JPH03136017A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH03136017A
JPH03136017A JP27465489A JP27465489A JPH03136017A JP H03136017 A JPH03136017 A JP H03136017A JP 27465489 A JP27465489 A JP 27465489A JP 27465489 A JP27465489 A JP 27465489A JP H03136017 A JPH03136017 A JP H03136017A
Authority
JP
Japan
Prior art keywords
reflecting
mirror
polygon mirror
light
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27465489A
Other languages
Japanese (ja)
Inventor
Kazuyuki Imamichi
和行 今道
Masamichi Tatsuoka
立岡 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27465489A priority Critical patent/JPH03136017A/en
Priority to US07/598,965 priority patent/US5187606A/en
Priority to EP90120090A priority patent/EP0423812B1/en
Priority to DE69018759T priority patent/DE69018759T2/en
Publication of JPH03136017A publication Critical patent/JPH03136017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To reduce the size of a rotary polygon mirror and to attain high speed scanning of luminous flux by arranging a fixed reflecting mirror opposite the reflecting surface of one of plural couples of reflecting mirrors of the rotary polygon mirror, and sending a beam which is made incident on the fixed reflecting surface from one reflecting surface back and making the light incident on the rotary polygon mirror again. CONSTITUTION:The respective mirror surfaces of the rotary polygon mirror 7 are formed of one couples of reflecting surfaces 7a and 7b which cross each other at right angles slantingly to the direction of the center axis of rotation and the reflecting mirror 9 which has at least one reflecting surface reflecting light from one reflecting surface 7b back to the reflecting surface 7b is fixed opposite one of a couple of reflecting surfaces. Namely, a beam LB which is reflected by two reflecting surfaces 7a and 8b and made incident on the fixed reflecting mirror 9 is reflected by the fixed reflecting mirror 9 back to the two reflecting surfaces 7a and 7b. Therefore, the scanning angle of the laser beam LB becomes twice as large as a conventional angle, so the size is reducible. Consequently, the rotary polygon mirror 7 is rotated fast and the beam LB can be made to scan at high speed.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は光源から出射された光束を回転多面鏡の鏡面で
反射させて偏向走査する走査光学゛装置に関する。 [従来の技術] 従来、走査光学装置として、例えば第5図に示す様に、
レーザ光源50から出射されたレーザービームLBを所
定の9画像情報に基づいて変調し、この変調されたビー
ムLBをコリメータレンズ52により平行光としたうえ
で、等速で回転する回転多面鏡54にて反射させること
で、ビームLBを等速用運動で走査し1、更にfθレン
ズ56によって等速用運動での走査を等速直線運動での
走査に変換し、感光ドラム58上に結像して画像を2註
するものが知られている。 この糧の走査光学装置では、高速でビームを走査する為
に、回転多面鏡54を高速回転させることや多面鏡54
の鏡面数を増やすことが考えられるが、回転機構の機械
構造上。 回転速度の上昇には限界があることや、鏡面数増加によ
って多面鏡54が大型になることなどで、より高速での
走査は困難であった。 その為、第6図に示す様に、レーザ光源62から出射さ
れたビーム1Bを、コリメータレンズ64を経て、回転
多面鏡66の鏡面66aにおける法SINに対して角度
θをもって多面鏡66に入射させ、その鏡面66aで反
射されたビームLBを、対向して配設された固定反射鏡
68によって折返して多面鏡66に出射し、多面鏡66
の鏡面66aで2度反射させてfθレンズ(不図示)に
出射する様に構成した走査光学装置が考えられる。 この装置においては1回転多面W!66で2回反射させ
てビームを走査するのでレーザビームLBの走査角が2
倍に拡大され(回転多面鏡の回転角をθとすると1回反
射の場合入射光と出射光は2θの角度をなすが、2同各
面鏡で反射させると最初の入射光と最後の出射光は4θ
の角度をなす、これは簡単に幾何光学的に証明される。 よって走査角は2倍となる。)、多面鏡66の鏡面数を
増やすことなく、また多面116Bの回転速度を高める
こと′なく、レーザビームLBの走査速度を高めること
ができる。 また1g4面数を比較的少な(出来るので鏡面66aを
太き(してビーム径を大きくシ。 感光ドラム上でのスポット径を小さ(することも出来る
。 〔発明が解決しようとする課題] しかし、上記装置では、レーザビームLBが多面fi6
6の法11Nに対して角度θをもって入射される為、レ
ーザビームの走査角が大きくなるに連れて被走査媒体上
での走査線が湾曲したリレーザスポット径が変化すると
いった問題が起こる。 そこで、本発明の目的は、装置を大型化することなく、
光束を高速走査できると共に歪のない結像を得ることの
できる走査光学装置を提供することにある。 [課題を解決する為の手段] 上記目的を達成する本発明では、光源から出射された光
束を回転多面鏡の複数の鏡面で友゛射させて偏向走査す
る走査光学装置において、上記回転多面鏡の各鏡面は、
回転多面鏡の回転中心軸方向へ傾斜して互いに直交する
対をなす反射面から成り、該対をなす反射面の一方に対
向して、該一方の反射面からの光束を反射して該一方の
反射面へ戻す少なくとも1つの反射面を有する反射鏡が
固定されている。 具体的には、固定反射鏡は1つの反射面を持つ平面鏡で
あったり、ルーフ型反射鏡であったりし、光源から回転
多面鏡へは1反射鏡、或は偏光ビームスプリッタとλ/
4板などを介して光束が導かれる。 E実施例] 以下に本発明を適用した実施例を図面に沿って説明する
。 先ず、本発明の第1実施例について説明する。第1図は
第1実施例の正面図(副走査方向断面における図]、第
2図は同平面図(走査断面における図)である。 −1に示す様に、走査光学装置1は、レーザビームLB
を発光する光源としての半導体レーザ3と、半導体レー
ザ3から入射するレーザビームLBを平行光に整えるコ
リメータレンズ5と、内方に傾斜し互いに直交する2つ
の反射面7a、7bで形成された鏡面を複数封有するル
ーフ型回転多面鏡7と、その一方の反射面7bに対向し
て配設され1つの平面鏡から成る固定反射119と、そ
の他方の反射面7aに対向して配設され入射するレーザ
ビームの偏波の方向によって位相をπ/2遅らせる17
4波長板(λ/4板)11と、λ/4板1板金1にして
ルーフ型回転多面鏡7とは反対mlに配設された偏光ビ
ームスプリッタ13とを主要部として構成されている。 この走査光学装置1においては、半導体レーザ3から出
射されたレーザビームLBは、コリメータレンズ5を通
過すると平行光となって進み、偏光ビームスプリッタ1
3で反射されてλ/4板1板金1過する。このとき。 し―ザビームLBは偏光ビームスプリッタ13で直線偏
光とされ、更にえ/4根により円偏光に変換される。 そして、レーザビームLBは、ルーフ型回転多面鏡7の
一方の反射面7aに入射し、そこで反射されて他方の反
射面7bに入射し、ここで更に反射されることで、一方
の反射面7aに入射するときの方向とは反対方向へ進む
(第1図の断面において反射面7aへの入射光と反射面
7bからの反射光は平行である)。すると、レーザビー
ムは、その進行方向に交わる様に配設された固定反射鏡
9で反射されて折返され、上記反射面7bに再入射され
(第1゛図の断面において反射面7bからの反射光と反
射面7bへの再入射光は同一光路となる)、反射面7b
→反射面7a−4え/4板tiという光路で、再びλ/
4i11を通過する(第1図の断面において反射面7a
への入射光と反射面7aからの再反射光は同一光路をと
る)、このとき、円偏光であるレーザビームは、入射時
の直線偏光とは偏光面が直角となった直線偏光に変換さ
れ、今度は偏光ビームスプリッタ13を通過して直進し
fθレンズ〔不図示〕を通り、感光ドラム(不図示)上
に結像される。 このとき、第2図に示す様に、ルーフ型回転多面鏡7が
回転することで、偏光ビームスプリッタ13を透過した
ビームLBは等連日運動で走査断面において走査される
が、fθレンズによって等速直線運動に変換されて感光
ドラム上を走査される。 上記した様に、第1実施例は、ルーフ型回転多面鏡7の
一方の反射面7bに対向して固定反射fJ!9を配設し
、ルーフ型回転多面鏡7の2つの反射面7a、7bにて
反射されて固定反射鏡9に入射されたビームLBを、固
定反射鏡9にて折返して、再び2つの反射面7a、7b
にて反射される様に構成したので、レーザビームLBの
走査角が第5図の従来例の2倍に拡がる。この為、ルー
フ型回転多面鏡゛7の外径を小さ(し小型化できるので
、ルーフ型回転多面鏡7の高速回転が可能となり、ビー
ムLBの高速走査が可能となる。或は、同じ大きさであ
っても鏡面数を増やすことが可能で、回転速度を上げる
ことな(より高速でビームLBを走査することが可能と
なるまた、第1実施例では、固定反射鏡9に1枚構成の
平面鏡を用い、且つえ/4板11を間にしてルーフ型回
転多面鏡7とは反対側に偏光ビームスプリッタ13を配
設することにより、半導体レーザ3から発生した光ビー
ムを効率よ(使用できるとともに偏光ビームスプリツタ
13→ルーフ型回転多面鏡7→固定反肘鏡9の往路と、
固定反射鏡9→ル一フ型回転多面鏡7→偏光ビームスプ
リッタ13(→fθレンズ)の復路とが第1図の副走査
方向断面において同一光路となる様に構成したので、第
6図の例の様にビームの走査角の拡大に伴う走査線の湾
曲やビームLBのスポット径の変動が起こることはない
、その為、反射面7a、7bを充分な大きさとしビーム
のFナンバーを充分小さくして感光ドラム上のスポット
の径を充分小さくすることができる、こうして、感光体
ドラムに・高画質の画像を記録できる。 次に、第2実施例の走査光学装置20を説明する。第3
図は第2実施例の副走査方向断面における構成図である
。 図に示す様に、走査光学装置20の構成は、第1実施例
と同じ光学的構成に、コリメータレンズ5と偏光ビーム
スプリッタ13との間に配設されたシリンドリカルレン
ズ22を増設したものである。 このシリンドリカルレンズ22は、走査断面に垂直な方
向である副走査方向にのみパワーを有し、フリメータレ
ンズ5から入射する平行光ビームLBを固定反射鏡9に
おいて線状に結像させる。また、固定反射l119と感
光ドラム上の結像面とは、両者の間にfθレンズが配置
されることによって、副走査方向断面において共役関係
となっている。その為、固定反射鏡9の反射面9aが、
入射して(るレーザビームLBに副走査方向断面におい
て直交せず多少角度誤差を持つ、ていても、感光ドラム
の結像面上でのピッチムラや走査線の曲がりを補正する
ことができる。 次に、第3実施例の走査光学装置30について説明する
。第4図は第3実施例の副走査方向断面における構成図
である。 同図において、走査光学装置30の構成は、半導体レー
ザ3、コリメータレンズ5及びルーフ型回転多面lI7
については第1実施例と同じゼあるが、第1実施例の偏
光ビームスプリッタの代わりに、平面反射鏡32をコリ
メータレンズ5から直進してくるビームLBに対して4
5度の角度を持って配設し、1つの平面鏡から成る固定
反射鏡の代わりに、2つの反射面34a、34bが互い
に直交するルーフ型固定反射1134を配設したものと
なっている。 この走査光学装置30においては、半導体レーザ3から
のレーザビームLBはコリメータレンズ5を透過すると
平行光となって進み、平面反射鏡32で直角に反・射さ
れて、ルーフ型回転多面鏡7の一方の反射面7aに入射
され、その反射面7aで反射されて他方の反射面7bに
入射され、ここで更に反射されることで、一方の反射面
7aに入射された方向とは副走査方向断面に右いて正反
対方向へ進む、すると、レーザビームLBは、その進行
方向中に配設されたルーフ型固定反射鏡34の2つの反
射面34a、34bで反射されて一定の幅(反射面34
a、34bの夫々の反射点の問題)をもって入射光路と
副走査方向断面において平行な光路を取って折返す、そ
して、ルーフ型回転多面鏡7の反射面7bに再入射され
1反射面7b−反射面7aという光路を経て、平面反射
鏡32からルーフ型回転多面鏡7に入射した光路とは副
走査方向断面において平行であるが一定幅だけルーフ型
固定反射鏡34寄りの光路をとって、すなわちルーフ型
固定反射鏡34と平面反射鏡32との間の空間を抜けて
、fθレンズへ出射される。 第2実施例ではルーフ型回転多面鏡7の一方の反射面7
aに対向してルーフ型固定反射1934を配設すること
によって、レーザビームLBがルーフ型回転多面鏡7に
入射されたときの光路とは平行であるが一定幅だけルー
フ型固定反射鏡34寄りの光路を取って、ルーフ型回転
多面鏡7からfθレンズへ出射されるように構成したの
で、偏光ビームスプリッタやえ/4板が不要となり、光
学系を簡単にできる。 また、固定反射鏡としてルーフ型固定反射1134を用
いたので、第2実施例の様にシリンドリカルレンズによ
って倒れ補正を行なう必要がない。
[Industrial Field of Application] The present invention relates to a scanning optical device that deflects and scans a beam of light emitted from a light source by reflecting it on the mirror surface of a rotating polygon mirror. [Prior Art] Conventionally, as a scanning optical device, for example, as shown in FIG.
The laser beam LB emitted from the laser light source 50 is modulated based on nine predetermined image information, and the modulated beam LB is made into parallel light by a collimator lens 52, and then sent to a rotating polygon mirror 54 that rotates at a constant speed. By reflecting the beam LB, the beam LB is scanned in a uniform motion 1, and further, the fθ lens 56 converts the scanning in the uniform velocity motion into scanning in a uniform linear motion, and forms an image on the photosensitive drum 58. It is known that an image can be annotated twice. In this basic scanning optical device, in order to scan the beam at high speed, the rotating polygon mirror 54 is rotated at high speed, and the polygon mirror 54 is rotated at high speed.
It may be possible to increase the number of mirror surfaces, but this may be due to the mechanical structure of the rotating mechanism. It has been difficult to scan at higher speeds because there is a limit to the increase in rotational speed and because the polygon mirror 54 becomes larger due to the increase in the number of mirror surfaces. Therefore, as shown in FIG. 6, the beam 1B emitted from the laser light source 62 passes through the collimator lens 64 and enters the polygon mirror 66 at an angle θ with respect to the modulus SIN on the mirror surface 66a of the rotating polygon mirror 66. , the beam LB reflected by the mirror surface 66a is reflected by a fixed reflecting mirror 68 disposed opposite to it and outputted to the polygon mirror 66.
A scanning optical device configured to reflect the light twice on the mirror surface 66a and output it to an fθ lens (not shown) is conceivable. In this device, one rotation multifaceted W! Since the beam is scanned by reflecting twice at 66, the scanning angle of the laser beam LB is 2.
(If the rotation angle of the rotating polygon mirror is θ, then in the case of one reflection, the incident light and the outgoing light make an angle of 2θ, but when reflected by two mirrors, the first incident light and the last outgoing light The emitted light is 4θ
This is easily proven geometrically. Therefore, the scanning angle is doubled. ), the scanning speed of the laser beam LB can be increased without increasing the number of mirror surfaces of the polygon mirror 66 or increasing the rotational speed of the polygon 116B. It is also possible to make the mirror surface 66a thicker to increase the beam diameter and to make the spot diameter on the photosensitive drum smaller. [Problems to be Solved by the Invention] , in the above device, the laser beam LB is multifaceted fi6
Since the beam is incident at an angle θ with respect to the modulus 11N of 6, a problem arises in that as the scanning angle of the laser beam increases, the laser spot diameter of the curved laser spot on the scanned medium changes. Therefore, an object of the present invention is to
It is an object of the present invention to provide a scanning optical device that can scan a light beam at high speed and obtain distortion-free imaging. [Means for Solving the Problems] In the present invention, which achieves the above object, in a scanning optical device that deflects and scans a light beam emitted from a light source by reflecting it on a plurality of mirror surfaces of a rotating polygon mirror, the above-mentioned rotating polygon mirror is used. Each mirror surface of
Consisting of a pair of reflective surfaces that are inclined in the direction of the central axis of rotation of the rotating polygon mirror and are perpendicular to each other, the mirror faces one of the reflective surfaces and reflects the light beam from the one reflective surface to the other. A reflector is fixed having at least one reflective surface that returns to the reflective surface of the reflector. Specifically, the fixed reflector is a plane mirror with one reflective surface or a roof-type reflector, and from the light source to the rotating polygon mirror there is one reflector or a polarizing beam splitter and a λ/
The light beam is guided through four plates. E Example] An example to which the present invention is applied will be described below with reference to the drawings. First, a first embodiment of the present invention will be described. Fig. 1 is a front view (a cross-sectional view in the sub-scanning direction) of the first embodiment, and Fig. 2 is a plan view thereof (a view in a scanning cross-section). Beam LB
A mirror surface formed by a semiconductor laser 3 as a light source that emits light, a collimator lens 5 that adjusts the laser beam LB incident from the semiconductor laser 3 into parallel light, and two reflective surfaces 7a and 7b that are inclined inward and are perpendicular to each other. A roof-type rotating polygon mirror 7 enclosing a plurality of mirrors, a fixed reflection 119 consisting of a single plane mirror disposed facing one of the reflecting surfaces 7b, and a fixed reflection 119 disposed opposite to the other reflecting surface 7a for incident light. Delaying the phase by π/2 depending on the polarization direction of the laser beam17
The main components include a four-wavelength plate (λ/4 plate) 11 and a polarizing beam splitter 13, which has a λ/4 plate 1 and a metal plate 1, and is disposed on the opposite side of the roof-type rotating polygon mirror 7. In this scanning optical device 1, the laser beam LB emitted from the semiconductor laser 3 becomes parallel light when it passes through the collimator lens 5, and travels through the polarizing beam splitter 1.
3 and passes through one λ/4 plate and one sheet metal. At this time. The laser beam LB is converted into linearly polarized light by the polarizing beam splitter 13, and further converted into circularly polarized light by the 4th root. Then, the laser beam LB enters one reflecting surface 7a of the roof-type rotating polygon mirror 7, is reflected there, enters the other reflecting surface 7b, and is further reflected there, so that the laser beam LB enters the one reflecting surface 7a. (In the cross section of FIG. 1, the incident light on the reflective surface 7a and the reflected light from the reflective surface 7b are parallel.) Then, the laser beam is reflected by the fixed reflecting mirror 9 disposed so as to intersect with its traveling direction, is turned back, and re-enters the reflecting surface 7b (in the cross section of FIG. The light and the light re-entering the reflective surface 7b are on the same optical path), the reflective surface 7b
→ On the optical path of reflective surface 7a-4e/4 plate ti, λ/
4i11 (in the cross section of FIG. 1, the reflective surface 7a
(The incident light and the re-reflected light from the reflecting surface 7a take the same optical path), at this time, the circularly polarized laser beam is converted into linearly polarized light whose plane of polarization is perpendicular to the linearly polarized light at the time of incidence. , this time passes through the polarizing beam splitter 13, goes straight, passes through an fθ lens (not shown), and is imaged on a photosensitive drum (not shown). At this time, as shown in FIG. 2, as the roof-type rotating polygon mirror 7 rotates, the beam LB that has passed through the polarizing beam splitter 13 is scanned in the scanning cross section in an equal daily motion, but at a constant speed by the fθ lens. This is converted into linear motion and scanned on the photosensitive drum. As described above, in the first embodiment, the fixed reflection fJ! 9, the beam LB reflected by the two reflecting surfaces 7a and 7b of the roof-type rotating polygon mirror 7 and incident on the fixed reflecting mirror 9 is reflected by the fixed reflecting mirror 9, and is reflected again into two reflections. Surfaces 7a, 7b
Since the scanning angle of the laser beam LB is configured to be reflected at , the scanning angle of the laser beam LB is expanded to twice that of the conventional example shown in FIG. Therefore, the outer diameter of the roof-type rotating polygon mirror 7 can be reduced (and the size can be reduced, so the roof-type rotating polygon mirror 7 can be rotated at high speed, and the beam LB can be scanned at high speed. Even if the mirror surface is small, the number of mirror surfaces can be increased, and the beam LB can be scanned at a higher speed without increasing the rotation speed. By using a plane mirror and arranging a polarizing beam splitter 13 on the opposite side of the roof-type rotating polygon mirror 7 with the quarter plate 11 in between, the light beam generated from the semiconductor laser 3 can be efficiently used. At the same time, the polarizing beam splitter 13→roof-type rotating polygon mirror 7→fixed anti-elbow mirror 9 goes out,
The configuration is such that the fixed reflecting mirror 9→the Rouffe-type rotating polygon mirror 7→the return path of the polarizing beam splitter 13 (→fθ lens) is the same optical path in the cross-section in the sub-scanning direction in FIG. 1. As in the example, the curvature of the scanning line and the fluctuation of the spot diameter of the beam LB due to the expansion of the beam scanning angle do not occur. Therefore, the reflective surfaces 7a and 7b are made sufficiently large and the F number of the beam is made sufficiently small. In this way, the diameter of the spot on the photosensitive drum can be made sufficiently small, and in this way, a high quality image can be recorded on the photosensitive drum. Next, a scanning optical device 20 according to a second embodiment will be explained. Third
The figure is a configuration diagram in a cross-section in the sub-scanning direction of the second embodiment. As shown in the figure, the configuration of the scanning optical device 20 is the same optical configuration as in the first embodiment, with the addition of a cylindrical lens 22 disposed between the collimator lens 5 and the polarizing beam splitter 13. . This cylindrical lens 22 has power only in the sub-scanning direction, which is a direction perpendicular to the scanning section, and forms a linear image of the parallel light beam LB incident from the frimeter lens 5 on the fixed reflecting mirror 9 . Further, the fixed reflection l119 and the image forming surface on the photosensitive drum have a conjugate relationship in the cross section in the sub-scanning direction by disposing an fθ lens between them. Therefore, the reflective surface 9a of the fixed reflective mirror 9 is
Even if the incident laser beam LB is not perpendicular to the cross-section in the sub-scanning direction and has some angular error, it is possible to correct pitch unevenness and bending of the scanning line on the image forming surface of the photosensitive drum.Next Next, a scanning optical device 30 according to a third embodiment will be explained. Fig. 4 is a configuration diagram in a sub-scanning direction cross section of the third embodiment. In the figure, the configuration of the scanning optical device 30 includes a semiconductor laser 3, Collimator lens 5 and roof-type rotating polygon lI7
The same features as in the first embodiment are used, but instead of the polarizing beam splitter in the first embodiment, a plane reflecting mirror 32 is used to direct the beam LB going straight from the collimator lens 5 into a
Instead of a fixed reflecting mirror that is arranged at an angle of 5 degrees and consists of one plane mirror, a roof-type fixed reflecting mirror 1134 is provided in which two reflecting surfaces 34a and 34b are orthogonal to each other. In this scanning optical device 30, the laser beam LB from the semiconductor laser 3 passes through the collimator lens 5, becomes parallel light, is reflected at a right angle by the plane reflecting mirror 32, and is reflected by the roof-type rotating polygon mirror 7. The light is incident on one reflective surface 7a, reflected by the reflective surface 7a, and incident on the other reflective surface 7b, where it is further reflected. The laser beam LB is right in the cross section and proceeds in the opposite direction.Then, the laser beam LB is reflected by the two reflecting surfaces 34a and 34b of the roof-type fixed reflecting mirror 34 disposed in the direction of movement, and has a certain width (the reflecting surface 34
a and 34b) takes an optical path parallel to the incident optical path in the cross-section in the sub-scanning direction and is turned back, and then re-enters the reflective surface 7b of the roof-type rotating polygon mirror 7 and is reflected by the reflective surface 7b-1. The optical path from the flat reflecting mirror 32 to the roof-type rotating polygon mirror 7 is parallel to the optical path through the reflecting surface 7a in the cross-section in the sub-scanning direction, but the optical path is taken a certain width closer to the roof-type fixed reflecting mirror 34. That is, the light passes through the space between the roof-type fixed reflecting mirror 34 and the flat reflecting mirror 32 and is emitted to the fθ lens. In the second embodiment, one reflective surface 7 of the roof-type rotating polygon mirror 7
By arranging the roof-type fixed reflection mirror 1934 opposite to a, the optical path when the laser beam LB is incident on the roof-type rotating polygon mirror 7 is parallel to the optical path, but it is moved by a certain width toward the roof-type fixed reflection mirror 34. Since the optical path is taken such that the light is emitted from the roof-type rotating polygon mirror 7 to the fθ lens, a polarizing beam splitter or a /4 plate is not necessary, and the optical system can be simplified. Furthermore, since the roof-type fixed reflector 1134 is used as the fixed reflector, there is no need to perform tilt correction using a cylindrical lens as in the second embodiment.

【発明の効果】【Effect of the invention】

1以上説明した様に1本発明によれば1回転多面鏡の複
数対の反射面の一方の反射面に対向して固定反射鏡を配
設し、その一方の反射面から固定反射面に入射されたビ
ームを折返して回転多面鏡に再入射させることによって
、光源から回転多面鏡に入射された光ビームが、その入
射光路と副走査方向断面において平行な光路で回転多面
鏡から出射される様に構成したので、光ビームの走査角
を2倍に広げつつ走査角の拡大に伴う走査線の湾曲や結
像スポット径の変動を防ぐことができる。 従って1回転多面鏡を小型化できて回転多面鏡の高速回
転が可能となり、光束の高速走査が可能となる。或は、
同じ大きさであっても回転多面境の鏡面数を増やすこと
ができ、回転速度を上げることな(、より高速の光束走
査が可能となる。 また、多面鏡の反射面が比較的大きく出来るので、ビー
ムのFナンバーも小さくでき。 光束の結像スポットの径を充分に小さく出来でゝ高画質
の画像を記録することができる。
As explained above, according to the present invention, a fixed reflecting mirror is disposed opposite to one of the plurality of pairs of reflecting surfaces of a one-rotation polygon mirror, and the light is incident from one of the reflecting surfaces to the fixed reflecting surface. By folding the beam and making it enter the rotating polygon mirror again, the light beam incident on the rotating polygon mirror from the light source is emitted from the rotating polygon mirror with an optical path parallel to the incident optical path in the cross section in the sub-scanning direction. With this configuration, it is possible to double the scanning angle of the light beam and prevent the curvature of the scanning line and the variation in the diameter of the imaged spot due to the enlargement of the scanning angle. Therefore, the single-rotation polygon mirror can be miniaturized, the polygon mirror can be rotated at high speed, and the light beam can be scanned at high speed. Or,
Even if the size is the same, the number of mirror surfaces in the rotating polygon boundary can be increased, allowing for faster light flux scanning without increasing the rotation speed.Also, since the reflective surface of the polygon mirror can be made relatively large, The F-number of the beam can also be made small, and the diameter of the imaging spot of the light beam can be made sufficiently small, making it possible to record high-quality images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の副走査方向断面における構成を示
す図、第2図は同走査断面における図、第3図は第2実
施例の副走査方向断面における構成を示す図、第4図は
第3実施例の副走査方向断面における構成を示す図。 第5図は従来例の斜視図、第6図は他の従来例を示す断
面図である。 l、20.30・・・・・走査光学装置、3・・・・・
半導体レーザ、5・・・・・コリメータレンズ57・・
・・・ルーフ型回転多面鏡、7a、7b・・・・・・反
射面、9・・−・・パ固定反射鏡、11・・・・・え/
4板、13・・・・・偏光ビームスプリッタ、22・・
・・・シリンドリカルレンズ、34・・・・・ルーフ型
固定反射鏡、
FIG. 1 is a diagram showing the configuration of the first embodiment in a cross-section in the sub-scanning direction, FIG. 2 is a diagram in the same scanning cross-section, FIG. 3 is a diagram showing the configuration in the sub-scanning direction cross-section of the second embodiment, and FIG. The figure is a diagram showing a configuration in a cross-section in the sub-scanning direction of the third embodiment. FIG. 5 is a perspective view of a conventional example, and FIG. 6 is a sectional view showing another conventional example. l, 20.30...Scanning optical device, 3...
Semiconductor laser, 5...Collimator lens 57...
...Roof type rotating polygon mirror, 7a, 7b...Reflecting surface, 9...Fixed reflecting mirror, 11...E/
4 plates, 13...Polarizing beam splitter, 22...
... Cylindrical lens, 34 ... Roof type fixed reflector,

Claims (1)

【特許請求の範囲】[Claims] 1、光源から出射された光束を回転多面鏡の鏡面で反射
させて偏向走査する走査光学装置において、前記回転多
面鏡の各鏡面は、回転多面鏡の回転中心方向へ傾斜し互
いに直交する対をなす反射面からなり、該対をなす反射
面の一方に対向して、該一方の反射面からの光束を反射
して該一方の反射面へ戻す少なくとも1つの反射面を有
する反射鏡が固定されている走査光学装置。
1. In a scanning optical device that deflects and scans a light beam emitted from a light source by reflecting it on a mirror surface of a rotating polygon mirror, each mirror surface of the rotating polygon mirror has a pair of mirror surfaces inclined toward the rotation center of the rotating polygon mirror and orthogonal to each other. A reflecting mirror is fixed opposite to one of the pair of reflecting surfaces and has at least one reflecting surface that reflects a light beam from the one reflecting surface and returns it to the one reflecting surface. scanning optical device.
JP27465489A 1989-10-20 1989-10-20 Scanning optical device Pending JPH03136017A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27465489A JPH03136017A (en) 1989-10-20 1989-10-20 Scanning optical device
US07/598,965 US5187606A (en) 1989-10-20 1990-10-17 Scanning optical apparatus
EP90120090A EP0423812B1 (en) 1989-10-20 1990-10-19 Scanning optical apparatus
DE69018759T DE69018759T2 (en) 1989-10-20 1990-10-19 Optical scanner.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27465489A JPH03136017A (en) 1989-10-20 1989-10-20 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH03136017A true JPH03136017A (en) 1991-06-10

Family

ID=17544705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27465489A Pending JPH03136017A (en) 1989-10-20 1989-10-20 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH03136017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180956A (en) * 2013-04-11 2015-10-15 コニカミノルタ株式会社 scanning optical system and radar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180956A (en) * 2013-04-11 2015-10-15 コニカミノルタ株式会社 scanning optical system and radar

Similar Documents

Publication Publication Date Title
US5097351A (en) Simultaneous multibeam scanning system
JP3739841B2 (en) Scanning angle doubling system and scanning system
JP3856881B2 (en) Optical scanning device
US5355244A (en) Optical scanner for reducing shading
US5223956A (en) Optical beam scanners for imaging applications
US5179463A (en) Simultaneous multibeam scanning system
US5114217A (en) Double-reflection light scanner
WO1990015355A1 (en) Light scanner and system
US5377036A (en) Suppression of stray light reflections in a raster output scanner (ROS) using an overfilled polygon design
US5187606A (en) Scanning optical apparatus
JPH1123988A (en) Multi-beam light source device
US5850307A (en) Scanner system having a dual trace spinner
JPH03136017A (en) Scanning optical device
US6222663B1 (en) High duty cycle scanner for laser printer
JPH05303049A (en) Optical scanner for reducing shading
JPS6028619A (en) Optical scanner of wide region
JP4051741B2 (en) Optical scanning device
US4934780A (en) Constant deviation scanning apparatus
JP2740481B2 (en) Scanning optical device
JP2002023083A (en) Optical scanning device
JP2791551B2 (en) Cylindrical inner surface scanning type image recording device
JP3110816B2 (en) Optical scanning device
JP2749850B2 (en) Optical deflection device
JP2002202469A (en) Multi-beam optical scanner
JP3532359B2 (en) Optical scanning device