JPH0313699B2 - - Google Patents

Info

Publication number
JPH0313699B2
JPH0313699B2 JP11345484A JP11345484A JPH0313699B2 JP H0313699 B2 JPH0313699 B2 JP H0313699B2 JP 11345484 A JP11345484 A JP 11345484A JP 11345484 A JP11345484 A JP 11345484A JP H0313699 B2 JPH0313699 B2 JP H0313699B2
Authority
JP
Japan
Prior art keywords
fluorescent surface
cathode ray
film
ray tube
optical interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11345484A
Other languages
Japanese (ja)
Other versions
JPS60257043A (en
Inventor
Yasuo Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11345484A priority Critical patent/JPS60257043A/en
Publication of JPS60257043A publication Critical patent/JPS60257043A/en
Publication of JPH0313699B2 publication Critical patent/JPH0313699B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/24Supports for luminescent material

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は螢光面からの発光に指向性を持たせ
た陰極線管の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the structure of a cathode ray tube in which light emitted from a fluorescent surface is given directionality.

〔従来技術〕[Prior art]

第1図は、従来の陰極線管の動作原理を示すた
めの概略断面図である。この図において、真空外
囲器となるガラスバルブ1の一部を構成するフエ
ースプレートガラス2の内面には螢光体層4が形
成されており、この螢光体層4上には高圧電極お
よび光反射膜としてのアルミニウムAlの蒸着膜
からなるメタルバツク膜5が形成されて螢光面3
を構成している。螢光面3のメタルバツク膜5側
内面に対向配置された電子銃6から発せられる電
子線7のエネルギにより螢光体層4が励起され、
螢光面発光出力が得られる。このような螢光体層
4は通常、ほぼ完全拡散面に近いため、たとえば
図中のA点で、電子線7により励起された発光の
場合、光の発散角度に対する光度分布は
LAMBERTの法則にしたがい、図で示すごと
く、cosθに比例した分布となる。また、この場合
の各角度方向の輝度分布は一定値、すなわちどの
方向から螢光面を見ても等輝度となることは良く
知られている。通常の家庭用などのテレビジヨン
受像機においては、このように螢光面3に映し出
された映像の明るさが、どの方向から見てもほぼ
同じように見えるということは必須の条件である
が、用途の種類によつては必ずしも螢光面3の明
るさが見る角度によつて同じではなく、むしろ角
度依存性を持たせた方が好ましいものもある。そ
の一例がコンピユータなどの端末用の陰極線管で
ある。
FIG. 1 is a schematic cross-sectional view showing the operating principle of a conventional cathode ray tube. In this figure, a phosphor layer 4 is formed on the inner surface of a face plate glass 2 that constitutes a part of a glass bulb 1 serving as a vacuum envelope, and a high-voltage electrode and a A metal back film 5 made of a vapor-deposited aluminum film as a light reflecting film is formed on the fluorescent surface 3.
It consists of The phosphor layer 4 is excited by the energy of an electron beam 7 emitted from an electron gun 6 disposed opposite to the inner surface of the phosphor surface 3 on the metal back film 5 side.
Fluorescent surface emission output can be obtained. Since such a phosphor layer 4 is usually close to a completely diffusing surface, for example, in the case of light emission excited by the electron beam 7 at point A in the figure, the luminous intensity distribution with respect to the divergence angle of the light is
According to LAMBERT's law, the distribution is proportional to cosθ, as shown in the figure. Furthermore, it is well known that the brightness distribution in each angular direction in this case is a constant value, that is, the brightness is the same no matter which direction the fluorescent surface is viewed from. In ordinary home television receivers, it is an essential condition that the brightness of the image projected on the fluorescent surface 3 should appear almost the same no matter what direction it is viewed from. Depending on the type of use, the brightness of the fluorescent surface 3 is not necessarily the same depending on the viewing angle, and in some cases it is preferable to have angle dependence. One example is cathode ray tubes for terminals such as computers.

コンピユータなどの端末用デイスプレの場合、
第2図で示すごとく、端末用陰極線管8の螢光面
3のほぼ中心線上にオペレータ9が位置して螢光
面3に映し出された情報を見ながら作業を行うた
め、実際にオペレータ9の目に視覚情報として捕
えられるのは、螢光面3からの発光の内、画面中
央部で約±5゜の発散角の範囲であり、画面周辺部
を考慮してもせいぜい約±30゜の発散角の範囲の
発光である。したがつて、この範囲外の発光はコ
ンピユータの端末作作業にとつては無意味な発光
といえる。この約±30゜の発散角外の光束を、第
3図で示すごとく、±30゜以内の発散角内に集約化
できれば、輝度分布に角度依存性が生じ、オペレ
ータ9側の螢光面の輝度を大幅に向上でき、エネ
ルギの節約にもつなげることが可能である。また
螢光面の輝度分布に角度依存性を持たせた方が好
ましい。もう一つの例として、投写型陰極線管の
場合があげられる。
In the case of displays for terminals such as computers,
As shown in FIG. 2, the operator 9 is located approximately on the center line of the fluorescent surface 3 of the terminal cathode ray tube 8 and performs the work while viewing the information projected on the fluorescent surface 3. Of the light emitted from the fluorescent surface 3, what the eye can perceive as visual information is a divergence angle range of approximately ±5° at the center of the screen, and even if the peripheral areas of the screen are taken into account, the divergence angle range is approximately ±30° at most. This is light emission within a range of divergence angles. Therefore, light emission outside this range can be said to be meaningless light emission for computer terminal work. If the luminous flux outside the divergence angle of about ±30° can be concentrated within the divergence angle of ±30° as shown in Fig. 3, angle dependence will occur in the luminance distribution, and the fluorescent surface on the operator 9 side will become angularly dependent. Brightness can be significantly improved, leading to energy savings. Further, it is preferable that the luminance distribution of the fluorescent surface has angular dependence. Another example is a projection cathode ray tube.

第4図は投写型テレビジヨンセツトの構成原理
を示すための概略断面図である。投写型陰極線管
11はその螢光面3に映し出された映像を、投写
レンズユニツト12を介して前方に設置されたス
クリユー13に拡大投影するものである。この投
写レンズユニツト12は通常3〜8枚程度の光学
レンズを組み込んだ複合レンズとして構成され
る。
FIG. 4 is a schematic sectional view showing the principle of construction of a projection television set. The projection type cathode ray tube 11 enlarges and projects an image projected on its fluorescent surface 3 onto a screw 13 installed in front of it via a projection lens unit 12. The projection lens unit 12 is usually constructed as a compound lens incorporating about 3 to 8 optical lenses.

このような投写レンズユニツト12の場合、収
差の問題やコストおよびスペース的な問題のた
め、投写型陰極線管11の螢光面3の大きさに比
べてあまり大きなレンズ口径を選ぶことは困難で
ある。このため螢光面3からの発光を投写レンズ
ユニツト12に取り込む際の有用取り込み角度は
非常に限られたものとなる。たとえば螢光面3の
中央における発光の場合、光学的に有用な発光な
発光点で螢光面3に立てた法線に対して概略±
15゜〜±20゜の範囲である。また同様に螢光面3の
周辺における発光の場合は、螢光面3の内側に向
つて約30゜の範囲である。したがつて、螢光面3
の中央部および周辺部の両方を考慮しても、発光
点で螢光面3に立てた法線に対して約±30°の発
散角よりも大きな発光は投写レンズユニツト12
の光学的に有用な光路をとることができない不要
光である。この約±30゜の発散角外の光束を第3
図で示すごとく、±30゜以内の発散角内に集約化で
きれば輝度分布に角度依存性が生じ、スクリーン
13に拡大投影された映像の明るさを大幅に向上
することが可能となる。
In the case of such a projection lens unit 12, it is difficult to select a lens aperture that is too large compared to the size of the fluorescent surface 3 of the projection cathode ray tube 11 due to problems of aberration, cost, and space. . For this reason, the useful angle for capturing the light emitted from the fluorescent surface 3 into the projection lens unit 12 is extremely limited. For example, in the case of light emission at the center of the fluorescent surface 3, it is an optically useful light emitting point that is approximately ±± with respect to the normal to the fluorescent surface 3.
The range is 15° to ±20°. Similarly, in the case of light emission around the fluorescent surface 3, the range is approximately 30° toward the inside of the fluorescent surface 3. Therefore, the fluorescent surface 3
Even if both the central and peripheral parts of the projection lens unit 12 are considered, the projection lens unit 12 will emit light with a divergence angle greater than approximately ±30° with respect to the normal to the phosphor surface 3 at the light emitting point.
This is unnecessary light that cannot take an optically useful optical path. The luminous flux outside this approximately ±30° divergence angle is
As shown in the figure, if the luminance can be concentrated within a divergence angle of ±30°, angular dependence will occur in the luminance distribution, making it possible to significantly improve the brightness of the image enlarged and projected onto the screen 13.

以上述べたような螢光面3の発光の光束の内、
発散角の大きいものを発散角の小さい方へ集約化
させて発散角の小さい方向での輝度を大きくし
て、螢光面の輝度分布に角度依存性を持たせる一
つの方法として特開昭55−150532号の「ハローを
抑制するための陰極線管面板構造およびその抑制
方法」に開示されている方法が非常に示唆的であ
る。すなわち、第3図で示すごとく、螢光面3の
フエースプレートガラス2と螢光体層4との間に
光学的干渉膜10を形成することにより螢光面3
の輝度分布に角度依存性与えられることが示唆さ
れている。この光学的干渉膜10は螢光体層4か
らこの膜に入射してくる光の内、入射角の小さい
ものをできるだけ透過し、入射角の大きいものは
反射して螢光体層4側へもどす作用をする。光学
的干渉膜10への入射角が大きくて螢光体層4側
へ反射された光は再び螢光体表面で乱反射され、
この乱反射された光の内、光学的干渉膜10への
入射角が小さいもののみ透過され、残りはまた反
射される。この過程がくり返されることにより、
第3図に示したような発散角の小さい範囲に光束
が集約化されたような、角度依存性を持つた輝度
分布が実現される。
Of the luminous flux of the fluorescent surface 3 as described above,
Japanese Patent Laid-Open No. 55 Sho 55 is a method of making the luminance distribution of a fluorescent surface angularly dependent by concentrating those with large divergence angles into those with small divergence angles and increasing the luminance in the direction with small divergence angles. The method disclosed in ``Cathode ray tube face plate structure for suppressing halo and method for suppressing the same'' in No. 150532 is very suggestive. That is, as shown in FIG. 3, by forming an optical interference film 10 between the face plate glass 2 of the fluorescent surface 3 and the phosphor layer 4, the fluorescent surface 3
It has been suggested that the brightness distribution of the image is angularly dependent. This optical interference film 10 transmits as much light as possible with a small angle of incidence among the light incident on this film from the phosphor layer 4, and reflects light with a large angle of incidence to the phosphor layer 4 side. It has a restoring effect. The light that enters the optical interference film 10 at a large angle of incidence and is reflected toward the phosphor layer 4 is diffusely reflected again on the phosphor surface.
Of this diffusely reflected light, only that which has a small angle of incidence on the optical interference film 10 is transmitted, and the rest is reflected again. By repeating this process,
A brightness distribution with angular dependence is realized in which the luminous flux is concentrated in a range with a small divergence angle as shown in FIG.

このような光学的干渉膜の具体的な例として前
記特開昭55−150532号には低屈折率層として二酸
化硅素(SiO2)、高屈折率層として二酸化チタン
(TiO2)の組み合わせからなる6層コーテイング
の例が開示されている。
As a specific example of such an optical interference film, the above-mentioned Japanese Patent Application Laid-Open No. 150532/1987 discloses a combination of silicon dioxide (SiO 2 ) as a low refractive index layer and titanium dioxide (TiO 2 ) as a high refractive index layer. An example of a six layer coating is disclosed.

一方、陰極線管の螢光面にこのような光学的干
渉膜を適用する場合には、要求される光学特性以
外に2つの重要な性能がこの光学的干渉膜に要求
される。その一つは耐熱性である。通常、陰極線
管はその製造工程で約400〜450℃まで昇温する熱
処理工程を最低2度は通過しなければならない。
したがつて、このような熱処理工程で螢光面に形
成された光学的干渉膜の光学特性に変化を生じて
はならない。
On the other hand, when such an optical interference film is applied to the fluorescent surface of a cathode ray tube, two important performances are required of the optical interference film in addition to the required optical properties. One of them is heat resistance. Normally, cathode ray tubes must go through a heat treatment process that raises the temperature to about 400 to 450 degrees Celsius at least twice during the manufacturing process.
Therefore, such a heat treatment step must not cause any change in the optical properties of the optical interference film formed on the fluorescent surface.

このような耐熱性という点からは二酸化硅素
(SiO2)と二酸化チタン(TiO2)からなる多層膜
は不安定であり、400℃に30分間保持するのみで
も光学特性に大幅な変動を生じることが明らかと
なつた。また、このような光学的干渉膜に要求さ
れるもう一つの重要な性能は耐薬品性である。通
常、陰極線管の螢光面3を形成する場合、螢光体
層4を形成する前に、ガラスバルブ1の内面は弗
化水素酸(HF)などの酸性溶液により洗浄され
る。この洗浄は陰極線管の動作寿命を確保する上
では必要不可欠な工程である。このガラスバルブ
1の内面の洗浄は螢光体層4形成の直前に行われ
るため、ガラスバルブ1のフエースプレートガラ
ス2の内面に、あらかじめ形成されている光学的
干渉膜もHFなどによつて洗浄を受けることにな
り、このために膜の光学特性が損われてはならな
い。しかしながら、二酸化硅素(SiO2)と二酸
化チタン(TiO2)からなる多層膜の場合、約
1.0wt%の弗化水素酸(HF)に約1分間浸漬さ
れるのみで、膜の分解、剥離が生じ、耐薬品性の
観点からもはなはだ不満足なものである。したが
つて、二酸化硅素(SiO2)と二酸化チタン
(TiO2)の多層膜からなる光学的干渉膜は、膜の
初期特性としては要求に十分応えられるものであ
つても、陰極線管の製造工程で当然要求される耐
熱性や耐薬品性などの要求性能を満足できず、し
たがつて陰極線管の螢光面に適用することは非常
に困難といえる。
In terms of heat resistance, multilayer films made of silicon dioxide (SiO 2 ) and titanium dioxide (TiO 2 ) are unstable, and even if kept at 400°C for just 30 minutes, the optical properties will change significantly. It became clear. Another important performance required of such an optical interference film is chemical resistance. Normally, when forming the phosphor surface 3 of a cathode ray tube, the inner surface of the glass bulb 1 is cleaned with an acidic solution such as hydrofluoric acid (HF) before forming the phosphor layer 4. This cleaning is an essential step to ensure the operational life of the cathode ray tube. Since this cleaning of the inner surface of the glass bulb 1 is performed immediately before the formation of the phosphor layer 4, the optical interference film previously formed on the inner surface of the face plate glass 2 of the glass bulb 1 is also cleaned with HF or the like. This must not impair the optical properties of the film. However, in the case of a multilayer film consisting of silicon dioxide (SiO 2 ) and titanium dioxide (TiO 2 ), approximately
After being immersed in 1.0wt% hydrofluoric acid (HF) for only about 1 minute, the membrane decomposes and peels off, making it extremely unsatisfactory from the viewpoint of chemical resistance. Therefore, even though the initial properties of an optical interference film made of a multilayer film of silicon dioxide (SiO 2 ) and titanium dioxide (TiO 2 ) are sufficient to meet the requirements, the process of manufacturing cathode ray tubes is difficult. Therefore, it is extremely difficult to apply it to the fluorescent surface of a cathode ray tube.

〔発明の概要〕[Summary of the invention]

この発明は、光学的干渉膜を陰極線管の螢光面
のフエースプレートガラスと螢光体層の間に設け
て螢光面の輝度分布に角度依存性を持たせる際
に、従来技術ではどうしても解決できなかつた光
学的干渉膜の諸特性の不安定さに鑑みなされたも
のであり、耐熱性、耐薬品性とも兼ねそなえた非
常に安定な陰極線管螢光面用の光学的干渉膜を提
供するものである。
This invention provides an optical interference film between the face plate glass of the fluorescent surface of a cathode ray tube and the phosphor layer to make the brightness distribution of the fluorescent surface angularly dependent. This was created in view of the instability of various properties of optical interference films that could not be produced, and provides an extremely stable optical interference film for fluorescent surfaces of cathode ray tubes that has both heat resistance and chemical resistance. It is something.

〔発明の実施例〕[Embodiments of the invention]

陰極線管の螢光面に適用可能な耐熱性および耐
薬品性を兼ねそなえた光学膜を得るため、種々の
金属酸化物について、実際に蒸着された膜につい
て実験を行つた結果、低屈折率層として二酸化硅
素(SiO2)、高屈折率層として酸化タンタル
(TaO2またはTa2O5)からなる多層光学膜の場合
が耐熱性、耐薬品性ともに、非常に優れており、
陰極線管の螢光面に十分適用できることが確認さ
れた。基板となるフエースプレートガラスを約
300℃に加熱しながら酸化タンタル(TaO2また
はTa2O5)と二酸化硅素(SiO2)を電子線加熱に
より一定に設計された膜厚で交互に蒸着して6層
コーテイングを行つて形成した光学的干渉膜の場
合、450℃で30分間保持の温度サイクルを3回く
りかえすとともに、この間に2.0wt%の弗化水素
酸(HF)溶液への5分間の浸漬を付加しても光
学的干渉膜の特性その他に何ら異常を生じなかつ
た。
In order to obtain an optical film that has both heat resistance and chemical resistance that can be applied to the fluorescent surface of cathode ray tubes, we conducted experiments on films actually deposited using various metal oxides, and found that a low refractive index layer A multilayer optical film consisting of silicon dioxide (SiO 2 ) as the layer and tantalum oxide (TaO 2 or Ta 2 O 5 ) as the high refractive index layer has excellent heat resistance and chemical resistance.
It was confirmed that the method can be sufficiently applied to the fluorescent surface of cathode ray tubes. Approx.
A 6-layer coating was formed by alternately depositing tantalum oxide (TaO 2 or Ta 2 O 5 ) and silicon dioxide (SiO 2 ) at a constant film thickness using electron beam heating while heating to 300°C. In the case of an optical interference film, optical interference can be achieved by repeating the temperature cycle of holding at 450°C for 30 minutes three times and adding immersion in a 2.0wt% hydrofluoric acid (HF) solution for 5 minutes during this period. No abnormality occurred in the properties of the film or anything else.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、耐熱性、耐
薬品性ともに優れた光学的干渉膜を陰極線管の螢
光面に適用することが可能となり、螢光面の発光
の輝度分布に角度依存性を持たせることができ、
この結果、高品質の端末用陰極線管や投写型陰極
線管を提供することが可能となる。
As described above, according to the present invention, it is possible to apply an optical interference film with excellent heat resistance and chemical resistance to the fluorescent surface of a cathode ray tube, and the luminance distribution of light emission from the fluorescent surface is angularly dependent. It can be given gender,
As a result, it becomes possible to provide high-quality terminal cathode ray tubes and projection cathode ray tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の陰極線管の動作原理を示すため
の概略断面図、第2図はコンピユータなどの端末
用デイスプレの作業状態を示す図、第3図は陰極
線管の螢光面の発光の輝度分布に角度依存性を持
たせた状態を示す図、第4図は投写型テレビジヨ
ンセツトの構成原理を示すための概略断面図であ
る。 1……ガラスバルブ、2……フエースプレート
ガラス、3……螢光面、4……螢光体層、1……
光学的干渉膜。なお、図中同一符号は同一または
相当部分を示す。
Figure 1 is a schematic sectional view showing the operating principle of a conventional cathode ray tube, Figure 2 is a diagram showing the working status of a terminal display such as a computer, and Figure 3 is the luminance of the fluorescent surface of the cathode ray tube. FIG. 4 is a schematic cross-sectional view showing the principle of construction of a projection television set. 1... Glass bulb, 2... Face plate glass, 3... Fluorescent surface, 4... Fluorescent layer, 1...
Optical interference film. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 螢光面を構成するフエースプレートガラスと
螢光体層との間に、二酸化硅素(SiO2)膜と酸
化タンタル(TaO2またはTa2O5)膜とを交互に
形成してなる多層光学膜を設けて螢光面の発光に
指向性を持たせたことを特徴とする陰極線管。
1. A multilayer optical system in which silicon dioxide (SiO 2 ) films and tantalum oxide (TaO 2 or Ta 2 O 5 ) films are alternately formed between the face plate glass that constitutes the fluorescent surface and the phosphor layer. A cathode ray tube characterized by providing a film to give directionality to the light emitted from the fluorescent surface.
JP11345484A 1984-05-31 1984-05-31 Cathode-ray tube Granted JPS60257043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11345484A JPS60257043A (en) 1984-05-31 1984-05-31 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11345484A JPS60257043A (en) 1984-05-31 1984-05-31 Cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS60257043A JPS60257043A (en) 1985-12-18
JPH0313699B2 true JPH0313699B2 (en) 1991-02-25

Family

ID=14612642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11345484A Granted JPS60257043A (en) 1984-05-31 1984-05-31 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS60257043A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109237A (en) * 1988-10-18 1990-04-20 Nippon Electric Glass Co Ltd Cathode-ray tube for projection type television
JP2650458B2 (en) * 1990-03-29 1997-09-03 三菱電機株式会社 Projection type cathode ray tube
JP2512204B2 (en) * 1990-05-09 1996-07-03 三菱電機株式会社 Projection type cathode ray tube
JPH081791B2 (en) * 1990-08-20 1996-01-10 三菱電機株式会社 Projection type cathode ray tube

Also Published As

Publication number Publication date
JPS60257043A (en) 1985-12-18

Similar Documents

Publication Publication Date Title
KR950000822B1 (en) Projection television display tube and projection television device comprising at least one such tube
US4642695A (en) Projection cathode-ray tube having enhanced image brightness
JPH0588497B2 (en)
KR950014857B1 (en) Projection tv system
US5126626A (en) Projection cathode ray tube
JPS61185843A (en) Cathode ray tube
NL9001542A (en) METHOD AND APPARATUS FOR THE PRODUCTION OF A CATHODE JET TUBE.
JPH0313699B2 (en)
US5177400A (en) Projection cathode-ray tube
JPH03133034A (en) Projection-type cathode-ray tube
JPH0460296B2 (en)
JPH0447421B2 (en)
KR100195602B1 (en) Color cathode-ray tube
JPH10223163A (en) Radioactive image tube and manufacture thereof
JPH04101333A (en) Projection type cathode-ray tube
JPH0721949A (en) Projection cathode-ray tube and manufacture thereof
JPH02160342A (en) Image tube
JPH10125281A (en) Metal halide lamp with transparent heat insulation film
JPH06295666A (en) Formation of phospher screen of cathode-ray tube
JPH02216741A (en) Fluorescent character display tube
JP2001126646A (en) Cathode-ray tube
JPS60175350A (en) X-ray image intensifier and manufacturing method thereof
JPH0161225B2 (en)
JPS604544B2 (en) cathode ray tube
JPH04115445A (en) Projection type television set

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term