JPH03134334A - Hydraulic buffer - Google Patents

Hydraulic buffer

Info

Publication number
JPH03134334A
JPH03134334A JP27228889A JP27228889A JPH03134334A JP H03134334 A JPH03134334 A JP H03134334A JP 27228889 A JP27228889 A JP 27228889A JP 27228889 A JP27228889 A JP 27228889A JP H03134334 A JPH03134334 A JP H03134334A
Authority
JP
Japan
Prior art keywords
chamber
pressure
piston rod
oil
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27228889A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP27228889A priority Critical patent/JPH03134334A/en
Publication of JPH03134334A publication Critical patent/JPH03134334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To stabilize an operation by disposing a closed circuit where a part of the hollow portion of a piston rod is adapted to function as a reservoir chamber, and adjusting the area of an opening of a variable throttle in a second passage on the basis of an output pressure of a pump operated in response to a vibration frequency as a pilot pressure. CONSTITUTION:A piston rod 2 is formed of a hollow shaft, and is provided with an oil chamber 9 and an air chamber 10 in the hollow portion sealed under the outer cap thereof. The oil chamber 9 is adapted to function as a reservoir chamber for controlling a throttle opening in a damping valve mechanism 8. A space between an outer cylinder 4 and a cylinder 1 is formed by another oil chamber 11 and a pressurized air chamber 12. A change in volume inside the cylinder of the piston rod 2 in a stroke operation of a piston 3 can be compensated by an operating oil of the oil chamber 11 intercommunicated via a bottom valve mechanism 13 for generating a damping force on a pressurized side interposed between a chamber 7 on the pressurized side and the space. The compressive expansion of the pressurized air chamber 12 and air chamber 10 under a high pressure can prevent cavitation in passages during the operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油圧緩衝器に関し、特に、車輌用サスペンシ
ョン機構に採用して最適な周波数依存型油圧緩衝器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic shock absorber, and particularly to a frequency-dependent hydraulic shock absorber that is most suitable for use in a vehicle suspension mechanism.

〔従来の技術〕[Conventional technology]

周知の如く、車輌の車軸懸架における振動形態は、2自
由度の振動系であり、そのために、走行中の路面からの
振動入力によって、該系の振動周波数の特定の領域て共
振動作か起きる。
As is well known, the form of vibration in the axle suspension of a vehicle is a two-degree-of-freedom vibration system, and therefore, resonance action occurs in a specific range of the vibration frequency of the system due to vibration input from the road surface during driving.

そして、かかる共振動作のピークを共振点とするとき、
比較的低周波数領域で発現する一次共振点と比較的高周
波数領域て発現する二次共振点とがある。
Then, when the peak of such resonance operation is taken as the resonance point,
There are primary resonance points that occur in a relatively low frequency region and secondary resonance points that occur in a relatively high frequency region.

かかる共振動作をそのまま放置許容すると、−次共振点
の周波数域でばねトの振動か大きくなって、走行中の乗
心地が損なわれることになり、二次共振点周波数域でば
ね下の振動が大きくなって、車輪の接地性か悪くてクリ
ップ性能並びに操縦安定性能が劣化する。
If such resonance operation is allowed to continue as it is, the vibration of the spring will increase in the frequency range of the -order resonance point, impairing ride comfort while driving, and the vibration of the unsprung part will increase in the frequency range of the second resonance point. As the size increases, the ground contact of the wheels becomes poor, resulting in deterioration of clipping performance and steering stability.

このような状況を防ぐには、サスペンション機構におけ
る振動減衰力を上記共振点付近の周波数域で変化させる
加振周波数応答型の減衰力調整式油圧緩衝器の採用が望
まれる。
In order to prevent such a situation, it is desirable to employ an excitation frequency response type damping force adjustable hydraulic shock absorber that changes the vibration damping force in the suspension mechanism in a frequency range near the resonance point.

しかして、かかる減衰力調整式油圧緩衝器のa種がすで
に提案されている。
Type A of such damping force adjustable hydraulic shock absorbers has already been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、従来提案の減衰力調整式油圧緩衝器の内、減
衰バルブの減衰係数を振動周波数に応じて切換変更する
手段では、周波数検出機構並びにアクチュエータ機構等
の附加で緩衝器構造か複雑となり1組立工程数の増大に
よる生産性の低下等を伴ワてコスト高となる不都合があ
る。
By the way, among the previously proposed damping force adjustable hydraulic shock absorbers, the damping coefficient of the damping valve is switched and changed according to the vibration frequency, but the structure of the shock absorber becomes complicated due to the addition of a frequency detection mechanism, an actuator mechanism, etc., and one assembly is required. There is a disadvantage that productivity is decreased due to an increase in the number of steps and costs are increased.

また、環状リーフバルブからなる減衰バルブの撓み剛性
を変更して行う手段では、単一の減衰バルブに異なる大
きさの撓みが鰻り返されることになり、そのために素材
の金i疲労などによってバルブ折損事故か起き易く、機
能安定性に欠ける不都合かある。
In addition, with the method of changing the deflection rigidity of a damping valve consisting of an annular leaf valve, different magnitudes of deflection are returned to a single damping valve, which causes fatigue of the material, etc. It is prone to breakage accidents and lacks functional stability.

そこで、本件特許出願人は先にm橋上並びにalを上に
おいて従来手段の不都合なところを一挙に解決し得る周
波数依存型減衰力調整式油圧緩衝器を提案(実願昭63
−169863号)したが。
Therefore, the applicant of this patent first proposed a frequency-dependent damping force adjustable hydraulic shock absorber that can solve all the disadvantages of conventional means on m-bridges and al-bridges.
-169863) but.

本発明は更にその作動の安定化を計るための装置の改良
を目的とする。
A further object of the present invention is to improve the device for stabilizing its operation.

(課題を解決するための手段) しかして、かかる目的を達成するために、本発明では、
複筒式ショックアブソーバ−からなり、ピストン部にリ
ーフ弁付き減衰力発生部を形成する第1通路と可変絞り
を備えた第2通路とを有す減衰カニ調整式油圧緩衝機構
において、ピストンロッド中空部の一部をリザーバー室
とする独立した作動油の閉回路を附設する一方、該中空
部先端内に加振周波数に応動するプランジャーからなる
ポンプ及びその出力正室等を配設し、このポンプの出力
圧をパイロット圧として前記第2通路における可変絞り
の開口面積を調整するようになして、周波数依存型減衰
バルブ機構を構成する。
(Means for Solving the Problems) Therefore, in order to achieve such an object, the present invention:
In a damping crab-adjustable hydraulic shock absorbing mechanism consisting of a dual-tube shock absorber and having a first passage forming a damping force generating part with a leaf valve in the piston part and a second passage having a variable throttle, the piston rod is hollow. An independent hydraulic oil closed circuit is provided with a part of the part serving as a reservoir chamber, while a pump consisting of a plunger that responds to the excitation frequency and its output chamber are installed within the tip of the hollow part. A frequency-dependent damping valve mechanism is constructed by adjusting the opening area of the variable throttle in the second passage using the output pressure of the pump as a pilot pressure.

そして、この場合に、前記振動応答プランジャーか出入
する出力正室に前記絞り開度調整のためのスプールのパ
イロット室に通じるオリフィス通路と前記閉回路のリザ
ーバー室からの作動油の流入のみを許容するチエツク弁
付きポートとを開口させ、かつ、該スプール及びその外
周に配置した前記第1通路のリーフ弁とを細径にJ#成
した前記ピストンロフト先端部にこれと同軸に組付けて
、該リーフ弁の内側固定部が可及的に小径であるように
構成する。
In this case, only the inflow of hydraulic oil from the orifice passage leading to the pilot chamber of the spool for adjusting the throttle opening and the reservoir chamber of the closed circuit is allowed to enter and exit the output chamber from the vibration-responsive plunger. opening a port with a check valve, and assembling the spool and the leaf valve of the first passage disposed on the outer periphery of the spool coaxially with the tip of the piston loft having a small diameter of J#; The inner fixed portion of the leaf valve is configured to have a diameter as small as possible.

(作 用) 即ち、複筒構成からなるショックアブソーバとしては、
外部加振によって上下動するピストン及びそのロフトの
動作に連れて、該ピストンで区分される伸圧両側室の作
動油がピストン部に設けた第1通路及び第2通路を通っ
て移動する間に減衰力か発生する一方、ピストンロッド
の出入によるシリンダ内容室の増減相当分の作動油をア
ウターセルとの間の油室から補充又は戻すように作用す
る。
(Function) In other words, as a shock absorber with a dual-tube configuration,
As the piston and its loft move up and down due to external vibration, the hydraulic fluid in the expansion chambers on both sides divided by the piston moves through the first passage and the second passage provided in the piston part. While a damping force is generated, it acts to replenish or return hydraulic oil corresponding to the increase/decrease in the cylinder internal chamber from the oil chamber between it and the outer cell due to the movement of the piston rod in and out.

そして、加振周波数に応答するポンプ機構のプランジャ
は、ピストン部で区分される伸側油室又は圧側油室の室
圧を受けて動作する。該プランジャの出入動作で内圧が
変化する出力正室には、その室圧の低下で開弁するチエ
ツク弁を介してリザーバー室からの作動油が流入し、内
圧ヒ昇初期で該弁によるリザーバー室への連通ポートか
閉じられるので、その後の該圧力室の圧油がオリフィス
通路を通してパイロット室に送り込まれる。即ち、前記
油室の油圧変化(ビストンストローク動作)に応じて該
プランジャか往復動作する加振周波数の一サイクルごと
に所定量の作動油を圧力室からパイロット室に送り出す
The plunger of the pump mechanism, which responds to the excitation frequency, operates in response to the chamber pressure of the expansion-side oil chamber or the pressure-side oil chamber divided by the piston portion. Hydraulic oil from the reservoir chamber flows into the output chamber, where the internal pressure changes as the plunger moves in and out, through a check valve that opens when the chamber pressure decreases, and when the internal pressure initially rises, the hydraulic oil flows into the output chamber. Since the communication port to is closed, the subsequent pressurized oil in the pressure chamber is sent into the pilot chamber through the orifice passage. That is, a predetermined amount of hydraulic oil is sent from the pressure chamber to the pilot chamber for each cycle of the excitation frequency at which the plunger reciprocates in response to changes in oil pressure in the oil chamber (viston stroke operation).

しかも、この加振周波数に応答するポンプ機構の動作か
ピストンロッドの先端中空部打て行なわれる。
Moreover, the operation of the pump mechanism in response to this excitation frequency is performed by striking the hollow portion at the tip of the piston rod.

一方、油圧緩衝機構の油圧回路に対して流路系が独立し
た閉回路構成部としては、該機構への外部からの加振に
よるピストン動作で前記油室の作動油圧か変化しても、
その影響を直接に受ることなくて、所定の流路抵抗を持
って環流する該閉回路の流路系が安定に保たれておる。
On the other hand, as a closed circuit component in which the flow path system is independent from the hydraulic circuit of the hydraulic shock absorbing mechanism, even if the working pressure of the oil chamber changes due to piston movement due to external vibration to the mechanism,
The flow path system of the closed circuit, which circulates with a predetermined flow path resistance, is kept stable without being directly affected by this.

従って、ピストン動作即ち加振周波数に応じた址の作動
油の送り込みを受ける一方で所定の環流礒を放出し続け
る該パイロット室は、その室圧が加振周波数に依存して
変化する。
Therefore, the pressure of the pilot chamber, which continues to release a predetermined amount of reflux while being fed with hydraulic oil according to the piston operation, that is, the excitation frequency, changes depending on the excitation frequency.

そこで、このパイロット室圧を受けるスプールの移動て
狭搾される通路の開口面積を変えるように、該スプール
に対する可変絞り通路の形状を設定しておくことにより
、本発明における上記手段からなる油圧緩衝機構は任意
の加振周波数の複数個所の領域で減衰力を低減させ、他
の領域において減衰力の増大を計るような加振周波aS
応型の減衰力調整式油圧緩衝器とじて機構する。
Therefore, by setting the shape of the variable throttle passage for the spool so as to change the opening area of the passage narrowed by the movement of the spool that receives this pilot chamber pressure, the hydraulic buffer comprising the above-mentioned means in the present invention can be used. The mechanism uses an excitation frequency aS that reduces the damping force in multiple regions of an arbitrary excitation frequency and increases the damping force in other regions.
It works as a damping force adjustable hydraulic shock absorber.

(実施例) 次に、本発明の好ましい実施例について添附図面を参照
して説明する。
(Embodiments) Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例を示す油圧緩衝器の縦断側面
図で、シリンダlにはピストンロッド2に支持されたピ
ストン3が摺動自在に嵌装され、かつ、両側キャップ5
.5によってアウターセル4を一体に取付けた複筒ガス
式シコツクアブソーハとなしである。
FIG. 1 is a vertical side view of a hydraulic shock absorber showing an embodiment of the present invention, in which a piston 3 supported by a piston rod 2 is slidably fitted into a cylinder l, and caps 5 on both sides
.. 5 is a double-tube gas-type shock absorber with an outer cell 4 integrally attached.

そして、該シリンダl内は前記ピストン3によって作動
油の充填された伸側室6と圧側室7とに区分され、これ
等両室6及び7間を該ピストン3に配tした減衰バルブ
機構8によって連通しである。
The inside of the cylinder 1 is divided by the piston 3 into a compression side chamber 6 and a compression side chamber 7 filled with hydraulic oil. It is a communication.

一方、前記ピストンロッド2は中空軸体で構成され、そ
の外端施栓下に蜜月された中空部に油室9と空気室lO
とが形成されている。
On the other hand, the piston rod 2 is composed of a hollow shaft body, and an oil chamber 9 and an air chamber 1O are provided in the hollow part which is closed under the outer end of the piston rod.
is formed.

そして、該油室9は前記減衰バルブ機構8における絞り
開度を制御するための作動油回路におけるリザーバー室
として機能し、後述する作動時の核油室9におけるわず
かな体積変化を前記空気室■0の圧縮膨張により吸収し
て、リザーバー室圧を常に略一定に保持するようになし
である。なお、この作動油回路はその流路系が前記伸側
室6及び圧倒室7に対して独立した閉回路として構成さ
れている。
The oil chamber 9 functions as a reservoir chamber in the hydraulic oil circuit for controlling the throttle opening in the damping valve mechanism 8, and the slight volume change in the core oil chamber 9 during operation, which will be described later, is absorbed by the air chamber The pressure is absorbed by compression and expansion of 0, and the pressure in the reservoir chamber is always kept substantially constant. Note that this hydraulic oil circuit is configured as a closed circuit whose flow path system is independent of the expansion side chamber 6 and the overwhelming chamber 7.

他方、外筒4とシリンダlとの間の隙間空所も、油室1
1と加圧空気室12とに形成され、前記圧側室7との間
に圧側減衰力発生用のボトムバルブ機構13を介在させ
て連通した該油室11の作動油で、ピストン3のストロ
ーク動作時におけるピストンロッド2のシリンダ内出入
によるシリンダ内容積変化分を補うと共に該空気室12
並びに先の空気室IOの高圧下での圧縮膨張によりて作
動時における各流路てのキャビテーションの発生を防ぐ
ようになしである。
On the other hand, the gap space between the outer cylinder 4 and the cylinder l is also the oil chamber 1.
1 and a pressurized air chamber 12, and communicated with the pressure side chamber 7 through a bottom valve mechanism 13 for generating a pressure side damping force, the hydraulic oil in the oil chamber 11 is used to perform the stroke operation of the piston 3. The air chamber 12 compensates for the change in cylinder internal volume due to the piston rod 2 moving in and out of the cylinder at the time.
In addition, the air chamber IO is compressed and expanded under high pressure to prevent cavitation in each flow path during operation.

その他、14は前記ボトムバルブ機構13における吸込
みポート、15は同じく圧側ポート、フハルブ、16は
ロット支持用ベアリング、 17はオイルシール部を示
す。
In addition, 14 is a suction port in the bottom valve mechanism 13, 15 is a pressure side port, and 16 is a rod support bearing, and 17 is an oil seal portion.

次に、前記減衰バルブ機構8の部分を拡大して示す第2
図及び第3図を参照して、該機構8の具体的構成を、上
述の各図示構成と共通する各部分に夫々同一の記号を符
して説明するに、前記ピストン3は筒状体からなり、こ
れを細径に構成したピストンロット2の先端軸部に軸先
側から嵌装し、細径段部18と先端のピストンナツト1
gとの間で挟持しである。
Next, a second part showing an enlarged view of the damping valve mechanism 8 is shown.
The specific structure of the mechanism 8 will be described with reference to FIG. 3 and FIG. This is fitted into the tip shaft portion of the piston rod 2 configured to have a small diameter from the shaft tip side, and the small diameter stepped portion 18 and the piston nut 1 at the tip are fitted.
It is sandwiched between g.

そして、該ピストン3とピストンロット2との嵌合部空
間に、スプール20か附勢スプリング21と共に嵌装し
である。
The spool 20 and the biasing spring 21 are fitted into the fitting space between the piston 3 and the piston rod 2.

一方、ピストンロッド2の中空部には、ポート23を有
す弁座筒24を取付け、これにチエツクボール25をス
プリング26の受は止めを兼ねる中空栓体27により組
付けてあり、しかも、該栓体27の先端面と前記ピスト
ンナツト19との間に幾分の空間を設けである。
On the other hand, a valve seat cylinder 24 having a port 23 is attached to the hollow part of the piston rod 2, and a check ball 25 is assembled to this with a hollow stopper 27 which serves as a stop for a spring 26. Some space is provided between the front end surface of the plug body 27 and the piston nut 19.

そして、このピストンロット2の中空部先端の該空間に
、受圧部を圧側室7に向けたプランジャ28か、スプリ
ンタ29による附勢下に、その他端を前記栓体27との
間に形成される圧力室コ0(前記チエツクボール25と
スプリング26との配置容室37を含む)に出入自在に
、前記ピストンナツト19の張出した内縁を抜は止めス
トッパー31として組付けである。
Then, in the space at the tip of the hollow part of the piston rod 2, a plunger 28 with the pressure receiving part facing the pressure side chamber 7 or under the force of the splinter 29 is formed between the other end and the plug body 27. The protruding inner edge of the piston nut 19 is assembled as a stopper 31 to prevent the piston nut 19 from being pulled out, so that the piston nut 19 can be moved in and out of the pressure chamber 0 (including the chamber 37 in which the check ball 25 and the spring 26 are arranged).

そして、該ピストン3における第1の伸圧室間流路か、
該ピストン3のL下、!!部に開口したポート32.3
3によって形成され、その両端シート而にリーフバルブ
:14.35を夫々配置した減衰力発生流路として構成
しである。
And, the first expansion chamber flow path in the piston 3,
Below L of the piston 3! ! Port 32.3 opened in
3, and leaf valves 14 and 35 are arranged at both end seats of the damping force generating flow path.

また、第2の減衰力発生流路として、伸側室6に通じる
ピストン外周路6aに向けて径方向に開穿したポート3
8(第4図参照)と、圧倒室7に通じるピストン外周路
6bに向けて同じく径方向に開穿したポート39(同じ
く第4図参照)との間に、前記スプール20によって連
通並ひに通路面端可変可能な制御弁構成部を配置して構
成しである。
Also, as a second damping force generation flow path, a port 3 opened in the radial direction toward the piston outer peripheral path 6a communicating with the expansion side chamber 6.
8 (see FIG. 4) and a port 39 (also see FIG. 4), which is also opened in the radial direction toward the piston outer peripheral path 6b leading to the overwhelming chamber 7, is communicated by the spool 20. It is constructed by arranging a control valve component whose passage surface end can be varied.

なお、このスプール20は前記ポート38及び39か開
口するピストン内周壁と密に摺接する一方で、ピストン
ロッド2との嵌合間に幾分の隙間を設けて、この隙間を
帰環路ゴロとして、パイロット室40の作動油を1通路
41によって前記油室9と連通したトレン室42に徐々
に環流させるようになしである。
In addition, while this spool 20 is in close sliding contact with the inner peripheral wall of the piston where the ports 38 and 39 are opened, a certain gap is provided between the fitting with the piston rod 2, and this gap is used as a return path grounder. The hydraulic oil in the pilot chamber 40 is gradually circulated through one passage 41 to a train chamber 42 communicating with the oil chamber 9.

そして、このパイロット室40には、前記チエツクボー
ルz5が弁座筒24に圧接したポート23の閉鎖位置で
前記圧力室30と連通した容室37に向けて開口するオ
リフィス4コを通して、それ以前の該ボール25のポー
ト開「1時に前記油室9からポート23を経て該容室3
7に至った作動油を導入するようになしである。
The check ball z5 passes into the pilot chamber 40 through four orifices that open toward the chamber 37 that communicates with the pressure chamber 30 at the closed position of the port 23 where the check ball z5 is in pressure contact with the valve seat cylinder 24. When the port of the ball 25 is opened, the oil is transferred from the oil chamber 9 through the port 23 to the container chamber 3.
There is no way to introduce the hydraulic oil that reached 7.

このような構成よりなる実施例によれば、油圧緩衝塁本
体に加わる振動で、そのシリンダlとピストン3との間
の相対移動により、先ず、ピストン3が伸方向への変位
(第2図示状態)を開始すると、これによって伸側室6
の室圧か高くなる。その結果、伸側室6の作動油は、第
1の流路によって、ポート33を通りリーフバルブ35
を押し開き減衰力を発生しながら圧側室7に流入する。
According to the embodiment having such a configuration, due to the vibration applied to the hydraulic buffer base main body, the piston 3 is first displaced in the extension direction (in the state shown in the second figure) due to the relative movement between the cylinder l and the piston 3. ), this causes the extension chamber 6
room pressure increases. As a result, the hydraulic oil in the expansion side chamber 6 passes through the port 33 and reaches the leaf valve 35 through the first flow path.
is pushed open and flows into the pressure side chamber 7 while generating a damping force.

なお、これと同時にピストンロッド2の繰り出しによる
シリンダ内項容積相当分の作動油か油室11からボトム
バルブ機構13のチエツク弁14を開いて該圧側室7に
流入する。
At the same time, the check valve 14 of the bottom valve mechanism 13 is opened from the oil chamber 11 so that hydraulic oil equivalent to the cylinder internal volume due to the drawing out of the piston rod 2 flows into the pressure side chamber 7.

これに対して、加振周波数感応の第2の流路では、それ
まで圧側室7の高い室正による作用圧を受はスプリング
29の拡圧力に抗して作動域の七死点位とに占位してい
たプランジャ28が、圧側室7の室圧低下とスプリング
29の拡圧力とによって、第2図の下方向に押されて、
その受圧面がストッパー31に当接する下死点位置に移
動する。
On the other hand, in the second flow path that is sensitive to the excitation frequency, the working pressure due to the high chamber positive of the pressure side chamber 7 is resisted against the expansion force of the spring 29 and reaches the seventh dead center of the operating range. The plunger 28, which was in the upper position, is pushed downward in FIG.
The pressure receiving surface moves to the bottom dead center position where it comes into contact with the stopper 31.

この移動で、圧力室30の室圧が低下することになるの
で、油室9のリザーバー室圧を受けているチエツクボー
ル25か附勢スプリング26の作用力に抗して同じく下
方向に押し下げられ、弁座筒24のポート23が開放さ
れ、これによって、該圧力室30及び容室37には1室
9からの作動油か補充されると共にオリフィス43によ
る流量制限下にパイロット室40からも該室3o及び4
oへの作動油の補充がなされる。
Due to this movement, the pressure in the pressure chamber 30 decreases, so the check ball 25, which receives the reservoir pressure in the oil chamber 9, is also pushed downward against the force of the biasing spring 26. , the port 23 of the valve seat cylinder 24 is opened, and as a result, the pressure chamber 30 and the container chamber 37 are replenished with the hydraulic oil from the first chamber 9, and the hydraulic oil is also supplied from the pilot chamber 40 under the flow rate restriction by the orifice 43. Rooms 3o and 4
o is replenished with hydraulic oil.

次に、ピストン3が圧側方向への変位(第3図参照)を
開始すると、伸側室6の室圧が逆に低下し圧側室7の室
圧か高くなるので、同[2上矢標図示の如く、ポート3
3から流入しリーフバルブ34を押し開いて流出する第
1の流路と、ボトムバルブ機構13(第1図参照)のリ
ーフパル15を押し開いての外周油室11に向かう作動
油の戻し流路とか形成される一方、プランジャ28がそ
の受圧面に圧側室7の高い室圧を受けてスプリング29
の拡圧力に抗して、先の下死点位置から第3図の上方面
に押し上げられる。
Next, when the piston 3 starts displacing in the compression side direction (see Figure 3), the pressure in the expansion side chamber 6 decreases and the pressure in the compression side chamber 7 increases. As in, port 3
3, a first flow path through which the oil flows out by pushing open the leaf valve 34, and a return flow path through which hydraulic oil flows toward the outer oil chamber 11 by pushing open the leaf pallet 15 of the bottom valve mechanism 13 (see FIG. 1). At the same time, the plunger 28 receives the high chamber pressure of the pressure side chamber 7 on its pressure receiving surface, and a spring 29 is formed.
It is pushed up from the previous bottom dead center position to the upper surface in FIG. 3 against the expansion force of .

これによって、圧力室30の室圧は、該プランジャ28
の侵入による容積減り分に対応して上昇し、チエラフボ
ール25を上昇復帰させて先のポート23を閉しると共
に、オリフィス43か開かれているので、この分の容室
37内の油かオリフィス43を通してパイロット室40
に送り込まれる。
As a result, the pressure in the pressure chamber 30 is reduced by the plunger 28.
The oil in the chamber 37 rises in response to the volume reduction caused by the intrusion of the oil, returns the tiered ball 25 to the upper position, and closes the previous port 23, and since the orifice 43 is open, the oil in the chamber 37 for this amount or the orifice Pilot room 40 through 43
sent to.

即ち、油圧lil衝器本体に対するlサイクルの加振に
よって、これに応答するプランジャ28の変位によるポ
ンプ作用で、パイロット室40には常に一定量の作動油
が送り込まれ、しかも、この加振に対するプランジャ2
8の応答性は、加振速度の広い変化範囲で保たれる。
That is, a constant amount of hydraulic oil is always fed into the pilot chamber 40 by the pumping action caused by the displacement of the plunger 28 in response to l-cycle excitation of the hydraulic lil shocker body, and the plunger 2
The responsiveness of No. 8 is maintained over a wide range of changes in excitation speed.

従って、該パイロット室40に送り込まれる作動油流量
は、その単位時間平均では加振周波数に比例することに
なる。
Therefore, the flow rate of hydraulic oil sent into the pilot chamber 40 is proportional to the excitation frequency on average per unit time.

一方、該圧力室30からのパイロット室40に送り出さ
れる油がオリフィス4コによって適度に流量制限され、
しかも、ドレン室42側からのスプリング21と油室9
のリザーバー室圧とによって附勢されたスプール20に
よるアキュムレータ効果て、該パイロット室40の室圧
か徐々に変化すると共に、送り込まれた油の一部が絞り
込まれた隙間の帰環路36を通って通路41から油室9
に徐々に戻される。
On the other hand, the flow rate of oil sent from the pressure chamber 30 to the pilot chamber 40 is moderately restricted by the four orifices,
Moreover, the spring 21 and the oil chamber 9 from the drain chamber 42 side
Due to the accumulator effect of the spool 20 energized by the reservoir chamber pressure, the pressure in the pilot chamber 40 gradually changes, and a portion of the oil sent passes through the narrowed gap return path 36. from the passage 41 to the oil chamber 9
gradually returned to.

しかして、該パイロット室40の室圧が定常的には圧力
室30からの作動油送り込み敬と帰環路36を流れる環
流流擾によって一意的に決まることとなり、中位時間当
りの送り込み破の少ない加振速度の遅い域(低周波数領
域)ては低く、加振速度が上昇するに連れて増大するこ
ととなる。
Therefore, the chamber pressure of the pilot chamber 40 is steadily determined uniquely by the flow of hydraulic oil from the pressure chamber 30 and the circulation flow flowing through the return path 36, and the number of pump failures per medium time. It is low in a region where the excitation speed is low (low frequency region), and increases as the excitation speed increases.

そして、このパイロット室圧力を受けるスプール20の
変位域におけるポート38及び39(第4UA参照)に
達する部分のスプール外周に、これ等るポート38及び
39間を橋架する連結溝22を設けておくことにより、
加振動作の低周波数域てのスプール変位におけるポート
38側の閉鎖状態(第4図(A)図示)、同中間周波数
域のスプール変位でのポート38及び39の連結絞り込
み状態(第4図(R)図示)、同高周波数域のスプール
変位でのポート3g側の閉鎖状態(第4図(C)図示)
の各変位に対して、ポート38及び39における通路開
閉と絞り開口面積を第5図示(イ)に示す如く変化させ
ることが出来る。
A connecting groove 22 bridging between these ports 38 and 39 is provided on the outer periphery of the spool at a portion reaching ports 38 and 39 (see 4th UA) in the displacement region of the spool 20 that receives this pilot chamber pressure. According to
The closed state of the port 38 side when the spool is displaced in the low frequency range of the excitation operation (as shown in FIG. 4(A)), and the connected narrowed state of the ports 38 and 39 when the spool is displaced in the same intermediate frequency range (see FIG. 4(A)). R) as shown in the figure), the port 3g side is closed at the spool displacement in the same high frequency range (as shown in Fig. 4 (C))
For each displacement, the passage opening/closing and the aperture opening area in the ports 38 and 39 can be changed as shown in FIG. 5 (A).

しかして、このポート38及び39により流廣規制され
る第3の流路し3では、加振下のピストン3の動作に対
する減衰力か、第5図(■)に示す如く、加振周波数に
応じて変化する。
Therefore, in the third flow path 3 whose flow is regulated by these ports 38 and 39, the damping force against the movement of the piston 3 under excitation changes depending on the excitation frequency, as shown in Fig. 5 (■). It changes accordingly.

なお、この第2の流路における通路開閉並びに絞り開口
面積の変化は、前記スプール20の移動占位状態におけ
るポート38及び39の開口部ご並びにそれ等の形状に
よって決定されるものであり、しかも、該スプール20
が加振周波数に応じて移動するので、前記位置及び形状
の選択設定によって、この流路の周波数依存特性なハイ
カット、ローカット又は中間カットのいづれにも変換す
ることが出来る。
Note that the passage opening/closing and the change in the throttle opening area in the second flow path are determined by the openings of the ports 38 and 39 and their shapes when the spool 20 is in the moving position. , the spool 20
moves in accordance with the excitation frequency, so by selecting and setting the position and shape, this flow path can be converted into a frequency-dependent characteristic of high cut, low cut, or intermediate cut.

(発明の効果) このように1本発明油圧緩衝器によれば、緩衝器本体に
対して流路系を独立させた作動油の閉回路中に該本体へ
の加振周波数に応動するプランジャーを設け、該プラン
ジャーからなるポンプの出力圧をパイロウド圧として流
路の絞り開口面積を可変mf!iするように構成したの
て、加振周波数によって減衰力が変化する加振周波数依
存型の油圧緩衝器を得ることが出来、しかも、前記絞り
開口面積可変のためのスプールと流路開口部との配置並
びにそれ等の形状を適宜選択決定することにより、任意
の加振周波数の複数個所の領域で減衰力を低減させ、他
の領域において減衰力の増大を計ることも可能であるの
で、これを車輌用サスペンションに用いて従来の両共振
点周波数域で大きい減衰力を維持して、該サスペンショ
ン系における共振動作を抑制し、且つ、それ以外の周波
数領域で減衰力を低下させて、M系にソフトなスプリン
グ性能を発揮するショックアブソーバとすることか出来
ると共に、緩衝器自体の構造がパイロット室戸、のポン
プ出力油の供給をオリフィス制御下に行うと共に該室圧
を受けるスプールに反力を持たせてアキュームレータ効
果を発揮させるように構成しであるので、部品点数かr
=f及的に少なく「つ製作か簡単になり、更に、前記ス
プールをピストンロッドと同軸に配置したことによって
機構の小嵩化を計り得、加えて、シリンダ内の変動油圧
で駆動されるポンプ機構の出力油圧をパイロット圧とし
て減衰力を制御するのて、緩衝器本体の取っ付は姿勢の
向きに左右されることなく使用することか可能である。
(Effects of the Invention) As described above, according to the hydraulic shock absorber of the present invention, the plunger responds to the excitation frequency to the shock absorber body during a closed hydraulic oil circuit in which the flow path system is independent of the shock absorber body. is provided, and the output pressure of the pump consisting of the plunger is set as the pilot pressure, and the aperture area of the flow path is variable mf! i, it is possible to obtain an excitation frequency-dependent hydraulic shock absorber in which the damping force changes depending on the excitation frequency. By appropriately selecting and determining the arrangement of is used in a vehicle suspension to maintain a large damping force in both conventional resonance frequency ranges to suppress the resonance operation in the suspension system, and to reduce the damping force in other frequency ranges. It can be used as a shock absorber that exhibits soft spring performance, and the structure of the shock absorber itself allows the supply of pump output oil to the pilot chamber door to be controlled by the orifice, while also creating a reaction force on the spool that receives the chamber pressure. Since the structure is designed to exhibit the accumulator effect, the number of parts can be reduced.
=It is less expensive and easier to manufacture.Furthermore, by arranging the spool coaxially with the piston rod, the bulk of the mechanism can be reduced.In addition, the pump is driven by variable oil pressure in the cylinder By controlling the damping force using the output oil pressure of the mechanism as the pilot pressure, the shock absorber body can be mounted without being affected by the orientation.

しかも、殊に、本発明緩衝器では、第2通路中の加振周
波数に応動するプランジャーなピストシンロット中空部
先端に内蔵させたので、ピストン部の長さを短くするこ
とか出来て、全体長さに対してストローク長さを有効に
確保することか可能であり、加えて、ピストンロッドの
先端を小径にa成し、これに第2通路のスプールを該軸
端から挿入して組付けるように構成したので、該スプー
ル外岡の第1通路におけるリーフ弁の内周固定部を小径
に出来て、そのばね定数を小さくすることが可能であり
、これによって、シリンダ内油室の負圧化現象をなくし
てキヤとチーシコンの発生を防止することが出来る等、
本発明緩衝器は実用装置として幾多の効果を奏するもの
である。
Moreover, in particular, in the shock absorber of the present invention, since the plunger which responds to the excitation frequency in the second passage is built into the tip of the hollow part of the piston rod, the length of the piston part can be shortened. It is possible to effectively secure the stroke length with respect to the overall length, and in addition, it is possible to assemble the piston rod by forming the tip of the piston rod with a small diameter and inserting the spool of the second passage into this from the shaft end. Since the inner circumferential fixed part of the leaf valve in the first passage of the spool outer shell can be made small in diameter, its spring constant can be made small, thereby reducing the negative pressure in the cylinder internal oil chamber. It is possible to eliminate the oxidation phenomenon and prevent the occurrence of oxidation and oxidation, etc.
The shock absorber of the present invention has many effects as a practical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る油圧緩衝器の一実施例を示す縦断
側面図、第2図及び第3図は夫々第1図示実施例におけ
る減衰バルフ機構部分の作動状懲を示す縦断側面図、第
4図(A)乃至(C)は本発明油圧!1衝器における周
波数依存型流路構造部の各作動状況を示す断面図、第5
図(イ)及び(ロ)は未発IJI油圧緩衝器における要
部の作動特性図である。 〔符号の説明〕 2・・・ピストンロッド 3・・・ピストン 7・・・圧側室 9・・・油室 2 S−・・チエツクボール 30・・・圧力室 40・・・パイロット室 ■・・・シリンダ 4・・・アウターセル 6・・・伸側室 8・・・減衰バルブ機構 20・・・スプール 28・・・プランジャー 3B、 39・・・ポート 43・・・オリフィス
FIG. 1 is a longitudinal side view showing an embodiment of a hydraulic shock absorber according to the present invention, FIGS. 2 and 3 are longitudinal side views showing the operating state of the damping valve mechanism portion in the first illustrated embodiment, respectively; Figures 4 (A) to (C) show the hydraulic pressure of the present invention! 5 is a cross-sectional view showing various operating conditions of the frequency-dependent flow path structure in the 1st shock absorber.
Figures (a) and (b) are operational characteristic diagrams of the main parts of the unreleased IJI hydraulic shock absorber. [Explanation of symbols] 2... Piston rod 3... Piston 7... Pressure side chamber 9... Oil chamber 2 S-... Check ball 30... Pressure chamber 40... Pilot chamber ■...・Cylinder 4... Outer cell 6... Extension chamber 8... Damping valve mechanism 20... Spool 28... Plunger 3B, 39... Port 43... Orifice

Claims (1)

【特許請求の範囲】[Claims] ピストン部にリーフ弁付き減衰力発生部を形成する第1
通路と可変絞りを備えた第2通路とを有す減衰力調整式
油圧緩衝機構において、ピストンロッド中空部の一部を
リザーバー室とする独立した作動油の閉回路を附設する
一方、該中空部先端内に加振周波数に応動するプランジ
ャーからなるポンプ及びその出力正室等を配設し、この
ポンプの出力圧をパイロット圧として前記第2通路にお
ける可変絞りの開口面積を調整するようになした周波数
依存型減衰バルブ機構の構成の下で、前記振動応答プラ
ンジャーが出入する出力正室に前記絞り開度調整のため
のスプールのパイロット室に通じるオリフィス通路と前
記閉回路のリザーバー室からの作動油の流入のみを許容
するチェック弁付きポートとを開口させ、かつ、該スプ
ール及びその外周に配置した前記第1通路のリーフ弁と
を細径に構成した前記ピストンロッド先端部にこれと同
軸に組付けて、該リーフ弁の内側固定部が可及的に小径
であるように構成してなるとを特徴とする油圧緩衝器
A first part forming a damping force generating part with a leaf valve in the piston part.
In a damping force adjustable hydraulic shock absorbing mechanism having a passage and a second passage equipped with a variable throttle, an independent hydraulic oil closed circuit is provided in which a part of the hollow part of the piston rod serves as a reservoir chamber; A pump consisting of a plunger that responds to the excitation frequency and its output chamber are disposed within the tip, and the output pressure of this pump is used as a pilot pressure to adjust the opening area of the variable throttle in the second passage. Under the configuration of the frequency-dependent damping valve mechanism, the output chamber into which the vibration-responsive plunger enters and exits has an orifice passage leading to the pilot chamber of the spool for adjusting the aperture opening degree, and an orifice passage leading from the reservoir chamber of the closed circuit. A port with a check valve that only allows inflow of hydraulic oil is opened, and the spool and a leaf valve of the first passage arranged on the outer periphery of the piston rod are coaxially connected to the tip of the piston rod, which has a small diameter. A hydraulic shock absorber, characterized in that the inner fixed part of the leaf valve is configured to have as small a diameter as possible.
JP27228889A 1989-10-19 1989-10-19 Hydraulic buffer Pending JPH03134334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27228889A JPH03134334A (en) 1989-10-19 1989-10-19 Hydraulic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27228889A JPH03134334A (en) 1989-10-19 1989-10-19 Hydraulic buffer

Publications (1)

Publication Number Publication Date
JPH03134334A true JPH03134334A (en) 1991-06-07

Family

ID=17511772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27228889A Pending JPH03134334A (en) 1989-10-19 1989-10-19 Hydraulic buffer

Country Status (1)

Country Link
JP (1) JPH03134334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322058B1 (en) * 1998-12-21 2001-11-27 Tokico Ltd. Air suspension apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322058B1 (en) * 1998-12-21 2001-11-27 Tokico Ltd. Air suspension apparatus

Similar Documents

Publication Publication Date Title
KR101420441B1 (en) Damping force adjusting hydraulic shock absorber
KR100451289B1 (en) Damping force adjustable hydraulic buffer
JP4038654B2 (en) Damping force adjustable hydraulic shock absorber
JP4976855B2 (en) Solenoid-driven continuously variable servo valve for damping adjustment in shock absorbers and struts
JP4985984B2 (en) Damping force adjustable shock absorber
JP2006292092A (en) Damping force adjusting hydraulic shock absorber
JP4096153B2 (en) Damping force adjustable hydraulic shock absorber
JPH08207545A (en) Self pumping type shock absorber
JP2007309409A (en) Hydraulic shock absorber
JP4048507B2 (en) Damping force adjustable hydraulic shock absorber
JP3066994B2 (en) Damping force adjustable shock absorber
JPH03134334A (en) Hydraulic buffer
JPH109327A (en) Damping force regulating type hydraulic shock absorber
JP2909749B2 (en) Hydraulic shock absorber
JP4318071B2 (en) Hydraulic shock absorber
JP2780021B2 (en) Hydraulic shock absorber
JP2542932Y2 (en) Variable damping force type hydraulic shock absorber
JP3033457B2 (en) Self-pumping shock absorber
JPH02142943A (en) Hydraulic shock absorber
JPH0324337A (en) Hydraulic shock absorber
JP2888054B2 (en) Variable damping force type shock absorber
JPH0285536A (en) Hydraulic damper
JPS6383424A (en) Damping force variable type hydraulic damper
JP3034413B2 (en) Hydraulic shock absorber
JPH0719853Y2 (en) Active suspension