の反応手段、
例えば、電子線、X線、紫外線等のエネルギー線を照射
する反応手段が利用できる。
The ion conductive material of the present invention comprises a copolymer crosslinked product obtained by reacting component (A) and component (B) as described above, and (C
) This copolymer crosslinked product mainly consists of mercapto groups in component (A) and aliphatic unsaturation in component (B). It is formed by an addition reaction with a hydrocarbon group, and the reaction means include conventionally known reaction means used for the addition reaction between a mercapto group and an aliphatic unsaturated hydrocarbon group,
For example, a reaction means that irradiates energy rays such as electron beams, X-rays, and ultraviolet rays can be used.

(C)成分はイオン導電性付与剤であり、これは、周期
律表第■族または第■族に属するものであればよく特に
限定されない。かかる金属イオンとしてはリチウム、ナ
トリウム、カリウム。
Component (C) is an ionic conductivity imparting agent, which is not particularly limited as long as it belongs to Group 1 or Group 2 of the Periodic Table. Such metal ions include lithium, sodium, and potassium.

カルンウム、マグネシウム等の金属イオンが例示される
。これらの中でも単位体積あるいは単位重量当りのエネ
ルギー密度を大きくするためにはリチウムイオンが好ま
しい。また、本発明のイオン導電性材料を電池などに適
用する場合は、用いられる電極材と同種のイオン(例え
ば、電極材がリチウムの場合はリチウムイオン)を選択
することが好ましい。
Examples include metal ions such as carunium and magnesium. Among these, lithium ions are preferred in order to increase the energy density per unit volume or unit weight. Furthermore, when applying the ion conductive material of the present invention to a battery or the like, it is preferable to select ions of the same type as the electrode material used (for example, lithium ions when the electrode material is lithium).

かかる(C)成分は、通常、金属塩の形態で使用される
。金属塩の種類としては、いずれでもよいが、イオン導
電性を高めるためには過塩素酸リチウム(LICIOa
 ) 、ホウフッ化リチウム(LIBFn)、リンフッ
化リチウム(LIPFs)、三フッ化メタンスルホン酸
リチウム(LiCF3SO3) 。
Component (C) is usually used in the form of a metal salt. Any type of metal salt may be used, but in order to increase ionic conductivity, lithium perchlorate (LICIOa) may be used.
), lithium borofluoride (LIBFn), lithium phosphorus fluoride (LIPFs), lithium trifluoromethanesulfonate (LiCF3SO3).

ヨウ化リチウム(L目)等が好ましい。Lithium iodide (L-th) and the like are preferred.

また、その分散量は共重合体架橋物中のオキシアルキレ
ン基のモル数[RO]に対する塩のモル数[Sコ (例
えば[LICIOaコ等)比[Sコ/[ROコは0.0
05〜0.25とすることが好ましく、より好ましくは
0.01〜0.05である。これは[S] / [RO
]が0.25を越えると金属塩が均一に分散し難くなり
、また0、005未満になると高いイオン導電率が得難
くなるからである。
In addition, the amount of dispersion is the ratio of the number of moles of salt [S (for example, [LICIOa, etc.]) to the number of moles of oxyalkylene groups [RO] in the crosslinked copolymer [S / [RO is 0.0
It is preferably from 0.05 to 0.25, more preferably from 0.01 to 0.05. This is [S] / [RO
] is more than 0.25, it becomes difficult to disperse the metal salt uniformly, and when it is less than 0.005, it becomes difficult to obtain high ionic conductivity.

本発明のイオン導電性材料は、一般のメルカプト基を有
する化合物と脂肪族不飽和炭化水素基を有する化合物と
の付加反応に使用されている従来公知の技術手段および
高分子物質中に金属塩を分散させる従来公知の技術手段
を組み合わせることによって容品に製造される。これら
の−例を挙げれば、例えば、(A)成分と(B)成分の
混合物に紫外線等のエネルギー線を照射し、(A)成分
と(B)成分からなる共重合体架橋物を造り、これを有
機溶剤に膨潤させた後、(C)成分を混合し分散させる
方法;(A)成分〜(C)成分からなる混合物に紫外線
等のエネルギー線を照射して(A)成分と(B)成分か
らなる共重合体架橋物を造ると同時に(C)成分を分散
させる方法が挙げられるが、本発明のイオン導電性材料
を製造するには、次のような製造方法が好ましい。
The ionically conductive material of the present invention can be obtained by incorporating a metal salt into a polymeric material using conventionally known technical means used for the addition reaction between a general compound having a mercapto group and a compound having an aliphatic unsaturated hydrocarbon group. The container is manufactured by combining conventionally known technical means of dispersion. Examples of these include, for example, irradiating a mixture of components (A) and (B) with energy rays such as ultraviolet rays to create a crosslinked copolymer consisting of components (A) and (B); A method of swelling this in an organic solvent and then mixing and dispersing component (C); irradiating the mixture consisting of components (A) to (C) with energy rays such as ultraviolet rays to combine component (A) and (B). The following method is preferred for producing the ion conductive material of the present invention.

すなわち、 「(A)一般式 %式%) (式中、R1は1価の有機基、R2はアルキレン基もし
くはまたはアリーレン基、R3は2価の有機基、RAは
アルキレン基、R’は11(lD有機基、9は0〜10
00の整数、 mは2〜1000の整数。
That is, "(A) general formula % formula %) (wherein, R1 is a monovalent organic group, R2 is an alkylene group or or arylene group, R3 is a divalent organic group, RA is an alkylene group, and R' is 11 (1D organic group, 9 is 0-10
An integer of 00, m is an integer of 2 to 1000.

nは1〜!000の整数、pは1〜+00の整数である
。)で示されるオルガノポリシロキサンと(B)一般− 式 Z−R’>(R’0)Q−R6−Z  (式中、Z
は脂肪族不飽和炭化水素基I  R6は2価炭化水素基
+  R?はアルキレン基、qは1−100の整数であ
る。)で示されるポリオキシアルキレンと(C)周期律
表第■族または第■族の金属塩からなる混合物に紫外線
を照射して、前記(A)成分と(B)成分とを架橋反応
せしめることを特徴とする、イオン導電性材料の製造方
法。Jである。
n is 1~! An integer of 000, p is an integer of 1 to +00. ) and (B) general formula Z-R'>(R'0)Q-R6-Z (wherein, Z
is an aliphatic unsaturated hydrocarbon group I R6 is a divalent hydrocarbon group + R? is an alkylene group, and q is an integer of 1-100. ) and (C) a metal salt of Group Ⅰ or Group Ⅰ of the periodic table, which is irradiated with ultraviolet rays to cause a crosslinking reaction between the components (A) and (B). A method for producing an ionically conductive material, characterized by: It is J.

これについて説明するに、ここで使用される(A)成分
と(B)成分は前記イオン導電性材料の説明の項で詳述
した(A)成分と(B)成分と同じである。
To explain this, the (A) component and (B) component used here are the same as the (A) component and (B) component detailed in the section of the description of the ion conductive material.

(B)成分の配合割合は(B)成分中の脂肪族不飽和炭
化水素基のモル数と(A)成分中のメルカプト基のモル
数の比が(1:5)〜(10:I)の範囲内であり、(
1:2)〜(5:■)の範囲内が好ましく、(1,0:
1.0)〜(1,2:1.0)の範囲内が特に好ましい
The mixing ratio of component (B) is such that the ratio of the number of moles of aliphatic unsaturated hydrocarbon groups in component (B) to the number of moles of mercapto group in component (A) is (1:5) to (10:I). is within the range of (
It is preferably within the range of 1:2) to (5:■), and (1,0:
1.0) to (1,2:1.0) is particularly preferred.

これは(A)成分と(B)成分はいずれの比率でも付加
反応が起こり、固体化した共重合体架橋物が得られるが
、(A)成分中のメルカプト基のモル数が(B)成分中
の脂肪族不飽和炭化水素基のモル数よりも多くなると、
本発明の組成物中に未反応のメルカプト基が残存した状
態となる傾向にある。このようにして得られたイオン導
電性材料は、例えばこれを電池等に応用した場合、残存
したメルカプト基と電極材との反応等の弊害が起こるこ
とが予想されるので、好ましくない。
This is because the addition reaction occurs at any ratio of components (A) and (B), and a solidified crosslinked copolymer is obtained, but the number of moles of mercapto groups in component (A) is greater than that in component (B). When the number of moles of aliphatic unsaturated hydrocarbon groups in
There is a tendency for unreacted mercapto groups to remain in the composition of the present invention. When the ion conductive material obtained in this manner is applied to, for example, a battery or the like, adverse effects such as reaction between the remaining mercapto groups and the electrode material are expected to occur, which is not preferable.

(C)成分は前記イオン導電性材料の説明の項で詳述し
た(C)成分と同じであり、その配合量は(A)成分と
(B)成分との合計量100重量部に対して0.5〜2
0重量部である。これは0.5重量部未満になるとイオ
ン導電性が低下し実用に供さなくなるからであり、一方
、20重量部を越えると均一な混合物として得られない
からである。
Component (C) is the same as the component (C) detailed in the description of the ion conductive material, and its blending amount is based on 100 parts by weight of the total amount of components (A) and (B). 0.5~2
It is 0 parts by weight. This is because if the amount is less than 0.5 parts by weight, the ionic conductivity decreases and it is not practical, whereas if it exceeds 20 parts by weight, a homogeneous mixture cannot be obtained.

この方法においては(A)成分〜(C)成分からなる混
合物に紫外線を照射し、前記(A)成分と(B)成分と
を架橋反応させるのであるが、この(A)成分と(B)
成分の混合は攪はん等の操作で容易に均一に混合できる
。この混合は(C)成分を(A)成分または(B)成分
に予め溶解させておき、(A)成分〜(C)成分を混合
するか(A)成分と(B)成分を混合させた後に(C)
成分を添加混合してもよい。(C)成分のオキシアルキ
レン鎖への溶解は攪はん等の操作でも可能だが、溶解時
間短縮のためには加熱あるいは超音波照射等の操作が効
果的である。
In this method, a mixture consisting of components (A) to (C) is irradiated with ultraviolet rays to cause a crosslinking reaction between components (A) and (B).
The components can be easily mixed uniformly by stirring or other operations. This mixing involves dissolving component (C) in component (A) or component (B) in advance, and then mixing components (A) to (C) or mixing components (A) and (B). Later (C)
Components may be added and mixed. Although it is possible to dissolve component (C) into the oxyalkylene chain by stirring or the like, heating or ultrasonic irradiation is effective in shortening the dissolution time.

また、溶解工程において溶剤の使用が許容できる場合に
は、有機溶剤中で(A)成分〜(C)成分を混合、溶解
させ、しかる後に溶剤を蒸発させてもよい。かかる有機
溶剤は特に限定されないが、例えば、テトラヒドロフラ
ン、ジオキサン、アセトニトリル、 ジメチホルムアミ
ド、 ジメチルスルホキシドが挙げられる。
Furthermore, if the use of a solvent is permissible in the dissolution step, components (A) to (C) may be mixed and dissolved in an organic solvent, and then the solvent may be evaporated. Such organic solvents are not particularly limited, but include, for example, tetrahydrofuran, dioxane, acetonitrile, dimethylformamide, and dimethyl sulfoxide.

また、この反応は、通常は紫外線照射下での架橋反応を
促進する作用効果を示す光増感剤の存在下で行われる。
Further, this reaction is usually carried out in the presence of a photosensitizer that has the effect of promoting the crosslinking reaction under ultraviolet irradiation.

かかる光増感剤としては紫外線硬化型樹脂に通常用いら
れる公知のものでよく、これには、アセトフェノン、ベ
ンゾフェノン、 トリメチルシリルベンゾフェノンピオ
フェノン、3−メチルアセトフェノン、4−メチルアセ
トフェノン、ベンゾインエチルエーテル、ジメチルポリ
シロキサンの両末端にベンゾインがエーテル結合した化
合物,(4−イソプロピル)フェニル−I−ハイドロキ
シイソプロピルケトン、4−アリルアセトフェノン、3
−ペンチルアセトフェノン、4−メトキシベンゾフェノ
ン等の芳香族ケトン; トリフェニルアミン等のアミン
化合物;アゾビスイソブチロニトリル等のアゾ化合物が
例示される。この光増感剤の使用量としでは(A)成分
のオルガノポリシロキサ7100重量部に対し、0.0
01〜30重量部の範囲内であり、好ましくは0.05
〜20重量部の範囲内である。
Such photosensitizers may be those commonly used in ultraviolet curable resins, such as acetophenone, benzophenone, trimethylsilylbenzophenone piophenone, 3-methylacetophenone, 4-methylacetophenone, benzoin ethyl ether, dimethyl poly Compound with benzoin ether bonded to both ends of siloxane, (4-isopropyl)phenyl-I-hydroxyisopropyl ketone, 4-allylacetophenone, 3
Examples include aromatic ketones such as -pentylacetophenone and 4-methoxybenzophenone; amine compounds such as triphenylamine; and azo compounds such as azobisisobutyronitrile. The amount of photosensitizer used is 0.0 parts by weight per 7100 parts by weight of organopolysiloxa as component (A).
Within the range of 0.01 to 30 parts by weight, preferably 0.05
-20 parts by weight.

反応温度は特に限定されないが、通常、室温ないし加熱
下で行われる。紫外線の発生源としては、従来公知のも
のでよく、これには例えば水素放電管,キセノン放電管
,低圧,中圧または高圧水銀灯等が挙げられる。紫外線
の照射条件としては照射単独で本混合物が半硬化状態に
なる程度でよく、特に制限はない。溶剤を使用した場合
は、紫外線照射後の時点では通常、溶剤が硬化物に取り
込まれた状態になっているので、これを減圧処理する等
の方法で取り除く必要がある。
Although the reaction temperature is not particularly limited, it is usually carried out at room temperature or under heating. The source of ultraviolet radiation may be any conventionally known source, including, for example, a hydrogen discharge tube, a xenon discharge tube, a low-pressure, medium-pressure or high-pressure mercury lamp. The ultraviolet irradiation conditions are not particularly limited, as long as the mixture becomes semi-cured by irradiation alone. When a solvent is used, the solvent is usually incorporated into the cured product after irradiation with ultraviolet rays, so it is necessary to remove it by a method such as vacuum treatment.

[実施例コ 以下、実施例にて、本発明をより詳細に説明する。尚、
イオン導電性率の測定は次の方法により行った。
[Example] The present invention will be explained in more detail in the following example. still,
The ionic conductivity was measured by the following method.

Oイオン導電率の測定方法 イオン導電性材料をフィルム状に成形し、測定用試料と
した。この試料の厚さをマイクロメーターで測定した後
、その両面に直径10■の円形プレート状の白金電極を
密着し、この全体を任意の温度に設定できる減圧容器の
中に設置し、10”6TOrr以下の高真空まで減圧し
て試料の状態が十分に平衡に達した後、LCRメーター
(横河ヒューレットパッカード社製4192A)により
5Hz〜13MHzの交流電圧を印加し、複素インピー
ダンス法によりイオン導電率を測定した。
Method for Measuring O Ion Conductivity An ion conductive material was formed into a film and used as a measurement sample. After measuring the thickness of this sample with a micrometer, circular plate-shaped platinum electrodes with a diameter of 10 cm were closely attached to both sides of the sample, and the whole was placed in a vacuum container that could be set at an arbitrary temperature. After reducing the pressure to the following high vacuum and allowing the state of the sample to reach sufficient equilibrium, an AC voltage of 5 Hz to 13 MHz was applied using an LCR meter (4192A manufactured by Yokogawa Hewlett-Packard), and the ionic conductivity was measured using the complex impedance method. It was measured.

実施例1 下記に示される化合物(1)0.796g、 化合物(
2)0.204gおよび過塩素酸リチウム31.2mg
とを撹はん混合し、超音波を照射して十分に溶解させた
Example 1 0.796 g of compound (1) shown below, compound (
2) 0.204g and 31.2mg lithium perchlorate
The mixture was stirred and irradiated with ultrasonic waves to fully dissolve the mixture.

この混合物に光増感剤として(4−イソプロピル)フェ
ニル−1−ハイドロキシイソプロピルケトンを約20m
g加え均一に混合してイオン導電性組成物を得た。この
組成物を、3cm四方のテフロン製の皿に流し込み、垂
直上方より高圧水銀ランプからのIGOW/amの紫外
線を501の距離で6秒照射したところ、0,3■醜の
厚さの透明なフィルムが得られた。さらにこれを70°
Cで2日間減圧乾燥させた後、このフィルムのイオン導
電率を測定したところ、25℃で4.8X 1O−6s
・cr’の値が得られた。
Approximately 20 m of (4-isopropyl)phenyl-1-hydroxyisopropyl ketone was added to this mixture as a photosensitizer.
g and mixed uniformly to obtain an ion conductive composition. This composition was poured into a 3cm square Teflon dish and irradiated with ultraviolet rays of IGOW/am from a high-pressure mercury lamp from vertically above at a distance of 501 cm for 6 seconds. A film was obtained. Further, change this to 70°
After drying under reduced pressure for 2 days at C, the ionic conductivity of this film was measured to be 4.8X 1O-6s at 25C.
・The value of cr' was obtained.

化合物(り: 化合物(2): CH2:C)I−CH20(CH2CH20)+ 2C
H2−CH:CH2実施例2 実施例1で使用した化合物(1)0.799g1  化
合物(2)0.13Gg、  下記に示される化合物(
3)0.0O5gおよび過塩素酸リチウム31.2mg
とを攪はん混合し、超音波を照射して十分に溶解せしめ
た。次いで、光増感剤として(4−イソプロピル)フェ
ニル−■−ハイドロキシイソプロピルケトンを約20■
g加えたイオン導電性組成物を得た。この組成物につい
て実施例1と同様にして紫外線を照射し0.3m■の厚
さの透明なフィルムを成形し、イオン導電率を測定した
ところ、25℃で5.0×10−’5−cr’の値が得
られた。
Compound (Li: Compound (2): CH2:C)I-CH20(CH2CH20)+ 2C
H2-CH:CH2 Example 2 Compound (1) used in Example 1 0.799g1 Compound (2) 0.13Gg, Compound shown below (
3) 0.0O5g and lithium perchlorate 31.2mg
The mixture was stirred and mixed, and ultrasonic waves were irradiated to fully dissolve the mixture. Next, approximately 20 μl of (4-isopropyl)phenyl-■-hydroxyisopropyl ketone was added as a photosensitizer.
An ion conductive composition containing g was obtained. This composition was irradiated with ultraviolet rays in the same manner as in Example 1 to form a transparent film with a thickness of 0.3 m, and the ionic conductivity was measured at 25°C. The value of cr' was obtained.

化合物(3): CH2”CH−CH20(CH2CH20)+2CHs
実施例3 実施例1で使用した化合物(1)0.649g、  下
記に示される化合物(4)0.351gおよび過塩素酸
リチウム33.9■を撹はん混合し、超音波を照射して
十分に溶解せしめ、次いで光増感剤として(4−イソプ
ロピル) フェニル−1−ハイドロキシイソプロピルケ
トンを約20■加えイオン導電性組成物を得た。この組
成物について、実施例1と同様にして紫外線を照射し0
.3■璽の厚さの透明なフィルムを成形し、このフィル
ムのイオン導電率を測定したところ、25℃で2.7X
 10−’S−cm−’の値が得られた。
Compound (3): CH2”CH-CH20(CH2CH20)+2CHs
Example 3 0.649 g of the compound (1) used in Example 1, 0.351 g of the compound (4) shown below, and 33.9 μg of lithium perchlorate were stirred and mixed, and irradiated with ultrasonic waves. After sufficiently dissolving the mixture, approximately 20 μm of (4-isopropyl) phenyl-1-hydroxyisopropyl ketone was added as a photosensitizer to obtain an ion conductive composition. This composition was irradiated with ultraviolet rays in the same manner as in Example 1.
.. A transparent film with a thickness of 3 cm was molded and the ionic conductivity of this film was measured, and it was found to be 2.7X at 25°C.
A value of 10-'S-cm-' was obtained.

化合物(4): CH2=Cl−CH20(CH2CH20)+ 2 (
CH2CHO)I 2 CH2−CH:CH2実施例4 下記に示される化合物(5)0.798g、 化合物(
2)0.214gおよび過塩素酸リチウム32.7mg
とを攪はん混合し、超音波を照射して十分に溶解させた
Compound (4): CH2=Cl-CH20(CH2CH20)+ 2 (
CH2CHO)I2CH2-CH:CH2Example 4 0.798g of compound (5) shown below, compound (
2) 0.214g and 32.7mg lithium perchlorate
The mixture was stirred and mixed, and ultrasonic waves were irradiated to fully dissolve the mixture.

この混合物に光増感剤として(4−イソプロピル)フェ
ニル−1−ハイドロキシイソプロピルケトンを約20■
g加え均一に混合してイオン導電性組成物を得た。この
組成物を、3cm四方のテフロン製の皿に流し込み、垂
直上方より高圧水銀ランプからのIGOW/cw+の紫
外線を5cmの距離で6秒照射したところ、0.31■
の厚さの透明なフィルムが得られた。さらにこれを70
℃で2日間減圧乾燥させた後、このフィルムのイオン導
電率を測定したところ、25℃で4.6X 10−’S
−c+a−’の値が得られた。
Add (4-isopropyl)phenyl-1-hydroxyisopropyl ketone to this mixture as a photosensitizer for about 20 μm.
g and mixed uniformly to obtain an ion conductive composition. When this composition was poured into a 3 cm square Teflon dish and irradiated with IGOW/cw+ ultraviolet light from a high-pressure mercury lamp from vertically above at a distance of 5 cm for 6 seconds, the result was 0.31
A transparent film with a thickness of . Add this to 70
After vacuum drying for 2 days at ℃, the ionic conductivity of this film was measured to be 4.6X 10-'S at 25℃.
A value of -c+a-' was obtained.

化合物(1): (CH2)30(CH2CH2)+2CLjh 化合物(2): CH2:C)1−CH20(CH2CH20)+2CH
2−CH=CH2[発明の効果コ 本発明のイオン導電性材料は、(A)成分と(B)成分
とからなる特定の共重合体架橋物中に(C)成分の金属
イオンが分散しているので室温で高いイオン導電率を示
し、これを電子デバイス等へ適用した際には液漏れ、副
作用等の弊害がない等の特徴を有する。従って高信頼性
の製品が得られる他、無色透明のため幅広い用途が期待
できる。また、その製造方法は、かかるイオン導電性材
料を生産性よく製造し得るという特徴を有する。
Compound (1): (CH2)30(CH2CH2)+2CLjh Compound (2): CH2:C)1-CH20(CH2CH20)+2CH
2-CH=CH2 [Effects of the Invention The ionically conductive material of the present invention is characterized in that the metal ions of the component (C) are dispersed in a specific copolymer crosslinked product consisting of the components (A) and (B). Because of this, it exhibits high ionic conductivity at room temperature, and when applied to electronic devices, etc., it has characteristics such as no problems such as liquid leakage or side effects. Therefore, a highly reliable product can be obtained, and since it is colorless and transparent, it can be expected to have a wide range of uses. Moreover, the manufacturing method has the feature that such an ion conductive material can be manufactured with high productivity.

Claims (1)

【特許請求の範囲】 1 (A)一般式 ▲数式、化学式、表等があります▼ (式中、R^1は1価の有機基、R^2はアルキレン基
もしくはまたはアリーレン基、R^3は2価の有機基、
R^4はアルキレン基、R^5は1価の有機基、lは0
〜1000の整数,mは2〜1000の整数,nは1〜
1000の整数,pは1〜100の整数である。)で示
されるオルガノポリシロキサンと(B)一般式Z−R^
6−O−(R^7O)q−R^6−Z(式中、Zは脂肪
族不飽和炭化水素基,R^6は2価の炭化水素基,R^
7はアルキレン基,qは1〜100の整数である。)で
示されるポリオキシアルキレンとを反応させてなる共重
合体架橋物と、(C)周期律表第 I 族または第II族の
金属イオンからなり、該金属イオンが前記共重合体架橋
物中に分散していることを特徴とするイオン導電性材料
。 2 さらに一般式 Q−R^8−O−(R^9O)r−R^1^0(式中、
Qは脂肪族不飽和炭化水素基,R^8は2価炭化水素基
,R^9はアルキレン基,R^1^0は1価の有機基、
rは1〜100の整数である。)で示される分子鎖片末
端に脂肪族不飽和炭化水素基を有するポリオキシアルキ
レンを含有するものである、特許請求の範囲第1項記載
のイオン導電性材料。 3 (A)一般式 ▲数式、化学式、表等があります▼ (式中、R^1は1価の有機基、R^2はアルキレン基
もしくはまたはアリーレン基、R^3は2価の有機基、
R^4はアルキレン基、R^5は1価の有機基、lは0
−1000の整数,mは2〜1000の整数,nは1〜
1000の整数,pは1〜100の整数である。)で示
されるオルガノポリシロキサンと(B)一般式Z−R^
6−O−(R^7O)q−R^8−Z(式中、Zは脂肪
族不飽和炭化水素基,R^6は2価炭化水素基,R^7
はアルキレン基,qは1〜100の整数である。)で示
されるポリオキシアルキレンと(C)周期律表第 I 族
または第II族の金属塩からなる混合物に紫外線を照射し
て、前記(A)成分と(B)成分とを架橋反応せしめる
ことを特徴とする、イオン導電性材料の製造方法。
[Claims] 1 (A) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R^1 is a monovalent organic group, R^2 is an alkylene group or or arylene group, R^3 is a divalent organic group,
R^4 is an alkylene group, R^5 is a monovalent organic group, l is 0
~1000 integer, m is an integer from 2 to 1000, n is 1~
An integer of 1000, p is an integer of 1 to 100. ) and (B) general formula Z-R^
6-O-(R^7O)q-R^6-Z (wherein, Z is an aliphatic unsaturated hydrocarbon group, R^6 is a divalent hydrocarbon group, R^
7 is an alkylene group, and q is an integer of 1 to 100. ) and (C) a metal ion of Group I or Group II of the Periodic Table, and the metal ion is present in the crosslinked copolymer. An ion conductive material characterized by being dispersed in. 2 Furthermore, the general formula Q-R^8-O-(R^9O)r-R^1^0 (in the formula,
Q is an aliphatic unsaturated hydrocarbon group, R^8 is a divalent hydrocarbon group, R^9 is an alkylene group, R^1^0 is a monovalent organic group,
r is an integer from 1 to 100. 2. The ion conductive material according to claim 1, which contains a polyoxyalkylene having an aliphatic unsaturated hydrocarbon group at one end of the molecular chain represented by the following. 3 (A) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, R^1 is a monovalent organic group, R^2 is an alkylene group or or arylene group, and R^3 is a divalent organic group. ,
R^4 is an alkylene group, R^5 is a monovalent organic group, l is 0
- An integer of 1000, m is an integer of 2 to 1000, n is 1 to
An integer of 1000, p is an integer of 1 to 100. ) and (B) general formula Z-R^
6-O-(R^7O)q-R^8-Z (wherein, Z is an aliphatic unsaturated hydrocarbon group, R^6 is a divalent hydrocarbon group, R^7
is an alkylene group, and q is an integer of 1 to 100. ) and (C) a metal salt of Group I or Group II of the Periodic Table, irradiating the mixture with ultraviolet rays to cause a crosslinking reaction between the (A) component and the (B) component. A method for producing an ionically conductive material, characterized by:
JP1277835A 1989-10-25 1989-10-25 Ion-conductive material and its preparation Pending JPH03139566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277835A JPH03139566A (en) 1989-10-25 1989-10-25 Ion-conductive material and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277835A JPH03139566A (en) 1989-10-25 1989-10-25 Ion-conductive material and its preparation

Publications (1)

Publication Number Publication Date
JPH03139566A true JPH03139566A (en) 1991-06-13

Family

ID=17588929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277835A Pending JPH03139566A (en) 1989-10-25 1989-10-25 Ion-conductive material and its preparation

Country Status (1)

Country Link
JP (1) JPH03139566A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365392B1 (en) * 1996-03-23 2003-03-04 주식회사 엘지화학 Ion-conductive polymer electrolyte and electrochemical element using the same
KR100365391B1 (en) * 1996-03-23 2003-04-11 주식회사 엘지화학 Ion conductive polymer electrolyte and electrochemical device using the same
KR100374304B1 (en) * 1996-03-23 2003-06-09 주식회사 엘지화학 Ion conductive polymer electrolyte and electrochemical element using the same
JP2006522432A (en) * 2003-04-03 2006-09-28 ロディア・シミ Crosslinkable composition for electrolyte
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365392B1 (en) * 1996-03-23 2003-03-04 주식회사 엘지화학 Ion-conductive polymer electrolyte and electrochemical element using the same
KR100365391B1 (en) * 1996-03-23 2003-04-11 주식회사 엘지화학 Ion conductive polymer electrolyte and electrochemical device using the same
KR100374304B1 (en) * 1996-03-23 2003-06-09 주식회사 엘지화학 Ion conductive polymer electrolyte and electrochemical element using the same
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
JP2006522432A (en) * 2003-04-03 2006-09-28 ロディア・シミ Crosslinkable composition for electrolyte
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent

Similar Documents

Publication Publication Date Title
JPH03115359A (en) Ionically conductive material and preparation thereof
JPH03139566A (en) Ion-conductive material and its preparation
JPH02163110A (en) Polymeric solid electrolyte and production thereof
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
KR100212534B1 (en) Sol-gel composition and its polymeric ion conductive membrane
EP0581296A2 (en) Ionically conductive organosiloxane polymer compositions
US5272021A (en) Lithium battery
JPH0280462A (en) Ionically conductive material and its production
JPH05109311A (en) Solid electrolyte
JPH01307103A (en) Macromolecular solid electrolyte
JPS60262852A (en) Ion conductive high molecular material for manufacturing electrolyte or electrode
Gonçalves et al. Conducting blends of soluble polyurethane and poly (o-methoxyaniline)
JPH02212521A (en) Curable liquid copolymer, and conductive composition containing this copolymer and soluble lithium salt
JP3149247B2 (en) Ion conductive polymer electrolyte
JPH0635545B2 (en) Ion conductive polymer composition
JPS62249361A (en) Organic solid electrolyte
Tsvetanov et al. Intelligent networks based on poly (oxyethylene)
EP0880189B1 (en) Solid electrolyte
JPH03177409A (en) Polymer solid electrolyte
JP2813832B2 (en) Ion conductive polymer electrolyte
JP2790467B2 (en) Polymer solid electrolyte and method for producing the same
JPH0270756A (en) Ionically conductive material and its production
JPH0649213A (en) Ionic electrically conductive material
JPH02105855A (en) Ionically conductive composition
JPH07233243A (en) Ionically conductive material