JPH03134509A - Optical measuring apparatus - Google Patents

Optical measuring apparatus

Info

Publication number
JPH03134509A
JPH03134509A JP27148789A JP27148789A JPH03134509A JP H03134509 A JPH03134509 A JP H03134509A JP 27148789 A JP27148789 A JP 27148789A JP 27148789 A JP27148789 A JP 27148789A JP H03134509 A JPH03134509 A JP H03134509A
Authority
JP
Japan
Prior art keywords
light
measured
component
light source
splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27148789A
Other languages
Japanese (ja)
Other versions
JPH06103183B2 (en
Inventor
Hirokazu Tanaka
宏和 田中
Kiyomitsu Ishikawa
清光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP27148789A priority Critical patent/JPH06103183B2/en
Priority to EP90309625A priority patent/EP0419082B1/en
Priority to US07/578,083 priority patent/US5056913A/en
Priority to CA002025887A priority patent/CA2025887C/en
Publication of JPH03134509A publication Critical patent/JPH03134509A/en
Publication of JPH06103183B2 publication Critical patent/JPH06103183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To decrease measuring errors by splitting the light from one light source into two light beams having the different properties, changing the lengths of the light paths of the split light beams, projecting the light beams on a material to be measured, transducing the reflected lights from the material to be measured into the electric signals, and comparing and processing the two electric signals. CONSTITUTION:The light from a light source 21 is split through a polarization beam splitter 22 in accordance with polarization components P and S. Namely, the light having the component P is reflected with the splitter 22 and projected on a material to be measured 26. The light having the component S are transmitted through the splitter 22. Then, the reflection is repeated with total reflection mirrors 23 - 25. The light is transmitted through the splitter 22 again and projected on the material to be measured 26. As a result, the distance from the light source 21 to the material to be measured 26 for the light having the component S is longer than the distance for the light having the component P by 2d1 + 2D2. When the reflectivity of the material to be measured 26 is made to be K and the illuminances of the lights having the components P and S are made to be EP and ES, the luminances of the material to be measured 26 have the values corresponding to KDP and KES. When the luminances of the material to be measured 26 are made to be BP and BS, BP/BSinfinity EP/ES is obtained. The distance D to the material to be measured 26 can be computed by measuring the luminances BP and BS regardless of the reflectivity K of the material to be measured 26.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、被測定物の反射光を利用した測定装置で、
例えば、自動車の車高測定、スプリングの撓み量測定、
カメラの距離測定などに利用するところの光学的測定装
置に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention is a measuring device that uses reflected light from an object to be measured.
For example, measuring the height of a car, measuring the amount of deflection of a spring,
This invention relates to an optical measurement device used for distance measurement of cameras, etc.

[従来の技術」 被測定物の反射光を利用した測定装置として様々な構成
のものがあるが、その−例を第7図に示す。
[Prior Art] There are various configurations of measurement devices that utilize reflected light from an object to be measured, and an example thereof is shown in FIG.

この従来例は1点光g11と、広い光面積を有する面光
源12とを備え、これら光源11,12より被測定物1
3を照射する。
This conventional example includes a single point light g11 and a surface light source 12 having a wide light area, and these light sources 11 and 12 illuminate the object to be measured.
Irradiate 3.

被測定物13の反射光は受光器14によって受光される
。受光器14は光源11の投光による反射光と光112
の投光による反射光とに応じて、これら反射光害々の受
光量にしたがって光電変換信号SX、S2を出力する。
The reflected light from the object to be measured 13 is received by the light receiver 14 . The light receiver 14 receives reflected light emitted from the light source 11 and light 112.
The photoelectric conversion signals SX and S2 are output in accordance with the amount of reflected light reflected by the projected light and the amount of received reflected light pollution.

この測定装置の場合、光g11.12各々の投光による
被測定物13の照度をEp、Es、被測定物13の反射
率をKとすると、被測定物13の面輝度にット)がKE
P、KEsに対応したものとなる。
In the case of this measuring device, let Ep and Es be the illuminance of the object to be measured 13 projected by each of the lights g11 and 12, and K be the reflectance of the object to be measured 13, then the surface brightness of the object to be measured 13 is K.E.
This corresponds to P and KEs.

したがって、これら面輝度の比が。Therefore, the ratio of these surface brightness is.

E p / E s  o=  S、/ S、−−・=
 (1)となるから、光電変換信号S、、S、を距離の
関数として演算することにより被測定物13までの距離
dを求めることができる。
E p / E so = S, / S, --・=
(1) Therefore, the distance d to the object to be measured 13 can be found by calculating the photoelectric conversion signals S, , S, as a function of distance.

上記した測定装置は本特許出願の発明者等によって開発
され、昭和62年特許願第236209号(特開昭64
−79685)として既に出願されている。
The above-mentioned measuring device was developed by the inventors of the present patent application, and was filed in Patent Application No. 236209 in 1988 (Japanese Patent Laid-Open No. 64
-79685) has already been filed.

「発明が解決しようとする課題」 上記した従来の測定装置は、上記(1)式より分かるよ
うに、被測定物13の面輝度の比より距離測定するため
、被測定物13の反射率Kに影響されない測定装置とし
て極めて有利である。
"Problem to be Solved by the Invention" As can be seen from the above equation (1), the conventional measuring device described above measures the distance based on the ratio of the surface brightness of the object to be measured 13, so the reflectance K of the object to be measured 13 is This is extremely advantageous as a measuring device that is not affected by

ただ、この測定装置では、2つの光源11.12の投光
を利用するため、これら光源11.12が劣化等の原因
によって投光の強さが変化した場合に問題が生ずる。
However, since this measuring device uses the light emitted from the two light sources 11 and 12, a problem occurs when the intensity of the light emitted changes due to deterioration or other causes of these light sources 11 and 12.

すなわち、光g11.12の投光の強さが同率で変化し
た場合には問題がないが、異なった比率で変化したとき
に測定結果に誤差が生ずる。
That is, there is no problem if the intensity of the projected light g11.12 changes at the same rate, but an error occurs in the measurement results when it changes at a different rate.

そこで、本発明では上記した測定装置の光源を一つの光
源によって投光するようにして上記した問題点を解決す
ることを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems by projecting light from a single light source for the above-mentioned measuring device.

「課題を解決するための手段」 上記した目的を達成するため、本発明では、1つの光源
からの光を性質の異なる2つの光に分割すると共に、2
つの分割光の光路長を変えて被測定物に投光する投光手
段と、被測定物の反射光を光電変換し、2つの分割光別
の光電変換信号を比較処理して測定情報を出力す信号処
理手段とより構成したことを特徴とする光学的測定装置
を提案する。
"Means for Solving the Problem" In order to achieve the above-mentioned object, the present invention splits the light from one light source into two lights with different properties, and
A light projection means that changes the optical path length of two divided lights and projects them onto the object to be measured, photoelectrically converts the reflected light from the object, compares and processes the photoelectric conversion signals of the two divided beams, and outputs measurement information. We propose an optical measurement device characterized by comprising a signal processing means.

「作  用」 性質の異なる2つの光が一つの光源より被測定物に投光
される。
"Operation" Two lights with different properties are projected onto the object to be measured from a single light source.

そして、分割された2つの光は光路長の差に応じて異な
る照度特性によって被測定物に照射される。
Then, the two divided lights are irradiated onto the object to be measured with different illuminance characteristics depending on the difference in optical path length.

被測定物のこのような2通りの輝度は反射光として受光
され、分割光別の光電変換信号を比較する信号処理手段
より測定情報が出力される。
These two types of brightness of the object to be measured are received as reflected light, and measurement information is output from a signal processing means that compares photoelectric conversion signals for each divided light.

「実施例」 次に、本発明の実施例について図面に沿って説明する。"Example" Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明に係る投光手段の実施例を示し、21は
発光ダイオードなどの光源、22は偏光ビームスプリッ
タ、23.24.25は全反射ミラ、26は被測定物で
ある。
FIG. 1 shows an embodiment of the light projection means according to the present invention, in which 21 is a light source such as a light emitting diode, 22 is a polarizing beam splitter, 23, 24, 25 is a total reflection mirror, and 26 is an object to be measured.

光源21の光はその偏光成分P、Sが偏光ビームスプリ
ッタ22によって分離される。
The polarized light components P and S of the light from the light source 21 are separated by the polarizing beam splitter 22 .

すなわち、偏光成分Pの光がこのスプリッタ22によっ
て反射されて被測定物26に照射され。
That is, the light with polarized component P is reflected by this splitter 22 and irradiated onto the object to be measured 26.

方、偏光成分Sの光はこのスプリッタ22を透過した後
、全反射ミラー23.24.25によって反射を繰返し
再び上記スプリッタ22を透過して被測定物26に照射
される。
On the other hand, the light having the polarized component S passes through the splitter 22, is repeatedly reflected by the total reflection mirrors 23, 24, and 25, passes through the splitter 22 again, and is irradiated onto the object to be measured 26.

この結果、光源21から被測定物26までの距離は、偏
光成分Pの光に比べて偏光成分Sの光が2d1+2d、
だけ長くなる。
As a result, the distance from the light source 21 to the object to be measured 26 is 2d1+2d for the polarized component S light compared to the polarized component P light.
only becomes longer.

第2図は被測定物上の照度特性で、Poは偏光成分Pの
光の特性を、Soは偏光成分Sの光の特性を各々示す。
FIG. 2 shows the illuminance characteristics on the object to be measured, where Po shows the characteristics of the light with the polarization component P, and So shows the characteristics of the light with the polarization component S.

被測定物26が上記の照度特性にしたがって投光される
ことになる。ここで、被測定物26の反射率をK、被測
定物26における偏光成分Pの光の照度をEp、偏光成
分Sの光の照度をEsとすると、被測定物26の輝度に
ット)がKEp、KEsに対応したものとなる。
The object to be measured 26 is illuminated with light according to the above illuminance characteristics. Here, if the reflectance of the object to be measured 26 is K, the illuminance of the light with the polarized component P on the object 26 is Ep, and the illuminance of the light with the polarized component S is Es, then the brightness of the object to be measured 26 is corresponds to KEp and KEs.

そこで、被測定物26の輝度をBp、Bsとしてこれら
の輝度の比を求めれば、 B p/B s  cc E p/E s −−(2)
となり、被測定物26の反射率Kに関係なく、この輝度
Bp、Bsを測定することによって被測定物26までの
距@Dを算出することができる。
Therefore, if the brightness of the object to be measured 26 is set as Bp and Bs, and the ratio of these brightnesses is calculated, B p/B s cc E p/E s --(2)
Regardless of the reflectance K of the object to be measured 26, the distance @D to the object to be measured 26 can be calculated by measuring the brightness Bp and Bs.

第1図において、光源21と偏光ビームスプリッタ22
の間の距離は被測定物26までの距離りに比べて極く短
くすることができるから、この間の距離を零と仮定する
と、被測定物26における偏光成分Pの光の照度は、E
p=l/D2、偏光成分Sの光の照度は、Es=1/ 
(D+d)2となる。ただし、光源21の光の強さをr
lJ、d=2d、+2d、とする。
In FIG. 1, a light source 21 and a polarizing beam splitter 22
Since the distance between them can be made extremely short compared to the distance to the object to be measured 26, assuming that this distance is zero, the illuminance of the polarized light component P on the object to be measured 26 is E
p=l/D2, the illuminance of the light with polarized component S is Es=1/
(D+d)2. However, the intensity of light from the light source 21 is r
Let lJ, d=2d, +2d.

ここで、Ep、Esの比は、 Ep/Es= (D/ (D+d))”・−・(3)と
なり、この(3)式よりDを算出し、被測定物26まで
の距離を求めることができる。
Here, the ratio of Ep and Es is Ep/Es= (D/ (D+d))" - (3), and D is calculated from this formula (3) to find the distance to the object to be measured 26. be able to.

第3図は上記実施例にもとすいて投光手段を構成した本
発明の他の実施例である。
FIG. 3 shows another embodiment of the present invention in which a light projecting means is constructed based on the above embodiment.

図示する如く、光源21の光は複屈折性を有する光学素
子27を介して被測定物26に投光する構成としである
As shown in the figure, the light from the light source 21 is projected onto the object to be measured 26 via an optical element 27 having birefringence.

上記光学素子27は、偏光方向によって屈折率が異なる
光学素子であり、偏光成分Pの光に対する屈折率をnp
、偏光成分Sの光に対す屈折率をnSとすると、光学素
子27の長さQに対する光路長が各々npQ、nsQと
なる。
The optical element 27 is an optical element whose refractive index differs depending on the polarization direction, and has a refractive index of np for light of polarization component P.
, when the refractive index for the polarized light component S is nS, the optical path lengths with respect to the length Q of the optical element 27 are npQ and nsQ, respectively.

この結果、光源21が偏光成分PとSとの光では光学的
に異なった位置となる関係で、被測定物26に対する照
度が偏光成分PとSとの光によって変ったものとなり、
第2図に示した照度特性と同様の特性をもった投光手段
となる。
As a result, the light source 21 is located at an optically different position for the polarized light components P and S, and the illuminance on the object to be measured 26 changes depending on the polarized light components P and S.
The light projecting means has illuminance characteristics similar to those shown in FIG.

したがって、既に説明したように、偏光成分PとSとの
光による被測定物26の輝度を別々に測定することによ
って、被測定物26までの距離りを算出することができ
る。
Therefore, as described above, by separately measuring the brightness of the object to be measured 26 due to the polarized light components P and S, the distance to the object to be measured 26 can be calculated.

第4図は被測定物26の輝度を測定するための受光手段
を示す一実施例である。
FIG. 4 shows an embodiment of a light receiving means for measuring the brightness of the object 26 to be measured.

図示する如く、偏光成分P、Sの光が混合した被測定物
26の反射光が集光レンズ28によって集光されて偏光
ビームスプリッタ29に入射する。
As shown in the figure, the reflected light from the object to be measured 26, which is a mixture of polarized light components P and S, is condensed by a condensing lens 28 and enters a polarizing beam splitter 29.

したがって、偏光成分Pの光がこのスプリッタ29によ
って反射されて一方の受光素子30に入射し、偏光成分
Sの光がこのスプリッタ29を透過して他方の受光素子
31に入射し、これら受光素子30.31によって偏光
成分P、Sの光が別個に光電変換される。
Therefore, the light with polarized component P is reflected by this splitter 29 and enters one of the light receiving elements 30, and the light with polarized light component S passes through this splitter 29 and enters the other light receiving element 31, and these light receiving elements 30 .31, the polarized light components P and S are separately photoelectrically converted.

第5図は受光手段の他の実施例を示す。この実施例では
、偏光成分P、Sの光が混合された被測定物26の反射
光が偏光フィルター32P、32Sに入射される。
FIG. 5 shows another embodiment of the light receiving means. In this embodiment, reflected light from the object to be measured 26, in which light with polarized components P and S is mixed, is incident on polarizing filters 32P and 32S.

そして、偏光フィルター32Pは偏光成分Pの光のみを
透過し、その透過光を集光レンズ33Pを介して受光素
子30に入射させる。
The polarizing filter 32P transmits only the light of the polarized component P, and the transmitted light is incident on the light receiving element 30 via the condenser lens 33P.

同様に、偏光フィルター328は偏光成分Sのみの光を
透過し、その透過光を集光レンズ33Sを介して受光素
子31に入射させる。このように偏光成分P、Sの光が
選択され別々に光電変換される。
Similarly, the polarizing filter 328 transmits only the polarized light component S, and makes the transmitted light enter the light receiving element 31 via the condenser lens 33S. In this way, the polarized light components P and S are selected and separately photoelectrically converted.

第6図は信号処理手段の一例を示した回路図であり、3
4.35は対数変換回路、36は差動増幅器である。
FIG. 6 is a circuit diagram showing an example of a signal processing means, and 3
4.35 is a logarithmic conversion circuit, and 36 is a differential amplifier.

対数変換回路34は受光素子30の光電変換電流Ipを
適当な手段によって電圧Vpに変換すると共に、この電
圧Vpを対数変換する。
The logarithmic conversion circuit 34 converts the photoelectric conversion current Ip of the light receiving element 30 into a voltage Vp by an appropriate means, and also logarithmically converts this voltage Vp.

同様に対数変換回路35は受光素子31の光電変換電流
Isを電圧Vsに変換すると共に、この電圧Vsを対数
変換する。
Similarly, the logarithmic conversion circuit 35 converts the photoelectric conversion current Is of the light receiving element 31 into a voltage Vs, and also logarithmically converts this voltage Vs.

差動増幅器36は対数変換回路34.35より対数変換
電圧(Qo gVp、Q o gVs)を入力して、こ
れらの差電圧(Q o gVp−11o gVs=Qo
gR)を測定距離情報として出力する。
The differential amplifier 36 inputs the logarithmically converted voltages (Qo gVp, Qo gVs) from the logarithm conversion circuit 34.35, and calculates the difference voltage (Qo gVp-11o gVs=Qo gVs).
gR) is output as measured distance information.

上記した信号処理手段は、 Ep/Es  cc Vp/Vs の関係があることから、 V p / V s = R とし、この両辺の対数をとり、 QogVp/Vs=QogR+ Q o g V p −n o g V s = Q 
o g Rを算出する構成となっている。
Since the above signal processing means has the relationship Ep/Es cc Vp/Vs, we set V p / V s = R, take the logarithm of both sides, and obtain QogVp/Vs = QogR + Q o g V p -no gVs=Q
It is configured to calculate o g R.

なお、受光素子30.31の開放電圧を利用する場合は
、対数変換回路34.35を増幅器に置き換えればよい
In addition, when utilizing the open circuit voltage of the light receiving element 30.31, the logarithmic conversion circuit 34.35 may be replaced with an amplifier.

以上、本発明の実施例について説明したが、信号処理手
段としては第6図に示す回路構成にかぎらず、光電変換
信号をA/D変換してデジタル処理する構成、除算回路
によって信号処理する構成などとしてもよい。
Although the embodiments of the present invention have been described above, the signal processing means is not limited to the circuit configuration shown in FIG. 6, but is also applicable to a configuration in which a photoelectric conversion signal is A/D converted and digitally processed, and a configuration in which signal processing is performed by a division circuit. etc.

さらに、周囲光の影響を受けないようにするため、光源
21の光をパルス光、または変調光などとしてもよい。
Further, in order to avoid being affected by ambient light, the light from the light source 21 may be pulsed light, modulated light, or the like.

また、白熱電球のように発光波長が広い幅をもつ光源を
使用する場合には、光源の光を異なった波長に分割して
投光する構成としてもよい。ただ、このように実施する
場合は、上記実施例に示した偏光ビームスプリッタ22
.29に換えてダイクロイックミラーを用い、また、偏
光フィルター32P、32Sに換辷てバンドパスフィル
ターなどを用いる。
Furthermore, when using a light source with a wide range of emission wavelengths, such as an incandescent light bulb, a configuration may be adopted in which the light from the light source is divided into different wavelengths and projected. However, when implementing it in this way, the polarizing beam splitter 22 shown in the above embodiment
.. A dichroic mirror is used in place of 29, and a bandpass filter or the like is used in place of polarizing filters 32P and 32S.

「発明の効果」 上記した通り1本発明に係る測定装置では、1つの光源
の光を性質の異なる2つの光に分割し、さらに1分割し
た各々の光の光路長を変えて被測定物に投光する投光手
段と、被測定物の反射光を光電変換し、2つの分割光別
の光電変換信号を比較処理して測定情報を出力する信号
処理手段とより構成したため、被測定物の反射率に影響
されない測定装置として極めて有利である。
"Effects of the Invention" As described above, the measuring device according to the present invention splits the light from one light source into two lights with different properties, and further changes the optical path length of each of the split lights to direct the light to the object to be measured. It consists of a light projection means that emits light, and a signal processing means that photoelectrically converts the reflected light of the object to be measured, compares and processes the photoelectric conversion signals of the two divided beams, and outputs measurement information. This is extremely advantageous as a measuring device that is not affected by reflectance.

また、一つの光源によって投光するため、光源の劣化等
の原因によって投光の強さが変化した場合にも測定結果
に影響しなく測定誤差の極めて少ない測定装置となる。
Furthermore, since light is emitted by a single light source, even if the intensity of light emitted changes due to factors such as deterioration of the light source, the measurement results are not affected and the measuring device has extremely few measurement errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る投光手段の一実施例を示す簡略図
、第2図は被測定物上の照度特性を示した特性図、第3
図は本発明に係る投光手段の他の実施例を示す簡略図、
第4図は本発明に係る受光手段の一実施例を示す簡略図
、第5図は受光手段の他の実施例を示す簡略図、第6図
は信号処理手段の一例を示した回路図、第7図は従来例
として示した測定装置の簡略図である。 21・・・光源 22・・・偏光ビームスプリッタ 23.24.25・・・全反射ミラー 26・・・被測定物 27・・・受光素子 28・・・集光レンズ 29・・・偏光ビームスプリッタ 30.31・・・受光素子 32P、32S・・・偏光フィルター 33P、33S・・・集光レンズ 34.35・・・対数変換回路 36・・・差動増幅器
FIG. 1 is a simplified diagram showing an embodiment of the light projecting means according to the present invention, FIG. 2 is a characteristic diagram showing the illuminance characteristics on the object to be measured, and FIG.
The figure is a simplified diagram showing another embodiment of the light projecting means according to the present invention,
FIG. 4 is a simplified diagram showing one embodiment of the light receiving means according to the present invention, FIG. 5 is a simplified diagram showing another embodiment of the light receiving means, and FIG. 6 is a circuit diagram showing an example of the signal processing means. FIG. 7 is a simplified diagram of a measuring device shown as a conventional example. 21... Light source 22... Polarizing beam splitter 23.24.25... Total reflection mirror 26... Measured object 27... Light receiving element 28... Condensing lens 29... Polarizing beam splitter 30.31... Light receiving element 32P, 32S... Polarizing filter 33P, 33S... Condensing lens 34.35... Logarithmic conversion circuit 36... Differential amplifier

Claims (1)

【特許請求の範囲】[Claims] 1つの光源からの光を性質の異なる2つの光に分割する
と共に、2つの分割光の光路長を変えて被測定物に投光
する投光手段と、被測定物の反射光を光電変換し、2つ
の分割光別の光電変換信号を比較処理して測定情報を出
力す信号処理手段とより構成したことを特徴とする光学
的測定装置。
A light projection means that splits the light from one light source into two lights with different properties, changes the optical path length of the two split lights, and projects the light onto the object to be measured, and a light projector that photoelectrically converts the light reflected from the object to be measured. , a signal processing means for comparing and processing photoelectric conversion signals of two divided light beams and outputting measurement information.
JP27148789A 1989-09-21 1989-10-20 Optical measuring device Expired - Lifetime JPH06103183B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27148789A JPH06103183B2 (en) 1989-10-20 1989-10-20 Optical measuring device
EP90309625A EP0419082B1 (en) 1989-09-21 1990-09-03 Optical distance gauging apparatus
US07/578,083 US5056913A (en) 1989-09-21 1990-09-05 Optical gauging apparatus
CA002025887A CA2025887C (en) 1989-09-21 1990-09-20 Optical gauging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27148789A JPH06103183B2 (en) 1989-10-20 1989-10-20 Optical measuring device

Publications (2)

Publication Number Publication Date
JPH03134509A true JPH03134509A (en) 1991-06-07
JPH06103183B2 JPH06103183B2 (en) 1994-12-14

Family

ID=17500734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27148789A Expired - Lifetime JPH06103183B2 (en) 1989-09-21 1989-10-20 Optical measuring device

Country Status (1)

Country Link
JP (1) JPH06103183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104005A (en) * 1990-08-24 1992-04-06 Stanley Electric Co Ltd Optical measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104005A (en) * 1990-08-24 1992-04-06 Stanley Electric Co Ltd Optical measuring apparatus

Also Published As

Publication number Publication date
JPH06103183B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
US4514083A (en) Distance measuring apparatus
EP0419082B1 (en) Optical distance gauging apparatus
US6133988A (en) Device for the measurement of distances or of the angle of incidence of a light beam
US5910841A (en) Ellipsometer using an expanded beam
JPH0627706B2 (en) Reflectance measuring device
US4743775A (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film of coating
JPH03134509A (en) Optical measuring apparatus
JPH06308025A (en) Method for calibrating light transmissivity measuring apparatus
EP0132370A2 (en) Apparatus for measuring optical transmission factor
JPH0571957A (en) Active range finder
JPS62250318A (en) Luminance measuring apparatus
JPH0210282A (en) Laser radar system
JPH0440314A (en) Optical measuring instrument
JPH0450612A (en) Optical measuring device
JP2816257B2 (en) Non-contact displacement measuring device
JPH0493706A (en) Optical measuring apparatus
JPH061215B2 (en) Optical system for projecting color sensor
JPH0776699B2 (en) Optical measuring device
CN112539705A (en) Light-emitting device and focusing method and detection equipment thereof
JPH04364414A (en) Distance-measuring device
JPH0820209B2 (en) Optical measuring device
JPH0440315A (en) Optical measuring instrument
JPS59119305A (en) Focus detector
JPH03107709A (en) Optical measuring instrument
SU593081A1 (en) Interference spectrometer