JPH0313304A - Pelletizing method of thermoplastic resin - Google Patents

Pelletizing method of thermoplastic resin

Info

Publication number
JPH0313304A
JPH0313304A JP1148478A JP14847889A JPH0313304A JP H0313304 A JPH0313304 A JP H0313304A JP 1148478 A JP1148478 A JP 1148478A JP 14847889 A JP14847889 A JP 14847889A JP H0313304 A JPH0313304 A JP H0313304A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fine powder
bulk density
powder
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1148478A
Other languages
Japanese (ja)
Inventor
Tatsuo Shinozaki
篠崎 龍夫
Masakazu Suzuki
雅和 鈴木
Takeo Ishii
石井 建男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1148478A priority Critical patent/JPH0313304A/en
Publication of JPH0313304A publication Critical patent/JPH0313304A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets

Abstract

PURPOSE:To enable the particle with has color to be effectively pelletized, while the bulk density as the material for molding the parts of electronic or electric products or automobile is high and its handling is easy by a method in which after the fine powder of polycyanoarylether has been compression- molded without its fusion, said molded object is crushed. CONSTITUTION:Polycyanoarylether is used in fine powder-state, and as this fine powder, the material having the mean particle diameter of 10-100mum and the bulk density of 0.2/cm<3> or less is preferably used. After the powder of polycyanoarylether has been formed into sheet shape by using a press roll, this sheet is crushed with a hammer mill, thereby obtaining pellets. When the pellets are injection molded at 350 deg.C of cylinder-temperature and at 200 deg.C of mold temperature by using an injection molding machine, the molded object of milkwhite is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱可塑性樹脂の新規な造粒方法に関するもので
ある。さらに詳しくいえば、本発明は、ガラス転移点8
0″C以上の熱可塑性樹脂微粉末を熱劣化をもたらすこ
となく、かつ低エネルギー消費量でもって、嵩密度が高
く、ハンドリングが容易である上、着色の少ない粒子に
効率よく造粒する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for granulating thermoplastic resins. More specifically, the present invention has a glass transition point of 8
This invention relates to a method for efficiently granulating thermoplastic resin fine powder of 0"C or higher into particles that have high bulk density, are easy to handle, and have little coloring, without causing thermal deterioration and with low energy consumption. It is something.

[従来の技術1 近年、機能性高分子材料として、耐熱性及び機械特性な
どに優れたエンジニアリングプラスチック、例えばポリ
フェニレンスルフィド、ポリエーテルエーテルケトン、
ポリエーテルスルホン、ポリアミドイミド、ポリエーテ
ルケトン、ポリシアノアリールエーテルなどが注目され
、実用化されはじめている。
[Prior art 1] In recent years, engineering plastics with excellent heat resistance and mechanical properties, such as polyphenylene sulfide, polyether ether ketone, etc., have been used as functional polymer materials.
Polyether sulfone, polyamideimide, polyether ketone, polycyanoaryl ether, etc. are attracting attention and are beginning to be put into practical use.

ところで、熱可塑性樹脂の成形においては、通常エクス
トルーダーなどにより大きな熱エネルギーを加えて、熱
可塑性樹脂を溶融押出してべレットを造粒し、このペレ
ットを射出成形機・や押出成形機などにより所望形状に
成形する方法が用いられている。
By the way, in the molding of thermoplastic resins, a large amount of heat energy is usually applied using an extruder, etc. to melt and extrude the thermoplastic resin to form pellets, and these pellets are then molded into desired shapes using an injection molding machine or an extrusion molding machine. A method of molding it into a shape is used.

しかしながら、このようなエクストルーダーなどを用い
て造粒する方法においては、エネルギー消費量が例えば
1〜5KWH/&gと大きく、かつエクストルーダーに
供給するポリマー粉末の嵩密度が小さいと供給速度が小
さくなり;熱履歴を受けやすくなるという欠点がある。
However, in the method of granulation using such an extruder, the energy consumption is large, for example, 1 to 5 KWH/&g, and the supply rate becomes low if the bulk density of the polymer powder supplied to the extruder is low. ; It has the disadvantage of being susceptible to thermal history.

特に前記エンジニアリングプラスチックのようにガラス
転移点が80℃以上のポリマーを用いる場合、溶融押出
しに通常250°C以上の高温を必要とするため、その
嵩密度が小さいと熱による劣化を免れず、得られるペレ
ットに着色などをもたらし、高品質の成形品が得られに
くいという問題が生じる。
In particular, when using a polymer with a glass transition point of 80°C or higher, such as the aforementioned engineering plastics, a high temperature of 250°C or higher is usually required for melt extrusion. This causes problems such as coloring of the pellets, making it difficult to obtain high-quality molded products.

〔発明が解決しようとする課題] 本発明は、このような事情のもとで、ガラス転移点が8
0°C以上の嵩密度の小さな熱可塑性樹脂微粉末を、熱
劣化をもたらすことなく、かつ低エネルギー消費量でも
って、嵩密度が高く、ノ\ンドリングが容易である上、
着色の少ない粒子に効率よく造粒する方法を提供するこ
とを目的としてなされたものである。
[Problem to be solved by the invention] Under these circumstances, the present invention solves the problem of glass transition point of 8.
Thermoplastic resin fine powder with a small bulk density of 0°C or more can be produced without thermal deterioration and with low energy consumption, has a high bulk density, and is easy to knead.
This was done for the purpose of providing a method for efficiently granulating particles with little coloring.

〔課題を解決するための手段] 本発明者らは前記目的を達成するために鋭意研究を重ね
た結果、ガラス転移点が80℃以上の熱可塑性樹脂微粉
末を融解させることなく圧縮成形するか、又はこの圧縮
成形後、成形物を解砕するか、あるいは前記のように圧
縮成形したのち、成形物を解砕し、次いで分級若しくは
整粒することにより、その目的を達成しうろことを見い
出し、この知見に基づいて本発明を完成するに至った。
[Means for Solving the Problems] As a result of extensive research to achieve the above object, the present inventors have found that it is possible to compression mold a thermoplastic resin fine powder with a glass transition point of 80° C. or higher without melting it. , or after compression molding, crush the molded product, or after compression molding as described above, crush the molded product, and then classify or size it to find out how to achieve the purpose. Based on this knowledge, the present invention was completed.

すなわち、本発明は、80℃以上のガラス転移点を有す
る熱可塑性樹脂微粉末を融解させることなく圧縮成形す
ること、場合によりこの圧縮成形後成形物を解砕するか
又は解砕後分級若しくは整粒することを特徴とする熱可
塑性樹脂の造粒方法を提供するものである。
That is, the present invention involves compression molding thermoplastic resin fine powder having a glass transition point of 80° C. or higher without melting it, and optionally crushing the molded product after compression molding, or classifying or sorting it after crushing. The present invention provides a method for granulating a thermoplastic resin, which is characterized in that it is granulated.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法においては、ポリマーとして80℃以上のガ
ラス転移点を有する熱可塑性“樹脂が用いられる。この
ような熱可塑性樹脂としては、例えばポリフェニレンス
ルフィド[結晶性、融点290°C1ガラス転移温度8
8°0、熱変形温度(18、6kg/cm″荷重による
、以下同様)、260 ℃以上(ガラス繊維入り)]、
ポリエーテルエーテルケトン(結晶性、融点334℃、
ガラス転移点143°C1熱変形温度152°C)、ポ
リエーテルスルホン(非品性、熱変形温度199〜20
3℃)、ポリアミドイミド(非品性、ガラス転移点27
0°C以上、熱変形温度274℃)、ポリエーテルケト
ン(結晶性又は非晶性、融点340℃)、ポリシアノア
リールエーテル(結晶性又は非品性、融点340°C、
ガラス転移点145℃、熱変形温度165°C)などが
挙げられるが、これらの熱可塑性樹脂の中で重縮合系の
ものが好ましく、特にポリシアノアリールエーテルにつ
いて有効である。
In the method of the present invention, a thermoplastic resin having a glass transition point of 80°C or higher is used as the polymer. Examples of such thermoplastic resin include polyphenylene sulfide [crystalline, melting point 290°C, glass transition temperature 8
8°0, heat deformation temperature (18.6kg/cm'' load, the same applies hereinafter), 260°C or higher (with glass fiber)],
Polyetheretherketone (crystalline, melting point 334℃,
Glass transition point: 143°C, heat distortion temperature: 152°C), polyether sulfone (non-quality, heat distortion temperature: 199-20°C)
3℃), polyamideimide (non-quality, glass transition point 27
0°C or higher, heat distortion temperature 274°C), polyether ketone (crystalline or amorphous, melting point 340°C), polycyanoaryl ether (crystalline or non-crystalline, melting point 340°C,
Among these thermoplastic resins, polycondensation type resins are preferred, and are particularly effective for polycyanoaryl ether.

本発明方法においては、これらの熱可塑性樹脂は微粉末
状で用いられるが、この微粉末としては、平均粒径が1
0〜100μmで、嵩密度が0.2g/cm3以下のも
のが有利に適用できる。また、前記熱可塑性樹脂の製造
方法については特に制限はなく、従来公知の方法で製造
されたものを使用することができる。
In the method of the present invention, these thermoplastic resins are used in the form of fine powder, and this fine powder has an average particle size of 1
Those having a diameter of 0 to 100 μm and a bulk density of 0.2 g/cm 3 or less can be advantageously applied. Furthermore, there are no particular limitations on the method for producing the thermoplastic resin, and those produced by conventionally known methods can be used.

例えば、本発明において好適に用いられるポリシアノア
リールエーテルは、N−メチルピロリドンやジメチルイ
ミダゾリジノンなどの溶媒中において、ジハロゲノベン
ゾニトリルとレゾルシノールとアルカリ金属塩とを、好
ましくは140〜350°Cの範囲の温度で、縮重合さ
せたのち、水又はアルコールで処理するといっt;方法
により製造することができる(特開昭62−22322
6号公報)。このようにして得られI;ポリシアノアリ
ールエーテルの微粉末は、通常平均粒径が10〜100
μm程度で、嵩密度が0.1〜0.297cm”と小さ
い。
For example, the polycyanoarylether suitably used in the present invention is prepared by mixing dihalogenobenzonitrile, resorcinol, and an alkali metal salt in a solvent such as N-methylpyrrolidone or dimethylimidazolidinone, preferably at 140 to 350°C. It can be produced by the method of condensation polymerization at a temperature in the range of , followed by treatment with water or alcohol.
Publication No. 6). The fine powder of polycyanoaryl ether obtained in this way usually has an average particle size of 10 to 100.
It has a small bulk density of 0.1 to 0.297 cm".

このような嵩密度の小さな微粉末は、容積式で粉体供給
する機器では効率が極めて悪く、またそのまま成形しよ
うとすると、成形機のスクリューにうまく巻き込まれず
、良好な成形が不可能であり、たとえ成形できたとして
も、ガス抜けが悪く、平滑な表面を有する成形品は得ら
れない。したがって、一般にエクストルーダーなどによ
り溶融押出してベレットに造粒し、成形に供しているが
、この場合通常250°C以上の高温を必要とし、かつ
嵩密度が小さいt;め供給速度が遅く、該ペレットは熱
履歴を受は着色を免れないという問題が生じる。
Fine powder with such a small bulk density is extremely inefficient in volumetric powder feeding equipment, and if you try to mold it as it is, it will not be caught properly in the screw of the molding machine, making it impossible to mold it well. Even if molding is possible, gas release is poor and a molded product with a smooth surface cannot be obtained. Therefore, it is generally melt-extruded using an extruder or the like, granulated into pellets, and then used for molding. However, in this case, a high temperature of 250°C or higher is usually required, and the supply speed is slow due to the low bulk density. A problem arises in that the pellets undergo coloration due to thermal history.

本発明方法は、このような問題を解決するためになされ
たもので、前記熱可塑性樹脂微粉末を融解させることな
く圧縮成形したのち、場合によりこの成形物を解砕する
か又は解砕後分級若しくは整粒することにより、嵩密度
の高い造粒物を得ることを特徴とするものである。
The method of the present invention was developed to solve such problems, and after compression molding the thermoplastic resin fine powder without melting, the molded product is optionally crushed or classified after crushing. Alternatively, it is characterized by obtaining granules with high bulk density by sizing.

本発明における圧縮成形においては、プレス圧力は、通
常10〜200 kg/cm”、好ましくは50〜. 
l OOkg/ cry”の範囲で選ばれる。このプレ
ス圧力がlokg/cts2未満では固まらないおそれ
があるし、200kg/cがを超えると圧縮成形機が重
厚になり好ましくない。一方温度は、通常常温ないし2
00°C1好ましくは常温ないし100℃の範囲で選ば
れる。この温度が200℃を超えると粘りが出て、ロー
ラなどに巻きつく傾向が生じ、好ましくないし、また常
温より低い温度で圧縮成形してもなんらメリットはない
。さらに圧縮成形時間については特に制限はなく、適当
な時間を選ぶことができる。
In the compression molding of the present invention, the press pressure is usually 10 to 200 kg/cm", preferably 50 to 200 kg/cm".
lOOkg/cry".If the press pressure is less than 200kg/cts2, it may not solidify, and if it exceeds 200kg/c, the compression molding machine will become heavy, which is undesirable.On the other hand, the temperature is usually room temperature. or 2
00°C1 is preferably selected from room temperature to 100°C. If this temperature exceeds 200°C, it becomes sticky and tends to wrap around rollers, which is not desirable, and there is no advantage to compression molding at a temperature lower than room temperature. Further, there is no particular restriction on the compression molding time, and an appropriate time can be selected.

本発明においては、このようにして圧縮成形して得られ
た成形物を場合により解砕する処置がとられる。この際
、解砕物の平均粒径が、通常0.5〜20mm、好まし
くは1〜1101IIの範囲になるように解砕すること
が望ましい。この平均粒径が0 、5 mm未満では粉
じんが発生するおそれがあるし、20!IIl+を超え
るとフィラーなどとの混合が困難となり好ましくない。
In the present invention, the molded product thus obtained by compression molding is optionally crushed. At this time, it is desirable to crush the crushed material so that the average particle size of the crushed material is usually in the range of 0.5 to 20 mm, preferably in the range of 1 to 1101 II. If this average particle size is less than 0.5 mm, there is a risk of dust generation; If it exceeds IIl+, it becomes difficult to mix with fillers and the like, which is not preferable.

本発明においては、該成形物を解砕後、さらに場合によ
り分級若しくは整粒処置がとられる。この際、円形の振
動篩やその他一般の篩などを用いることができる。特に
、シート状又は紐状に圧縮成形したのち、解砕後、分級
若しくは整粒することが望ましい。・該シート状の成形
物としては、厚みが0.5〜10mm1好ましくは1.
5〜5mm程度のものが有利であり、あまり薄すぎると
処理能力が低下するし、また厚すぎると崩れやすくなり
好ましくない。さらにシートを折り曲げt;波板状のも
のであってもよい。
In the present invention, after the molded product is crushed, it is further subjected to classification or granulation treatment depending on the case. At this time, a circular vibrating sieve or other general sieve can be used. In particular, it is desirable to compress the material into a sheet or string, crush it, and then classify or size it. - The sheet-like molded product has a thickness of 0.5 to 10 mm, preferably 1.
A thickness of about 5 to 5 mm is advantageous; if it is too thin, the processing capacity will be reduced, and if it is too thick, it will tend to crumble, which is undesirable. Furthermore, the sheet may be bent to form a corrugated sheet.

一方、紐状成形物としては、太さが0.5〜10mm、
好ましくは1.5〜5mTn程度のものが有利であり、
あまり細すぎると処理能力が低下するし、まt;太すぎ
ると崩れやすくなり好ましくない。
On the other hand, as a string-like molded product, the thickness is 0.5 to 10 mm,
Preferably, about 1.5 to 5 mTn is advantageous,
If it is too thin, the processing capacity will decrease, and if it is too thick, it will tend to crumble, which is undesirable.

本発明においては、このようにして熱可塑性樹脂微粉末
を造粒する際に、所望に応じ、各種添加剤や充填材を添
加することができる。この場合、これらの添加成分は該
樹脂微粉末と共に不融解圧縮成形機に供給することが望
ましい。
In the present invention, when granulating the thermoplastic resin fine powder in this manner, various additives and fillers can be added as desired. In this case, it is desirable that these additional components be supplied to the non-melting compression molding machine together with the fine resin powder.

該添加剤としては、例えばカーボンブラック、酸化チタ
ン、その他の無機着色剤、タルクなどの増核剤などが挙
げられ、充填材としては、例えばガラス繊維、炭素繊維
、ステンレスなどの細線、炭化ケイ素などのウィスカー
類や粒状体、アラミド繊維などの有機耐熱繊維などが挙
げられる。
Examples of such additives include carbon black, titanium oxide, other inorganic colorants, and nucleating agents such as talc. Examples of fillers include glass fibers, carbon fibers, fine wires such as stainless steel, and silicon carbide. Examples include whiskers, granules, and organic heat-resistant fibers such as aramid fibers.

本発明方法における不融解圧縮成形方式としては、例え
ば(1)バッチ式で、シリンダー内に熱可塑性樹脂粉体
を入れ、油圧によりピストンを用いて圧縮する方式、(
2)M類製造方法のように、スクリューフィーダーでグ
イから高圧で連続的に押出す方式、(3)回転ロールに
該樹脂粉体をはさみ込んでシート状や波形状にしたのち
、これを解砕機などにより、所定の大きさにカットする
か、又は直接粒状にする方式などを用いることができる
。これらの方式の中で、前記(1)の方式は、量産性の
点から不利であるものの、確実性の点では有利であり、
また、(2)の方法は、処理能力は大きいが、圧縮力が
小さいため、バインダーを添加する必要があって、不純
物の混入を嫌うものには不適である。一方、(3)の方
式は、圧縮力が強い上、処理能力も大きく最適である。
Examples of the non-melting compression molding method in the method of the present invention include (1) a batch method in which thermoplastic resin powder is placed in a cylinder and compressed using a piston under hydraulic pressure;
2) Continuous extrusion at high pressure from a goo using a screw feeder, as in the M-class production method; (3) The resin powder is sandwiched between rotating rolls to form a sheet or wave shape, and then released. It can be cut into a predetermined size using a crusher or the like, or it can be directly granulated. Among these methods, method (1) is disadvantageous in terms of mass production, but is advantageous in terms of reliability.
In addition, method (2) has a large processing capacity, but has a small compression force, so it is necessary to add a binder, and it is not suitable for those that do not want to be contaminated with impurities. On the other hand, method (3) has a strong compression force and a large processing capacity, making it optimal.

次に、本発明の実施態様の好適な1例を添付図面に従っ
て説明すると、第1図は本発明方法を実施するための装
置の1例の概略図であって、スクリユーフィーダー2を
備えたホッパー1に、所望に応じて用いられる添加剤や
充填材を含有する熱可塑性樹脂粉体を供給する。該樹脂
粉体はスクリューフィーダー2によりプレスロール3に
送うれ、シート状や紐状に圧縮成形されたのち、解砕機
4によって解砕され、この解砕物はスクリーン5によっ
て整粒されながら系外へ排出される。なお、プレスロー
ル3に凹部を設けて、解砕機を経ずに直接粒状物を得る
ことができる。
Next, a preferred example of the embodiment of the present invention will be described with reference to the accompanying drawings. FIG. A thermoplastic resin powder containing additives and fillers used as desired is supplied to the hopper 1 . The resin powder is sent to a press roll 3 by a screw feeder 2, compressed into a sheet or string, and then crushed by a crusher 4, and this crushed material is sized by a screen 5 and sent out of the system. It is discharged. Note that by providing a concave portion in the press roll 3, it is possible to directly obtain granules without passing through a crusher.

このようにして得られた造粒物の嵩密度は、JIS  
K−6721の方法による測定で、通常0.3〜0 、
7 g/ cm’の範囲にあることが望ましい。
The bulk density of the granules obtained in this way is determined by JIS
Measured by the method of K-6721, usually 0.3 to 0,
It is desirable that it be in the range of 7 g/cm'.

この高密度が0.3g/cr13未満では崩れやすいし
、0.79/C2″を超えると圧縮に要する動力が大き
くなり好ましくない。また、該造粒物の平均粒径は0.
5〜20m5+1好ましくは1〜10肩層の範囲にある
ことが望ましい。この粒径が0 、5 srs未満では
粉じんが発生しやすいし、20m肩を超えるとフィラー
などとの混合が困難となり好ましくない。
If this high density is less than 0.3 g/cr13, it will easily collapse, and if it exceeds 0.79/c2'', the power required for compression will be large, which is undesirable.
It is desirable to be in the range of 5 to 20 m5+1, preferably 1 to 10 shoulder layers. If the particle size is less than 0.5 srs, dust is likely to be generated, and if it exceeds 20 m, it becomes difficult to mix with fillers, etc., which is not preferable.

前記造粒物は、射出成形や押出成形など従来慣用されて
いる成形法により、着色の少ない品質の良好な成形品を
与えることができる。
The granules can be molded into good quality molded products with little coloration by conventionally used molding methods such as injection molding and extrusion molding.

[実施例] 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
[Example] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

製造例1 2001のステンレス製重合槽に、レゾルシノール60
mall、ジクロロベンゾニトリル60moa。
Production Example 1 Resorcinol 60 was added to a 2001 stainless steel polymerization tank.
mall, dichlorobenzonitrile 60 moa.

炭酸ナトリウム66mo!及びN−メチルピロリドン7
011を仕込み、重合させた。次いで、精製後、直空乾
燥してポリシアノアリールエーテルのパウダーを得た。
Sodium carbonate 66mo! and N-methylpyrrolidone 7
011 was charged and polymerized. After purification, the product was then dried in direct air to obtain a polycyanoaryl ether powder.

得られた重合体のp−クロロフェノールを溶媒とする0
、297da濃度の溶液の60℃における還元粘度[y
 −*/ c ] は1.05 di/9であった。ま
た、このものの粉体物性は、疎嵩密度0.159g/c
rs”、固め嵩密度0 、20427cm3、平均嵩密
度0.182y/Cm”、動的嵩密度0.1699/C
P、安息角45度であつt;。
The obtained polymer was prepared using p-chlorophenol as a solvent.
, reduced viscosity [y
-*/c] was 1.05 di/9. In addition, the powder physical properties of this material are that the loose bulk density is 0.159 g/c
rs", solidified bulk density 0, 20427cm3, average bulk density 0.182y/Cm", dynamic bulk density 0.1699/C
P, the angle of repose is 45 degrees and t;.

実施例1 製造例1で得たポリシアノアリールエーテルのパウダー
を、火爆鉄工(株)製、C−1011(ロール径250
 IIIrm、ロール巾50mm5 ロール種フラット
タイプ)を用いて、シート状に成形したのち、このシー
トを同社製、ハンマーミル(スクリーン口開き10mm
d)で解砕し、造粒物を得t;。
Example 1 The polycyanoaryl ether powder obtained in Production Example 1 was prepared using C-1011 (roll diameter 250
IIIrm, roll width 50 mm 5 roll type flat type), this sheet is formed into a sheet shape, and then this sheet is processed by the company's hammer mill (screen opening 10 mm).
d) to obtain a granulated product.

第1表に造粒条件と能力、造粒物性状を示す。Table 1 shows the granulation conditions, capacity, and properties of the granules.

(以下余白) 前把造粒物を東芝機械(株)製IP−4SPを用いて、
シリンダー温度350℃、金星温度200℃で射出成形
したところ、乳白色の成形体が得られt;。
(Left below) The pre-compacted granules were prepared using IP-4SP manufactured by Toshiba Machine Co., Ltd.
When injection molding was carried out at a cylinder temperature of 350°C and a Venus temperature of 200°C, a milky white molded product was obtained.

比較例1 製造例1で得たポリシアノアリールエーテルのパウダー
を、池貝製作所製只軸押出機PCM−30で溶融押出し
てペレットを作成したのち、実施例1と同様にして東芝
l1ll!械(株)製射出成形機I P−4SPを用い
、射出成形を行つたところ、成形体は茶褐色を呈してい
た。また、ペレタイズに要したエネルギーは2.3KW
H/&gであった。
Comparative Example 1 The polycyanoaryl ether powder obtained in Production Example 1 was melt-extruded using a single-screw extruder PCM-30 manufactured by Ikegai Seisakusho to create pellets, and the pellets were then processed in the same manner as in Example 1 to produce Toshiba l1ll! When injection molding was performed using an injection molding machine IP-4SP manufactured by Machinery Co., Ltd., the molded product had a brownish color. Also, the energy required for pelletizing was 2.3KW.
It was H/&g.

[発明の効果] 本発明によると、ガラス転移点80°C以上の熱可塑性
樹脂微粉末を、熱劣化をもたらすことな(、かつ低エネ
ルギー消費量でもって、嵩密度が高く、ハンドリングが
容易である上、着色の少ない粒子に効率よく造粒するこ
とができる。この造粒物は、着色の少ない品質の良好な
成形品を与えることができ、例えば電子・電気製品や自
動車などの部品の成形材料として好適に用いられる。
[Effects of the Invention] According to the present invention, thermoplastic resin fine powder with a glass transition point of 80°C or higher can be produced without causing thermal deterioration (and with low energy consumption, high bulk density, and easy handling). Moreover, it is possible to efficiently granulate particles with less coloring.This granulated product can give molded products of good quality with less coloring, for example, molding parts of electronic/electrical products and automobiles. Suitable for use as a material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための装置の1例の概略
図であって、図中符号1はホッパー 2はスクリューフ
ィーダー 3はプレスロール、4は解砕機、5はスクリ
ーンである。
FIG. 1 is a schematic diagram of an example of an apparatus for carrying out the method of the present invention, in which reference numeral 1 is a hopper, 2 is a screw feeder, 3 is a press roll, 4 is a crusher, and 5 is a screen.

Claims (1)

【特許請求の範囲】 1 80℃以上のガラス転移点を有する熱可塑性樹脂微
粉末を融解させることなく圧縮成形することを特徴とす
る熱可塑性樹脂の造粒方法。 2 80℃以上のガラス転移点を有する熱可塑性樹脂微
粉末を融解させることなく圧縮成形したのち、この成形
物を解砕することを特徴とする熱可塑性樹脂の造粒方法
。 3 80℃以上のガラス転移点を有する熱可塑性樹脂微
粉末を融解させることなく圧縮成形したのち、この成形
物を解砕し、次いで分級若しくは整粒することを特徴と
する熱可塑性樹脂の造粒方法。 4 成形物がシート状又は紐状のものである請求項3記
載の造粒方法。 5 微粉末が平均粒径10〜200μm、嵩密度0.2
g/cm^3以下のものである請求項1、2、3又は4
記載の造粒方法。
[Claims] 1. A method for granulating a thermoplastic resin, which comprises compression molding a fine thermoplastic resin powder having a glass transition point of 80° C. or higher without melting it. 2. A method for granulating a thermoplastic resin, which comprises compression molding a thermoplastic resin fine powder having a glass transition point of 80° C. or higher without melting it, and then crushing the molded product. 3. Granulation of a thermoplastic resin, characterized by compression molding a thermoplastic resin fine powder having a glass transition point of 80° C. or higher without melting, crushing the molded product, and then classifying or sizing the molded product. Method. 4. The granulation method according to claim 3, wherein the molded product is sheet-like or string-like. 5 Fine powder has an average particle size of 10 to 200 μm and a bulk density of 0.2
Claim 1, 2, 3 or 4, wherein the amount is less than g/cm^3.
Granulation method as described.
JP1148478A 1989-06-13 1989-06-13 Pelletizing method of thermoplastic resin Pending JPH0313304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148478A JPH0313304A (en) 1989-06-13 1989-06-13 Pelletizing method of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148478A JPH0313304A (en) 1989-06-13 1989-06-13 Pelletizing method of thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH0313304A true JPH0313304A (en) 1991-01-22

Family

ID=15453655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148478A Pending JPH0313304A (en) 1989-06-13 1989-06-13 Pelletizing method of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH0313304A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120436A1 (en) * 1999-05-24 2001-08-01 Hosokawa Micron Corporation Method for forming granule of thermoplastic resin
EP1215234A1 (en) * 2000-12-12 2002-06-19 SàœD-West-Chemie Gmbh Process for the preparation of curable molding compositions for use in commutators and slip ring bodies
WO2002070220A1 (en) * 2001-03-06 2002-09-12 Idemitsu Petrochemical Co., Ltd. Process for producing granular styrene resin and molded article
WO2002094529A1 (en) * 2001-05-24 2002-11-28 Toray Industries, Inc. Tablet, process for producing the same, and molded article obtained therefrom
JP2003041128A (en) * 2001-05-24 2003-02-13 Toray Ind Inc Tablet type resin composition, method for producing the same and molded product obtained from the same
JP2014117919A (en) * 2012-12-19 2014-06-30 Nippon Zeon Co Ltd Resin composition and utilization of the same
JPWO2015060242A1 (en) * 2013-10-24 2017-03-09 日本ゼオン株式会社 Fiber comprising alicyclic structure-containing polymer and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120436A1 (en) * 1999-05-24 2001-08-01 Hosokawa Micron Corporation Method for forming granule of thermoplastic resin
EP1120436A4 (en) * 1999-05-24 2003-02-19 Hosokawa Micron Kk Method for forming granule of thermoplastic resin
EP1215234A1 (en) * 2000-12-12 2002-06-19 SàœD-West-Chemie Gmbh Process for the preparation of curable molding compositions for use in commutators and slip ring bodies
WO2002070220A1 (en) * 2001-03-06 2002-09-12 Idemitsu Petrochemical Co., Ltd. Process for producing granular styrene resin and molded article
JPWO2002070220A1 (en) * 2001-03-06 2004-07-02 出光石油化学株式会社 Method for producing styrene resin particles and molded article
WO2002094529A1 (en) * 2001-05-24 2002-11-28 Toray Industries, Inc. Tablet, process for producing the same, and molded article obtained therefrom
JP2003041128A (en) * 2001-05-24 2003-02-13 Toray Ind Inc Tablet type resin composition, method for producing the same and molded product obtained from the same
US7514144B2 (en) 2001-05-24 2009-04-07 Toray Industries, Inc. Tablet, process for producing the same, and molded article obtained therefrom
JP2014117919A (en) * 2012-12-19 2014-06-30 Nippon Zeon Co Ltd Resin composition and utilization of the same
JPWO2015060242A1 (en) * 2013-10-24 2017-03-09 日本ゼオン株式会社 Fiber comprising alicyclic structure-containing polymer and method for producing the same

Similar Documents

Publication Publication Date Title
KR101197288B1 (en) Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
US5395055A (en) Solid state shear extrusion pulverization
CN106832905A (en) Polymer matrix micro-/ nano composite material powder and preparation method thereof
US6523763B1 (en) Process for producing thermoplastic resin granules
AU2022100190A4 (en) Manufacture of filament material
EP2307531B1 (en) Grindable pellet
JPH071450A (en) Solid state shearing extrusion pulverizing
JPH0313304A (en) Pelletizing method of thermoplastic resin
KR102216447B1 (en) Manufacturing method for recycled plastic materials
JP2871048B2 (en) Method for producing polyarylene sulfide resin pellets
JPH09123169A (en) Thermoplastic resin synthetic material with plastic bottle as material, manufacture thereof, thermoplastic resin molding using the material and manufacture thereof
EP3411153B1 (en) Process for preparing automotive shredder fibre residue pellets
JP3120383B2 (en) Method for producing granulated polyarylene sulfide resin
US3058967A (en) Method of converting powdered polymers to granular form
JPH061855A (en) Production of granular polyphenylene sulfide
JP4187806B2 (en) Method for producing granular thermosetting resin molding material
JP3929188B2 (en) Method for producing polycarbonate resin granules
EP1256429B1 (en) Process for manufacturing granulated hydrophilic resin
CN213471805U (en) Thermoplastic elastomer extrudes granulation with collecting air cooling device
CN117343430A (en) Glass fiber reinforced thermoplastic composite particles
JPS62169605A (en) Granulation of polycarbonate
JPS63286469A (en) Composition for molding carbon fiber composite resin
JPH0730211B2 (en) Method for producing thermoplastic resin composition
JPH11293124A (en) Waste paper material for compounding in resin, and its production
JPH02215514A (en) Utilization and treatment method for waste matter of polyethylene terephthalate resin product