JPH03138549A - Fluorescent x-ray analyzer - Google Patents

Fluorescent x-ray analyzer

Info

Publication number
JPH03138549A
JPH03138549A JP1278096A JP27809689A JPH03138549A JP H03138549 A JPH03138549 A JP H03138549A JP 1278096 A JP1278096 A JP 1278096A JP 27809689 A JP27809689 A JP 27809689A JP H03138549 A JPH03138549 A JP H03138549A
Authority
JP
Japan
Prior art keywords
filter
filters
inclination
wavelength
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1278096A
Other languages
Japanese (ja)
Inventor
Takehiko Nakatani
武彦 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1278096A priority Critical patent/JPH03138549A/en
Publication of JPH03138549A publication Critical patent/JPH03138549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve the accuracy of measurement without requiring filter working of high accuracy by providing two X-ray detectors disposed with two kinds of filters which vary in the wavelength of min. transmissivity on the front surfaces. CONSTITUTION:The apparatus consists of the two X-ray detectors 3, 4 disposed with two kinds of the filters F 1, F 2 which vary in the wavelength of the min. transmissivity on the front surfaces, a means 2 for adjusting the inclination of the one filter F 2, and an arithmetic section 5 which computes the difference between the detected outputs thereof. The intensities I1, I2 of the X-rays transmitted through the filters F 1, F 2 are measured by the detectors 3, 4 and I1-I2 is determined in the arithmetic section 5. The angle of inclination of the filter F 2 is adjusted by an inclination adjusting means 2 so as to attain I1-I2=0. The X-rays exclusive of a measuring wavelength lambda0 is mostly removed by the inclination adjustment of this filter F 2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、バランスドフィルター法による蛍光X線分析
装置に関する。
The present invention relates to a fluorescent X-ray analyzer using a balanced filter method.

【従来の技術】[Conventional technology]

元素には、夫々固有の吸収端波長があり、X線の短波長
側から長波長側にかけて、吸収が次第に増加し、吸収端
波長を越すと急に吸収が減る。この元素毎の吸収端波長
の違いを利用して、成る波長λ0のX線を測定しようと
する場合に、第2図に示すような、λ1が吸収端波長と
なるフィルターFlとλ2が吸収端波長となるフィルタ
ーF2にX線を透過させ、透過したX線の強度11.I
2を測定し、■1−12を求めると、第2図の透過率曲
線を見ても分かるように、λ1とλ2の間は透過率の差
が大きいが、それ以外の区間では透過率の差が殆どない
ので、1l−I2で求められた値は、波長λlとλ2と
の間に存在する波長のX線の強度を測定したことになる
。測定しないX線の波長λ0はλ、とλ2との間に存在
するから、結果として波長λ。の特性X線を測定したこ
とになる。このように測定したいX線の波長の前後の波
長で最小透過率となる2つのフィルターを用いて、特性
X線を測定する方法をバランスドフィルター法と云う。 本発明はこのバランスドフィルター法に関するものであ
る。このバランスドフィルター法の測定精度は、2つの
フィルターの透過率をλlとλ2の間以外の区間におい
てどれだけ同じ値に近づけ得るかにかかっている。この
透過率の調節はフィルターの厚みによって行っているが
、その厚みの差は計算を非常に小さい値になる。 例えば、フィルターF1..F2にCuとNiのフィル
ターを用いた場合、フィルターFl、F2の厚みを1.
.12とすれば、λ〉λ2の領域で■1=J2にするた
めには、t 2 / t l= 1 、0916であり
、λくλ1の領域で1.=12にするためにはtz /
lt =1.0993である。フィルターの所要厚さを
1μm程度とすると、この厚みの差は約0.1μm、フ
ィルターの厚さを10μmとしても差は1μm程度とな
り、このような微妙な厚みの差を加工によって得ること
は非常に難しいと云う問題があった。
Each element has its own absorption edge wavelength, and absorption gradually increases from the short wavelength side to the long wavelength side of X-rays, and suddenly decreases when the absorption edge wavelength is exceeded. When trying to measure X-rays with a wavelength of λ0 using this difference in absorption edge wavelength for each element, filters Fl and λ2 with absorption edge wavelengths of λ1 and λ2 are used as shown in Figure 2. X-rays are transmitted through the filter F2, which corresponds to the wavelength, and the intensity of the transmitted X-rays is 11. I
2 and find ■1-12. As can be seen from the transmittance curve in Figure 2, there is a large difference in transmittance between λ1 and λ2, but in other sections, the transmittance is small. Since there is almost no difference, the value determined by 1l-I2 is a measurement of the intensity of X-rays with wavelengths between λl and λ2. Since the wavelength λ0 of the X-ray that is not measured exists between λ and λ2, the wavelength λ0 is the result. This means that the characteristic X-rays of This method of measuring characteristic X-rays using two filters that have minimum transmittance at wavelengths before and after the wavelength of the X-rays to be measured is called the balanced filter method. The present invention relates to this balanced filter method. The measurement accuracy of this balanced filter method depends on how close the transmittances of the two filters can be to the same value in the interval other than between λl and λ2. This transmittance is adjusted by changing the thickness of the filter, but the difference in thickness makes the calculation a very small value. For example, filter F1. .. When using Cu and Ni filters for F2, the thicknesses of filters Fl and F2 are set to 1.
.. 12, in order to make 1=J2 in the region λ>λ2, t 2 /t l= 1,0916, and 1. To make =12, tz /
lt=1.0993. If the required thickness of the filter is about 1 μm, the difference in thickness is about 0.1 μm, and even if the thickness of the filter is 10 μm, the difference is about 1 μm, and it is extremely difficult to obtain such a subtle difference in thickness through processing. There was a problem that was difficult.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、バランス1−フィルター法による蛍光X線分
析装置において、高精度のフィルター加工を要しないで
測定精度の向上を図ることを目的とする。
An object of the present invention is to improve measurement accuracy in a fluorescent X-ray analyzer using a balanced one-filter method without requiring high-precision filter processing.

【課題を解決するための手段】 蛍光X線分析装置において、最小透過率の波長が異なる
2種のフィルターを前面に配置した2つのX線検出器と
、上記2つのフィルターの円安なくともどちらか一方の
フィルターの傾きを調節する手段と、上記2つのX線検
出器の検出出力の差を演算する演算手段とを備えた。
[Means for solving the problem] In a fluorescent X-ray analyzer, two X-ray detectors are arranged in front of two types of filters having different minimum transmittance wavelengths, and at least one of the above two filters is used. The apparatus includes means for adjusting the slope of one of the filters, and a calculation means for calculating the difference between the detection outputs of the two X-ray detectors.

【作 用】[For use]

本発明によれば、フィルターの傾きを変えることにより
、フィルターのX線の透過長さを微調整することができ
る点に着目し、一方のフィルターを保持している保持台
に傾きを変える手段を設け、同手段によりフィルターの
傾きを変えることにより、2つのフィルターの厚さを夫
々厳密に計算通りにしておかなくても、2つのフィルタ
ーの設定波長区間以外の波長のX線の透過率を、同じに
することができるようになったことで、高精度のフィル
ター加工を要しないで測定精度を向上させることが可能
になった。
According to the present invention, focusing on the fact that the length of X-ray transmission through the filter can be finely adjusted by changing the inclination of the filter, a means for changing the inclination is provided on the holding stand holding one of the filters. By using the same means to change the inclination of the filters, it is possible to increase the transmittance of X-rays at wavelengths outside the set wavelength range of the two filters, without having to make the thicknesses of the two filters exactly as calculated. By making it possible to make them the same, it has become possible to improve measurement accuracy without requiring high-precision filter processing.

【実施例】【Example】

第1図に本発明を亜鉛メツキ板の被膜測定に用いた一実
施例を示す。第1図において、Sは亜鉛メツキ板である
試料板、1はX線管、FlはCuフィルターで吸収端波
長は1.380人である。 F2はNiフィルターで吸収端波長は1.488人であ
る。上記2つのフィルターFl、F2の厚みは約8〜1
0ノzmである。2はNiフィルターF2の傾きを調節
する調節手段で、第3図に詳細図を示す。第3図におい
て、2AはフィルターF2の傾きを調節する回転台、2
Bは回転台2人を回転させるウオームギア機構である。 第1図に戻り、3はCuフィルターF1を透過したX線
を検出するX線検出器、4はNiフィルターF2を透過
したX線を検出するX線検出器、5はX線検出器3の検
出信号■lからX線検出器4の検出信号■2を引算する
演算部、6は演算部5で求められた結果を表示する表示
部である。 フィルターF2の傾き調節手段2の調節方法について説
明を行う。本実施例では、亜鉛メツキ板の被膜測定であ
るから、測定波長λ0は1.435人であり、亜鉛メツ
キ板の基板には、主として鉄が使用されている関係から
、測定されるX線の中には、鉄(Fe)による蛍光X線
が多く含まれており、鉄による蛍光X線の検出信号を除
去することが、測定精度を向上させることとなるので、
試料板Sを鉄(Fe)板とし、検出器3,4でフィルタ
ーFl、F2を透過してくるX線強度工II2を測定し
、演算部5でI、−I2を求め、If −I2 =Oと
なるように、傾斜手段2によりフィルターF2の傾斜角
度を調節する。このフィルターの傾き調整により、鉄に
よる蛍光X線の検出信号が測定値から完全に除去される
と共に、測定波長λ。以外のX線も殆ど除去されること
になる。 フィルターF2の傾斜角度の調節が終了すれば、測定し
たい試料板Sをセットし測定を行う。測定結果■□−■
2の値から、予め測定しておいた検量線図を用いて、亜
鉛メツキの被膜の厚さを測定する。
FIG. 1 shows an example in which the present invention is used to measure a coating on a galvanized plate. In FIG. 1, S is a sample plate which is a galvanized plate, 1 is an X-ray tube, and Fl is a Cu filter with an absorption edge wavelength of 1.380 nm. F2 is a Ni filter and the absorption edge wavelength is 1.488. The thickness of the above two filters Fl and F2 is approximately 8 to 1
It is 0 nozm. 2 is an adjusting means for adjusting the inclination of the Ni filter F2, a detailed view of which is shown in FIG. In FIG. 3, 2A is a rotary table for adjusting the inclination of the filter F2;
B is a worm gear mechanism that rotates the two rotating tables. Returning to FIG. 1, 3 is an X-ray detector that detects the X-rays that have passed through the Cu filter F1, 4 is an X-ray detector that detects the X-rays that have passed through the Ni filter F2, and 5 is the X-ray detector that detects the X-rays that have passed through the Ni filter F2. A calculation section 6 subtracts the detection signal (2) of the X-ray detector 4 from the detection signal (1), and a display section 6 displays the result obtained by the calculation section 5. A method of adjusting the inclination adjusting means 2 of the filter F2 will be explained. In this example, since the film is measured on a galvanized plate, the measurement wavelength λ0 is 1.435, and since iron is mainly used for the galvanized plate substrate, the X-rays to be measured are It contains many fluorescent X-rays due to iron (Fe), and removing the detection signal of fluorescent X-rays due to iron will improve measurement accuracy.
Using an iron (Fe) plate as the sample plate S, the detectors 3 and 4 measure the X-ray intensity II2 transmitted through the filters Fl and F2, and the calculation unit 5 calculates I and -I2, If -I2 = The inclination angle of the filter F2 is adjusted by the inclination means 2 so that the angle of inclination becomes O. By adjusting the slope of this filter, the detection signal of fluorescent X-rays due to iron is completely removed from the measurement value, and the measurement wavelength λ is also adjusted. Almost all other X-rays are also removed. When the adjustment of the inclination angle of the filter F2 is completed, the sample plate S to be measured is set and the measurement is performed. Measurement results ■□−■
From the value of 2, the thickness of the galvanized film is measured using a calibration curve that has been measured in advance.

【効 果】【effect】

本発明によ°れば、バランスドフィルター法によるX線
測定装置において、簡単な装置でX線のフィルターの透
過長さの調整可能になったことで、安価な装置で測定精
度を一段と向」ニさせることが可能になった。
According to the present invention, in an X-ray measurement device using the balanced filter method, the transmission length of the X-ray filter can be adjusted with a simple device, which further improves measurement accuracy with an inexpensive device. It is now possible to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、 第2図は F2・・Niフィルター、 2・・・フィルター傾き調 節手段、 3・・X線検出器、 X線検出器、 演算部、 6・・・表示部。 FIG. 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is F2...Ni filter, 2...Filter tilt tone knot means, 3...X-ray detector, X-ray detector, arithmetic section, 6...Display section.

Claims (1)

【特許請求の範囲】[Claims] 最小透過率の波長が異なる2種のフィルターを前面に配
置した2つのX線検出器と、上記2つのフィルターの内
少なくともどちらか一方のフィルターの傾きを調節する
手段と、上記2つのX線検出器の検出出力の差を演算す
る演算手段とを備えたことを特徴とする蛍光X線分析装
置。
two X-ray detectors in which two types of filters having different minimum transmittance wavelengths are arranged in front; means for adjusting the inclination of at least one of the two filters; and two X-ray detectors. 1. A fluorescent X-ray analyzer, comprising: a calculation means for calculating a difference between detection outputs of the detectors.
JP1278096A 1989-10-24 1989-10-24 Fluorescent x-ray analyzer Pending JPH03138549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1278096A JPH03138549A (en) 1989-10-24 1989-10-24 Fluorescent x-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1278096A JPH03138549A (en) 1989-10-24 1989-10-24 Fluorescent x-ray analyzer

Publications (1)

Publication Number Publication Date
JPH03138549A true JPH03138549A (en) 1991-06-12

Family

ID=17592581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1278096A Pending JPH03138549A (en) 1989-10-24 1989-10-24 Fluorescent x-ray analyzer

Country Status (1)

Country Link
JP (1) JPH03138549A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812851B2 (en) * 1977-01-12 1983-03-10 三井化学株式会社 How to manufacture pipes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812851B2 (en) * 1977-01-12 1983-03-10 三井化学株式会社 How to manufacture pipes

Similar Documents

Publication Publication Date Title
JPH0348705U (en)
JPH03138549A (en) Fluorescent x-ray analyzer
JP3261842B2 (en) Non-dispersive infrared gas analyzer
US4301366A (en) Chatter detection in thickness measuring gauges and the like
JPH0781840B2 (en) Optical film thickness measuring device
JPH03115838A (en) Moisture measuring method by use of infrared ray
RU2672036C1 (en) Method of measuring the thickness of coating in the process of plasma-electrolytic oxidation and the device for its implementation
JPH0721405B2 (en) Fourier transform method Infrared film thickness measurement method
US5157259A (en) Measuring method and measuring arrangement for determining the orientation ratio of flexible magnetic recording media
JPH0854264A (en) Optical measuring apparatus
JP3205084B2 (en) Method and apparatus for measuring film thickness of coating material
JP5223081B2 (en) Online retardation measuring device for polarizing plate
JPH06229909A (en) Measuring apparatus for polarized dichroism
JPH03111790A (en) X-ray strength spectrum monitor method
BELL The use of asymmetric interferograms in transmittance measurements
JPH05332836A (en) Fourier transformation processing method of fourier spectral method
CA1213155A (en) Double-slit interferometer
JPH0489553A (en) Double refraction measuring apparatus
JPS62222132A (en) Wavelength detecting method
JPH03233338A (en) Integrating sphere inner wall reflectance measuring method
JPS61209340A (en) Optical measuring apparatus
JPH04313005A (en) Film thickness measuring instrument
JPH01262404A (en) Measuring instrument for spectral interference fringe
JPH049746A (en) Chromaticity/turbidity meter
JPS61209339A (en) Optical measuring apparatus