JPH03135757A - Chemical sensor and production thereof - Google Patents

Chemical sensor and production thereof

Info

Publication number
JPH03135757A
JPH03135757A JP1273499A JP27349989A JPH03135757A JP H03135757 A JPH03135757 A JP H03135757A JP 1273499 A JP1273499 A JP 1273499A JP 27349989 A JP27349989 A JP 27349989A JP H03135757 A JPH03135757 A JP H03135757A
Authority
JP
Japan
Prior art keywords
film
chemical sensor
ion
reference electrode
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1273499A
Other languages
Japanese (ja)
Inventor
Hideichiro Yamaguchi
秀一郎 山口
Takeshi Shimomura
猛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1273499A priority Critical patent/JPH03135757A/en
Publication of JPH03135757A publication Critical patent/JPH03135757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To easily produce respective electrodes in a large quantity by a common process by forming an ion selective film on a laminate film of a working electrode part and forming an ion permeable film on the laminate film of a reference electrode part. CONSTITUTION:The ion sensor 1 is constituted by providing the working electrode 3, the reference electrode 4 and the common electrode 5 on the surface of an insulating substrate 2. A thin film 6 of titanium is deposited and a silver film 7 is formed in the region of the electrodes 3, 4, then silver chloride films 8 and thin films 9 of polytetrafluoroethylene are accumulated several times in order to enhance the adhesiveness between the respective electrodes and the substrate. A platinum film 13 and a gold film 14 are deposited on the thin film 6 of the electrode 5 and the contact parts 10, 11, 12. The ion selective film 19 is deposited on the electrode 3 and the ion permeable film 20 on the electrode 4. The concn. of the ions to be measured is measured if such sensor 1 is immersed in a liquid to be detected and the potential difference of the electrodes 3, 4 is measured. The electrodes 3, 4 have the laminate film of the same constitution and is produced by nearly the same process and, therefore, the mass production is facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体膜型の作用電極と基準電極とを複合化し
てなる化学センサ及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chemical sensor formed by combining a solid film type working electrode and a reference electrode, and a method for manufacturing the same.

[従来の技術] 従来、化学センサたとえばイオンセンサとしては、ガラ
ス膜を用いたpHセンサ、ナトリウムセンサ、カリウム
センサなどのガラス電極が知られているが、これらのガ
ラス電極は内部液および液室を持ち、ガラス膜の破損の
恐れもあり、しかも微小化が困難であるという問題があ
るため、固体膜型のイオンセンサが要望されていた。
[Prior Art] Conventionally, glass electrodes for chemical sensors such as ion sensors such as pH sensors, sodium sensors, and potassium sensors using glass membranes have been known. There is a need for a solid-state membrane type ion sensor because of the problems that it is difficult to miniaturize.

このようなことから、近年、半導体製造技術を用いて作
製できるMOSFETを作用電極として利用するイオン
センサ、いわゆるl5FETセンサが固体模型の微小セ
ンサとして盛んに開発されている。
For this reason, in recent years, ion sensors that use MOSFETs that can be manufactured using semiconductor manufacturing technology as working electrodes, so-called 15FET sensors, have been actively developed as solid-state model microsensors.

[発明が解決しようとする課題] しかしながら、現状では、l5FETの素子を小型化す
ることに成功しているものの、安定な応答を示すイオン
選択性膜およびその作製方法が確立されていないため、
pHセンサ以外では実用に供するl5FETセンサは得
られていない。
[Problems to be Solved by the Invention] However, at present, although we have succeeded in miniaturizing the 15FET element, an ion-selective membrane that exhibits a stable response and a method for producing the same have not been established.
Other than pH sensors, no practical 15FET sensors have been obtained.

またセンサ全体を微小化するためには基準電極を小型化
する必要があり、種々の基準電極が開発されているが、
これらの電極では妨害物質の吸着、侵入等により電位の
ドリフト現象が生じ、実゛用化が困難であるという問題
があった。
In addition, in order to miniaturize the entire sensor, it is necessary to miniaturize the reference electrode, and various reference electrodes have been developed.
These electrodes have a problem in that potential drift occurs due to adsorption or intrusion of interfering substances, making them difficult to put into practical use.

また、作用電極と基準電極とを一体化したイオンセンサ
では、作用電極と基準電極とを異なるプロセスにより製
作するため、製作が煩雑であるという問題があった。
Furthermore, in an ion sensor in which a working electrode and a reference electrode are integrated, there is a problem in that the working electrode and the reference electrode are manufactured by different processes, making the manufacturing process complicated.

本発明は係る問題点に鑑みてなされたものであって、そ
れぞれ安定した特性をもつ固体膜型の作用電極と基準電
極とを一体化した構造で微小であり、しかも各電極を共
通のプロセスにより大量にかつ容易に作製することがで
きる化学センサ及びその製造方法を提供することを目的
とする。
The present invention has been made in view of the above problems, and has a structure that integrates a solid film type working electrode and a reference electrode, each of which has stable characteristics. An object of the present invention is to provide a chemical sensor that can be easily manufactured in large quantities and a method for manufacturing the same.

[課題を解決するための手段] 上記課題を解決するために本発明においては、絶縁性基
体上に互いに離間して少なくとも1つの作用電極部と基
準電極部とを有する化学センサであって、前記作用電極
部の絶縁性基体上に銀膜を形成し、この銀膜上にハロゲ
ン化銀層と疎水性層とを含む積層体膜とを形成するとと
もに、前記基準電極部の絶縁性基体上に銀膜を形成し、
この銀膜上にハロゲン化銀層および疎水性層を含む積層
体膜を形成したことを特徴とするもので、具体的には、
作用電極部の積層体膜上にイオン選択性膜を形成し、ま
た基準電極部の積層体膜上にイオン透過性膜を形成する
ものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a chemical sensor having at least one working electrode part and a reference electrode part spaced apart from each other on an insulating substrate, A silver film is formed on the insulating substrate of the working electrode portion, a laminate film including a silver halide layer and a hydrophobic layer is formed on the silver film, and a laminate film including a silver halide layer and a hydrophobic layer is formed on the insulating substrate of the reference electrode portion. forms a silver film,
It is characterized in that a laminate film including a silver halide layer and a hydrophobic layer is formed on this silver film, and specifically,
An ion-selective membrane is formed on the laminate membrane of the working electrode section, and an ion-permeable membrane is formed on the laminate membrane of the reference electrode section.

本発明の化学センサにおいては、前記ハロゲン化銀層が
ハロゲン化銀とハロゲン化物塩および酸化物を含有し、
また絶縁性基体と銀膜との間にチタン、クロムまたはニ
ッケルの膜が介在し、さらに疎水性膜が原子ビームスパ
ッタリング法により形成され、また作用電極部および基
準電極部それぞれの積層体膜の端部が絶縁性層で被覆絶
縁され、さらに絶縁性基体が電界効果トランジスタのゲ
ート絶縁膜であることが好ましい。
In the chemical sensor of the present invention, the silver halide layer contains silver halide, a halide salt, and an oxide,
In addition, a titanium, chromium, or nickel film is interposed between the insulating substrate and the silver film, and a hydrophobic film is further formed by atomic beam sputtering, and the edges of the laminated film of the working electrode part and the reference electrode part are Preferably, the portion is coated and insulated with an insulating layer, and further, the insulating substrate is a gate insulating film of a field effect transistor.

また本発明の化学センサの製造方法においては、絶縁性
基体上に互いに離間して設けられた作用電極部および基
準電極部の形成予定領域にそれぞれ銀膜を形成する工程
と、原子ビームスパッタリング法により前記銀膜上にそ
れぞれハロゲン化銀層を被覆させ、さらにこのハロゲン
化銀層上に疎水性膜を被覆させることにより積層体膜を
形成する工程と、作用電極部の積層体膜表面にイオン選
択性膜を被覆させ作用電極を作製する工程と、基準電極
部の積層体膜表面にイオン透過性膜を被覆させ基準電極
を作製する工程と、前記作用電極と基準電極との間に絶
縁性層を形成し、電気的に分離させる工程とを含むこと
を特徴とするものである。
Further, the method for manufacturing a chemical sensor of the present invention includes a step of forming a silver film on each of the regions where the working electrode section and the reference electrode section are to be formed, which are provided spaced apart from each other on the insulating substrate, and using an atomic beam sputtering method. A step of forming a laminate film by coating each of the silver films with a silver halide layer and further covering the silver halide layer with a hydrophobic film, and applying an ion selective coating to the surface of the laminate film of the working electrode portion. a step of coating the layered membrane surface of the reference electrode portion with an ion-permeable membrane to prepare a reference electrode, and a step of preparing a reference electrode by coating the surface of the laminate membrane of the reference electrode portion with an ion-permeable membrane, and forming an insulating layer between the working electrode and the reference electrode. The method is characterized in that it includes a step of forming and electrically isolating.

[作 用] 上記のように構成された化学センサにおいては、作用電
極部の積層体膜表面にイオン選択性膜を被覆させるとと
もに、基準電極部の積層体膜表面にイオン透過性膜を被
覆させた場合、その作用電極と基準電極とを、被測定イ
オンを含む被検液中に浸漬させると、被検液中の計測対
象イオンが作用電極側のイオン選択性膜を選択的に透過
し、その結果、銀膜とハロゲン化銀層の界面には計測対
象イオンの濃度に相当する電圧が発生する。
[Function] In the chemical sensor configured as described above, the surface of the laminated membrane of the working electrode portion is coated with an ion-selective membrane, and the surface of the laminated membrane of the reference electrode portion is coated with an ion-permeable membrane. In this case, when the working electrode and the reference electrode are immersed in a test solution containing the ions to be measured, the ions to be measured in the test solution selectively permeate the ion-selective membrane on the working electrode side. As a result, a voltage corresponding to the concentration of the ions to be measured is generated at the interface between the silver film and the silver halide layer.

方、基準電極側では、水分子が積層体膜における疎水性
樹脂の薄膜を透過してハロゲン化銀層もしくはハロゲン
化物層に達し、各ハロゲン化層中に一定濃度のハロゲン
化物イオンが生成して、銀膜とハロゲン化銀層の界面に
一定電位を発生させる。すなわち、ハロゲン化銀層が従
来の基準電極における基準電解質液および基準液室に相
当する機能を果たす。したがって基準電極と作用電極の
電位差を測定することにより、計測対象イオンの濃度を
測定できる。
On the other hand, on the reference electrode side, water molecules pass through the thin film of hydrophobic resin in the laminate membrane and reach the silver halide layer or halide layer, and a certain concentration of halide ions are generated in each halide layer. , a constant potential is generated at the interface between the silver film and the silver halide layer. That is, the silver halide layer functions as a reference electrolyte solution and a reference solution chamber in a conventional reference electrode. Therefore, by measuring the potential difference between the reference electrode and the working electrode, the concentration of the ion to be measured can be measured.

なお、基準電極においては、その表面にイオン透過性膜
として、たとえばゲル膜や親水性膜を被覆すれば、被検
液として血液の計測を行う場合に、その血栓による劣化
や妨害物資の吸着を軽減することができる。これらの膜
としては、具体的にはポリ塩化ビニル−ポリエチレング
リコール共重合体、スチレン−ヒドロキシエチルメタア
クリレ−1−(HEMA)、スチレン−ヒドロキシエチ
ルメタアクリレートブロック重合体、ポリウレタン、ポ
リビニルアルコール、ポリヒドロキシエチルメタアクリ
レート、ポリアクリルアミドゲル、ナフィオン等のパー
フルオロ・イオン交換膜が好適に用いられる。
In addition, if the surface of the reference electrode is coated with an ion-permeable membrane, such as a gel membrane or a hydrophilic membrane, when measuring blood as a test liquid, deterioration due to blood clots and adsorption of interfering substances can be prevented. It can be reduced. Specific examples of these films include polyvinyl chloride-polyethylene glycol copolymer, styrene-hydroxyethyl methacrylate-1-(HEMA), styrene-hydroxyethyl methacrylate block polymer, polyurethane, polyvinyl alcohol, and polyvinyl alcohol. Perfluoro ion exchange membranes such as hydroxyethyl methacrylate, polyacrylamide gel, and Nafion are preferably used.

[実施例] 以下、本発明の実施例を図面を参照して具体的に説明す
る。
[Example] Hereinafter, an example of the present invention will be specifically described with reference to the drawings.

(実施例1〜7) 第1図は本発明の実施例に係るイオンセンサの全体構造
を示す斜視図である。
(Examples 1 to 7) FIG. 1 is a perspective view showing the overall structure of an ion sensor according to an example of the present invention.

このイオンセンサ1は、絶縁性基体としてのサファイア
基板2の表面に、互いに電気的に絶縁させた状態で作用
電極3と基準電極4とコモン電極5とを備えている。第
2図はこれらの電極3〜5の断面構造を示すものである
This ion sensor 1 includes a working electrode 3, a reference electrode 4, and a common electrode 5, which are electrically insulated from each other, on the surface of a sapphire substrate 2 serving as an insulating base. FIG. 2 shows the cross-sectional structure of these electrodes 3-5.

上記作用電極3、基準電極4およびコモン電極5は、次
のようなプロセスにより作製した。すなわち、先ずサフ
ァイア基板2の表面の各電極の形成予定領域に、各電極
3〜5のサファイア基板2との接着性を高めるためにR
Fスパッタリング装置を用いて、各電極基体のパターン
を有するマスクにより膜厚約200人のチタン薄膜6を
被着形成した。
The working electrode 3, reference electrode 4, and common electrode 5 were manufactured by the following process. That is, first, R is applied to the area where each electrode is to be formed on the surface of the sapphire substrate 2 in order to increase the adhesion of each electrode 3 to 5 to the sapphire substrate 2.
Using an F sputtering apparatus, a titanium thin film 6 having a thickness of about 200 wafers was deposited using a mask having a pattern for each electrode substrate.

次に、作用電極用配線および基準電極用配線に対応する
パターンを有するメタルマスクを通して真空蒸着装置を
用い膜厚1)00人の銀層7を形成した。続いて膜厚1
500人の塩化銀膜12を、作用電極3および基準電極
4の形成予定領域へ形成した。その後、これらの塩化銀
膜12上にそれぞれ上記メタルマスクよりやや大きめの
パターンを有するメタルマスクを用いて膜厚30〜50
00人のポリテトラフルオルエチレン薄膜9を形成した
Next, a silver layer 7 having a thickness of 1)00 was formed using a vacuum evaporation apparatus through a metal mask having a pattern corresponding to the working electrode wiring and the reference electrode wiring. Next, film thickness 1
500 silver chloride films 12 were formed on the areas where the working electrode 3 and the reference electrode 4 were to be formed. Thereafter, a metal mask having a pattern slightly larger than the metal mask described above is used on each of these silver chloride films 12 to form a film with a thickness of 30 to 50 mm.
A polytetrafluoroethylene thin film 9 of 0.000 people was formed.

その後、前述と同様にして塩化銀膜8とポリテトラフル
オルエチレン薄膜9を数回累積させた。
Thereafter, the silver chloride film 8 and the polytetrafluoroethylene thin film 9 were deposited several times in the same manner as described above.

なお、コモン電極5を形成する部分およびリード線を被
着するコンタクト部10,1).12のチタン薄膜6表
面にRFスパッタリング装置により膜厚1000人の白
金膜13を被着し、さらにこの白金膜13上に膜厚50
00人の金膜14を被着形成しておいた。
In addition, the part forming the common electrode 5 and the contact part 10, 1) to which the lead wire is attached. A platinum film 13 with a thickness of 1000 mm is deposited on the surface of the titanium thin film 6 of 12 using an RF sputtering device, and a platinum film 13 with a thickness of 50 mm is further deposited on this platinum film 13.
A gold film 14 of 0.000 mm was deposited.

次に、サファイア基板2の全面に絶縁性層として膜厚5
μmのフォトレジスト膜15を形成した後、各電極3〜
5およびコンタクト部lO〜12が露出するように通常
のフォトリソグラフィーによる露光・現象およびボスト
ベーク操作を数回行った。そしてこれらのコンタクト部
to−12には絶縁材被覆銅線からなるリード線16〜
18の各端部をボンディング接続させた後、その露出部
分をエポキシ樹脂接着剤で電気的に絶縁させた。
Next, an insulating layer is formed on the entire surface of the sapphire substrate 2 to a thickness of 5.
After forming the photoresist film 15 with a thickness of μm, each electrode 3~
Exposure and development by normal photolithography and a post-bake operation were performed several times so that 5 and contact portions 10 to 12 were exposed. Lead wires 16 to 16 made of insulating material coated copper wires are connected to these contact portions to-12.
After bonding each end of 18, the exposed portion was electrically insulated with epoxy resin adhesive.

次に、下記の表1に示すイオンキャリア組成物のTHF
 (テトラヒドラフラン)溶液をマイクロデイスペンサ
により1〜5μβを数回、作用電極3のポリテトラフル
オルエチレン薄膜9上に滴下して、膜厚が50〜500
μmとなるようにイオン選択性膜19を形成した。
Next, THF of the ion carrier composition shown in Table 1 below
(Tetrahydrafuran) solution was dropped several times in an amount of 1 to 5μβ onto the polytetrafluoroethylene thin film 9 of the working electrode 3, until the film thickness was 50 to 500.
The ion selective membrane 19 was formed to have a thickness of μm.

一方、基@電極4を形成する部分のポリテトラフルオル
エチレン薄膜9上にはマイクロデイスペンサを用いて、
O,LMの塩化ナトリウム塩を含むポリビニルアルコー
ル(分子量=1000.000)溶液を滴下して、半乾
燥状態で膜厚lO〜100μmとなるように含水ゲル状
のイオン透過性膜20を形成して基準電極4を作製した
On the other hand, a microdispenser is used on the polytetrafluoroethylene thin film 9 in the portion where the base@electrode 4 is to be formed.
A polyvinyl alcohol (molecular weight = 1000.000) solution containing sodium chloride salts of O and LM is dropped to form a hydrogel-like ion-permeable membrane 20 with a thickness of 10 to 100 μm in a semi-dry state. A reference electrode 4 was produced.

表1 1旦し 溶     媒 :THF(テトラヒドロフラン)TD
DA:l−リドデシルアミン B15−f12−(:rown−41: ビス1(12
−クラウン−4)メチル1ドデシル?ロネート(同口イ
ヒ1ヒ石升ジ■戸斤製パリノマイシン (Sigma社
製) ノナクチン (25%のモナクチン含有1  (Sig
+IIa社製)TOPSn(42:)す(オクチルフェ
ニル)ティンクロライドCafDOPO1z    :
 カルシウムビス[ジー(ローオクチル フェニル)本
スフエート1  (同口イヒ?’6JFW’fr lp
   v   C:ポリ塩化ビニル D   OS:セバシン酸ジ(2−エチルヘキシル)叉
j目江上 実施例1で作製したイオンセンサを、緩衝溶液を含む試
料溶液中に浸漬し、第3図に模式的に示すように、差動
型エレクトロメータ30に接続した。そして試料溶液の
pH値を変化させて起電力応答を測定した結果、pH3
〜IOの範囲でよい直接関係を示し、その直線の傾きは
、37℃において61mV/pHと理論値に近い値を示
した。
Table 1 Once washed Solvent: THF (tetrahydrofuran) TD
DA: l-ridodecylamine B15-f12-(:rown-41: bis1(12
-Crown-4) Methyl 1 dodecyl? Ronate (Doguchi Ihi 1hi Ishishoji ■Toko Palinomycin (Sigma) Nonactin (Contains 25% Monactin 1 (Sig)
+IIa) TOPSn(42:)(octylphenyl)tin chloride CafDOPO1z:
Calcium bis[di(low octyl phenyl) sulphate 1 (same mouth Ihi?'6JFW'fr lp)
v C: polyvinyl chloride D OS: di(2-ethylhexyl) sebacate Egami The ion sensor prepared in Example 1 was immersed in a sample solution containing a buffer solution, as schematically shown in FIG. It was connected to the differential electrometer 30 as shown in FIG. Then, as a result of measuring the electromotive force response by changing the pH value of the sample solution, it was found that pH 3
A good direct relationship was shown in the range of ~IO, and the slope of the straight line was 61 mV/pH at 37°C, which was close to the theoretical value.

また、応答時間は、95%応答までに5秒以内であり、
応答が速いことがわかった。さらに起電力は光照度変化
や酸素ガス分圧の影響を受は難いこともわかった。
In addition, the response time is within 5 seconds for 95% response,
I found that the response was quick. Furthermore, it was found that the electromotive force was not easily affected by changes in light illumination or oxygen gas partial pressure.

又幾Jluヱユ 実験例1と同様にして実施例2〜7の被計測イオンの濃
度に対する応答特性を測定した。その結果、実験例1と
同様の結果が得られた。
In addition, in the same manner as in Experimental Example 1, the response characteristics to the concentration of the ions to be measured in Examples 2 to 7 were measured. As a result, the same results as in Experimental Example 1 were obtained.

以上に実施例を挙げて本発明を説明したが、本発明は上
記実施例に限定されるものではなく、その要旨を変えな
い範囲で種々変形可能である。たとえば上記実施例にお
いては、作用電極3を1つとして1項目のイオン濃度の
計測を行う構成としたが、たとえば第4図に示すように
多数の作用電極3a、3b、3cを設けて多項目を同時
に計測するマルチ型センサとすることもできる。
Although the present invention has been described above with reference to Examples, the present invention is not limited to the above-mentioned Examples, and can be modified in various ways without changing the gist thereof. For example, in the above embodiment, the working electrode 3 is used as one to measure the ion concentration for one item, but as shown in FIG. It is also possible to use a multi-type sensor that measures both at the same time.

また、上記実施例においては、本発明のイオンセンサを
サファイア基板2上に作製する構成としたが、このサフ
ァイア基板2の代りに電界効果トランジスタ、たとえば
MO3型電界効果トランジスタのゲート絶縁膜の表面に
直接作製するようにすれば、より微小化を図ることがで
き好適である。また、上記実施例においては、イオンセ
ンサについて説明したが、本発明はその他ガスセンサ、
酵素センサ等にも適用できることは勿論である。
In the above embodiment, the ion sensor of the present invention was fabricated on the sapphire substrate 2, but instead of the sapphire substrate 2, the surface of the gate insulating film of a field effect transistor, for example, an MO3 type field effect transistor, was fabricated. It is preferable to directly produce it because it allows for further miniaturization. Further, in the above embodiments, an ion sensor was described, but the present invention is also applicable to other gas sensors,
Of course, it can also be applied to enzyme sensors and the like.

[発明の効果] 以上詳述したように本発明に係る化学センサ及びその製
造方法によれば、作用電極と基準電極とをそれぞれ同一
構成の積層体膜で構成するようにしたので、殆ど同一プ
ロセスで作製することができ、大量生産が容易である。
[Effects of the Invention] As detailed above, according to the chemical sensor and the method for manufacturing the same according to the present invention, the working electrode and the reference electrode are each composed of a laminate film having the same structure, so that almost the same process is performed. It is easy to mass-produce.

また、作用電極および基準電極はともに固体膜型であり
、安定した特性を示すとともに、微小化が容易であり、
さらにマルチセンサの作製が容易であり、またMO3電
界効果トランジスタ等のゲート絶縁膜の表面に形成する
ことができるので微小化と高感度化がより容易になると
いう効果を奏する。
In addition, both the working electrode and the reference electrode are solid film types, which exhibit stable characteristics and are easy to miniaturize.
Further, it is easy to manufacture a multi-sensor, and it can be formed on the surface of a gate insulating film of an MO3 field effect transistor, etc., so miniaturization and high sensitivity can be achieved more easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るイオンセンサの構成を示
す斜視図、第2図は第1図のII −II線に沿う断面
図、第3図は上記イオンセンサの計測原理を示す図、第
4図は本発明の他の実施例を示す斜視図である。 ■・・・イオンセンサ、    2・・・サファイア基
板3・・・作用電極、 4・・・基準電極5・・・コモ
ン電極、6・・−チタン薄膜7・・・銀膜、8・・・塩
化銀膜 9・・・ポリテトラフルオルエチレン薄膜lO〜12・
・・コンタクト部 15・−・フォトレジスト膜 16〜18・・−リード線 19・・・イオン選択性膜
20・・・イオン透過性膜 30・・・差動型エレクトロメータ
FIG. 1 is a perspective view showing the configuration of an ion sensor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 3 is a diagram showing the measurement principle of the ion sensor. , FIG. 4 is a perspective view showing another embodiment of the present invention. ■...Ion sensor, 2...Sapphire substrate 3...Working electrode, 4...Reference electrode 5...Common electrode, 6...-Titanium thin film 7...Silver film, 8... Silver chloride film 9...Polytetrafluoroethylene thin film lO~12.
... Contact portion 15 -- Photoresist films 16 to 18 -- Lead wire 19 -- Ion selective membrane 20 -- Ion permeable membrane 30 -- Differential electrometer

Claims (9)

【特許請求の範囲】[Claims] (1)絶縁性基体上に互いに離間して少なくとも1つの
作用電極部と基準電極部とを有する化学センサであって
、前記作用電極部の絶縁性基体上に銀膜を形成し、この
銀膜上にハロゲン化銀層および疎水性層を含む積層体膜
を形成するとともに、前記基準電極部の絶縁性基体上に
銀膜を形成し、この銀膜上にハロゲン化銀層および疎水
性層を含む積層体膜を形成したことを特徴とする化学セ
ンサ。
(1) A chemical sensor having at least one working electrode section and a reference electrode section spaced apart from each other on an insulating substrate, wherein a silver film is formed on the insulating substrate of the working electrode section; A laminate film including a silver halide layer and a hydrophobic layer is formed thereon, a silver film is formed on the insulating substrate of the reference electrode section, and a silver halide layer and a hydrophobic layer are formed on the silver film. A chemical sensor characterized by forming a laminate film containing:
(2)作用電極部の積層体膜上にイオン選択性膜を形成
してなる請求項1記載の化学センサ。
(2) The chemical sensor according to claim 1, wherein an ion-selective membrane is formed on the laminated membrane of the working electrode portion.
(3)基準電極部の積層体膜上にイオン透過性膜を形成
してなる請求項2記載の化学センサ。
(3) The chemical sensor according to claim 2, wherein an ion-permeable membrane is formed on the laminate membrane of the reference electrode section.
(4)ハロゲン化銀層がハロゲン化銀とハロゲン化物塩
および酸化物を含有する請求項1ないし3のいずれか1
に記載の化学センサ。
(4) Any one of claims 1 to 3, wherein the silver halide layer contains silver halide, a halide salt, and an oxide.
Chemical sensor described in.
(5)絶縁性基体と銀膜との間にチタン、クロムまたは
ニッケルの膜が介在されてなる請求項1ないし4のいず
れか1に記載の化学センサ。
(5) The chemical sensor according to any one of claims 1 to 4, wherein a titanium, chromium, or nickel film is interposed between the insulating substrate and the silver film.
(6)疎水性膜が原子ビームスパッタリング法により形
成されてなる請求項1ないし5のいずれか1つに記載の
化学センサ。
(6) The chemical sensor according to any one of claims 1 to 5, wherein the hydrophobic film is formed by atomic beam sputtering.
(7)作用電極部および基準電極部それぞれの積層体膜
の端部を絶縁性層で被覆絶縁してなる請求項1ないし6
のいずれか1つに記載の化学センサ。
(7) Claims 1 to 6 in which the end portions of the laminated film of each of the working electrode portion and the reference electrode portion are coated and insulated with an insulating layer.
The chemical sensor according to any one of.
(8)絶縁性基体が電界効果トランジスタのゲート絶縁
膜である請求項1ないし7のいずれか1つに記載の化学
センサ。
(8) The chemical sensor according to any one of claims 1 to 7, wherein the insulating substrate is a gate insulating film of a field effect transistor.
(9)請求項3記載の化学センサの製造方法であって、
絶縁性基体上に互いに離間して設けられた作用電極部お
よび基準電極部の形成予定領域にそれぞれ銀膜を形成す
る工程と、原子ビームスパッタリング法により前記銀膜
上にそれぞれハロゲン化銀層を被覆させ、さらにこのハ
ロゲン化銀層上に疎水性膜を被覆させることにより積層
体膜を形成する工程と、作用電極部の積層体膜表面にイ
オン選択性膜を被覆させ作用電極を作製する工程と、基
準電極部の積層体膜表面にイオン透過性膜を被覆させ基
準電極を作製する工程と、前記作用電極と基準電極との
間に絶縁性層を形成し、各電極を電気的に分離させる工
程とを含むことを特徴とする化学センサの製造方法。
(9) A method for manufacturing a chemical sensor according to claim 3, comprising:
A step of forming a silver film on each of the regions where a working electrode section and a reference electrode section are to be formed, which are provided apart from each other on an insulating substrate, and coating a silver halide layer on each of the silver films by an atomic beam sputtering method. and a step of forming a laminate film by coating the silver halide layer with a hydrophobic film, and a step of producing a working electrode by coating the surface of the laminate film of the working electrode portion with an ion-selective membrane. , a step of preparing a reference electrode by coating the surface of the laminate membrane of the reference electrode portion with an ion-permeable membrane, and forming an insulating layer between the working electrode and the reference electrode to electrically isolate each electrode. A method for manufacturing a chemical sensor, comprising the steps of:
JP1273499A 1989-10-20 1989-10-20 Chemical sensor and production thereof Pending JPH03135757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273499A JPH03135757A (en) 1989-10-20 1989-10-20 Chemical sensor and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273499A JPH03135757A (en) 1989-10-20 1989-10-20 Chemical sensor and production thereof

Publications (1)

Publication Number Publication Date
JPH03135757A true JPH03135757A (en) 1991-06-10

Family

ID=17528751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273499A Pending JPH03135757A (en) 1989-10-20 1989-10-20 Chemical sensor and production thereof

Country Status (1)

Country Link
JP (1) JPH03135757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468374A (en) * 1991-11-13 1995-11-21 Knoll; Meinhard Miniaturized sensor component for measuring concentrations of substances in liquids, and method of manufacturing such a component
KR100309223B1 (en) * 1999-06-17 2001-09-29 배병우 Planar type solid-state electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468374A (en) * 1991-11-13 1995-11-21 Knoll; Meinhard Miniaturized sensor component for measuring concentrations of substances in liquids, and method of manufacturing such a component
KR100309223B1 (en) * 1999-06-17 2001-09-29 배병우 Planar type solid-state electrodes

Similar Documents

Publication Publication Date Title
Lindner et al. Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications
US4062750A (en) Thin film electrochemical electrode and cell
JP3582793B2 (en) Small circulation measurement chamber integrated with chemosensor and / or biosensor element
JP3588146B2 (en) Ion-selective sensor and method of forming the same
JPS5825221B2 (en) FET reference electrode
JPH10507515A (en) Gas concentration measurement method and micromachining detection device for implementing the method
DE4239319C2 (en) Process for the spacer-free, hybrid construction of air gap and gate of suspended gate field effect transistors (SGFET) as well as components manufactured according to the process
JPS62116252A (en) Method and device for electrochemical analysis
JPS584981B2 (en) ion selective electrode
JP2625034B2 (en) Reference electrode
EP0366566B1 (en) Reference electrodes
Knoll et al. Microfibre matrix-supported ion-selective PVC membranes
JPH03135757A (en) Chemical sensor and production thereof
Lemke et al. Multisensor array for pH, K+, Na+ and Ca2+ measurements based on coated-film electrodes
JPS59176662A (en) Semiconductor sensor
Dror et al. Potassium ion-selective electrodes based on valinomycin/PVC overlayered solid substrates
KR100434430B1 (en) Micro reference electrode using metal oxides and manufacturing method thereof
JPS6050300B2 (en) Potentiometric device for detection of halogen ions
JP2855718B2 (en) Potentiometric sensor
JPH03246459A (en) Reference electrode
JPH03137552A (en) Fet sensor
Ambrose et al. Development of a solid-state potentiometric heparin sensing cartridge based on photocrosslinked decyl methacrylate
JPH03238350A (en) Electrochemical detector and manufacture thereof
Merzouk et al. Development of Li+ Selective Microelectrode Using PPy [3, 3'-Co (1, 2-C^ sub 2^ B^ sub 9^ H^ sub 11^)^ sub 2^] as a Solid Contact
JP2861149B2 (en) Reference electrode