JPH0313286B2 - - Google Patents

Info

Publication number
JPH0313286B2
JPH0313286B2 JP58003866A JP386683A JPH0313286B2 JP H0313286 B2 JPH0313286 B2 JP H0313286B2 JP 58003866 A JP58003866 A JP 58003866A JP 386683 A JP386683 A JP 386683A JP H0313286 B2 JPH0313286 B2 JP H0313286B2
Authority
JP
Japan
Prior art keywords
powder
laser beam
diameter
containing alloy
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58003866A
Other languages
Japanese (ja)
Other versions
JPS59129701A (en
Inventor
Hitoshi Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP386683A priority Critical patent/JPS59129701A/en
Publication of JPS59129701A publication Critical patent/JPS59129701A/en
Publication of JPH0313286B2 publication Critical patent/JPH0313286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、パルス発振レーザーを用いて、貴金
属含有合金の粉末を、形状、大きさ共に精度良く
コントロールして得る粉末製造法に関する。 貴金属含有合金粉末は、ろう材、電気接点材、
導電ペーストなど非常に応用分野が広く、その製
造方法も機械的粉砕法、アトマイズ法、電解法、
還元法、蒸発法など種々の方法がある。 しかし、これらの製造方法は、夫々他の方法に
無い特長を有するものの、いずれも所望の寸法、
形状の貴金属含有合金粉末を精度良く作ることが
困難である貴金属含有合金粉末を所望の寸法に精
度良く作る方法として、例えばワイヤーを精度良
くペレツト状に切断し、これを電気炉にて加熱、
溶融して所望の寸法の粉末を得る方法がある。 しかし、この方法によると、液体状態で二相分
離する合金、例えばAg−Ni、Ag−SnO2などの
粉末を得ることは不可能である。 液体状態で二相分離するAg−Ni、Ag−SnO2
などの合金粉末を得る方法としては、Ag粉とNi
粉、Ag粉とSnO2粉を夫々ボールミルなどを用
い、ハイパワーエネルギーで混合・粉砕すること
により、機械的に合金粉末を得る方法があるが、
この方法によれば、粒形、寸法の制御が難しく、
分級しなければ所望の大きさの粉末を得ることが
できない。 本発明は、前記諸事情に鑑みなされたものであ
り、貴金属含有合金の粉末を、所望の寸法、形状
に精度良く作ることのできる粉末製造法を提供せ
とするものである。 以下本発明による粉末製造法の詳細を図によつ
て説明する。先ず、得ようとする粉末の成分組成
の素材を所望とする粉末径の1〜2倍の径の線材
に加工する。これは、液体状態で二相分離する合
金でも普通の粉末冶金法で作成すれば可能であ
る。次に第1図に示す如く線材1にパルス発振レ
ーザーを用いてレーザービーム2を照射する。こ
の時のレーザービーム2の照射条件はイの部分を
1パルスの照射で、照射部分が全て溶融するレー
ザービームエネルギー以上のエネルギーのレーザ
ービーム2の照射である。このような照射条件で
イの部分を溶融飛散させた後、ロの部分全体を溶
融飛散させる。以後これらの操作を繰返し、飛散
物を回収することにより、寸法、形状のそろつた
粉末を得ることができる。 尚、これらの粉末の寸法、形状は、線材の径と
この材料のレーザービーム2の吸収率とレーザー
ビーム2のパワー密度とアシストガスの吹き付け
圧で決まるものであるが、特に液状二相分離する
性質の貴金属含有合金の場合は線状の径に影響さ
れるため所望とする粉末径の1〜2倍の径とする
必要がある。またレーザービーム2は微小部分に
極めて高いエネルギーを集中させることができる
為、これらの飛散物は溶融状態のまま二相分離す
る前にアシストガスを吹き付けて強制的に適当な
液体に投入させることで急速に固化し、所望の粉
末が得られる。 前記の飛散物を回収するには、次の方法が採ら
れる。即ち、前記の方法で溶融させた合金にノズ
ルより適当なアシストガスを吹き付けて強制的に
下方に吹き飛ばし、予め用意しておいた適当な液
体中で急冷する。かくして粉末同志は溶着するこ
とがなく、その粉末は液体の過又は乾燥により
回収される。 次に本発明の粉末製造法の具体的な実施例につ
いて説明する。 粉末冶金法によりAg90重量%とNi10重量%の
ビレツトを作り、このビレツトを押出、引抜加工
により下表の左欄に示すような太さの線材に加工
した。次に第2図に示す如く線材1をロールフイ
ーダー3により下表の左欄に示す送り速度で送給
し、線材1を先端から順次イ,ロ,ハ…の部分を
パルス発振レーザーである波長1060nmのYAGレ
ーザーから下表の中央欄に示すレーザービーム条
件のレーザービーム2の照射により溶融飛散させ
ると同時に収束レンズ4を保持してレーザービー
ム2を囲むように設けられたノズル5からアシス
トガスとしてArガスを流量50/分でもつて吹
き付けて強制的に下方に吹き飛ばし、槽6の液体
窒素7中に投入して急冷し、その後液体窒素を
過して粉末を回収した処、下表の右欄に示すよう
な粒度分布の略所要の寸法形状の粉末が得られ
た。
The present invention relates to a powder manufacturing method that uses a pulsed laser to precisely control the shape and size of noble metal-containing alloy powder. Precious metal-containing alloy powder can be used as brazing filler metal, electrical contact material,
It has a wide range of applications such as conductive paste, and its manufacturing methods include mechanical crushing, atomization, electrolysis, etc.
There are various methods such as reduction method and evaporation method. However, although each of these manufacturing methods has features that other methods do not have, all of them can achieve desired dimensions,
It is difficult to accurately produce precious metal-containing alloy powder in the desired shape.As a method for accurately producing noble metal-containing alloy powder into desired dimensions, for example, wire is cut into pellets with precision, and then heated in an electric furnace.
There are methods of melting to obtain a powder of desired dimensions. However, according to this method, it is impossible to obtain powders of alloys that undergo two-phase separation in the liquid state, such as Ag-Ni, Ag- SnO2, etc. Ag−Ni, Ag−SnO 2 which separates into two phases in the liquid state
The method of obtaining alloy powders such as Ag powder and Ni
There is a method to mechanically obtain alloy powder by mixing and pulverizing powder, Ag powder and SnO 2 powder using high power energy using a ball mill, etc.
According to this method, it is difficult to control grain shape and size.
Unless classified, powder of the desired size cannot be obtained. The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a powder manufacturing method that can accurately produce powder of a noble metal-containing alloy into desired dimensions and shapes. The details of the powder manufacturing method according to the present invention will be explained below with reference to the drawings. First, a material having the composition of the powder to be obtained is processed into a wire rod having a diameter 1 to 2 times the diameter of the desired powder. This is possible even if the alloy undergoes two-phase separation in the liquid state, if it is produced using a common powder metallurgy method. Next, as shown in FIG. 1, the wire 1 is irradiated with a laser beam 2 using a pulsed laser. The irradiation conditions for the laser beam 2 at this time are to irradiate the part A with one pulse, and to irradiate the laser beam 2 with an energy higher than the laser beam energy that melts the entire irradiated part. After the part A is melted and scattered under such irradiation conditions, the entire part B is melted and scattered. Thereafter, by repeating these operations and collecting the scattered materials, powder with uniform size and shape can be obtained. The size and shape of these powders are determined by the diameter of the wire, the absorption rate of the laser beam 2 of this material, the power density of the laser beam 2, and the blowing pressure of the assist gas. In the case of noble metal-containing alloys, the diameter must be 1 to 2 times the desired powder diameter because it is affected by the linear diameter. In addition, since the laser beam 2 can concentrate extremely high energy in minute areas, these scattered particles can be forcibly thrown into a suitable liquid by spraying assist gas before the two phases separate while remaining in a molten state. It solidifies quickly and the desired powder is obtained. The following method is used to collect the above-mentioned scattered objects. That is, the alloy melted by the above method is forcibly blown downward by spraying a suitable assist gas from a nozzle, and is rapidly cooled in a suitable liquid prepared in advance. Thus, the powders do not weld together and can be recovered by evaporation or drying of the liquid. Next, specific examples of the powder manufacturing method of the present invention will be described. A billet containing 90% Ag and 10% Ni by weight was prepared by powder metallurgy, and this billet was extruded and drawn into wire rods having the thickness shown in the left column of the table below. Next, as shown in Fig. 2, the wire rod 1 is fed by the roll feeder 3 at the feeding speed shown in the left column of the table below, and the portions A, B, C, etc. of the wire rod 1 are sequentially cut from the tip by a pulse oscillation laser. The assist gas is melted and scattered by irradiation with the laser beam 2 from a YAG laser with a wavelength of 1060 nm under the laser beam conditions shown in the center column of the table below, and at the same time, the assist gas is emitted from the nozzle 5 provided so as to hold the converging lens 4 and surround the laser beam 2. The powder was forcibly blown downward by spraying Ar gas at a flow rate of 50/min, then put into liquid nitrogen 7 in tank 6 for rapid cooling, and then passed through the liquid nitrogen to collect the powder. A powder having approximately the required size and shape with a particle size distribution as shown in the column was obtained.

【表】 この粉末を金属顕微鏡で観察した処、第3図に
示す如くAgとNiは分離することなく、Ag8の地
の中にNi粒子9が極めて微細に分散していた。 尚上記実施例は、金属同志の合金粉末を作る場
合であるが、本発明の粉末製造法は金属単体の粉
末、金属と非金属の合金粉末を作る場合にも適用
できるものである。 以上の説明で判るように本発明の粉末製造法に
よれば、粒度幅の狭い所要の寸法、形状の貴金属
含有合金の粉末を精度良く作ることができるとい
う優れた効果がある。
[Table] When this powder was observed with a metallurgical microscope, as shown in FIG. 3, Ag and Ni did not separate, and Ni particles 9 were extremely finely dispersed in the Ag 8 matrix. Although the above-mentioned embodiment deals with the production of an alloy powder of metals, the powder manufacturing method of the present invention can also be applied to the production of powder of simple metals or alloy powder of metals and non-metals. As can be seen from the above description, the powder production method of the present invention has the excellent effect of being able to accurately produce powder of a noble metal-containing alloy having a narrow particle size range and a desired size and shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の粉末製造法の原理を示す図、
第2図は本発明の粉末製造法の実施例を示す概略
図、第3図は本発明の粉末製造法により得られた
Ag−Ni合金粉末の組織断面図である。 1……線材、2……レーザービーム、3……ロ
ールフイーダー、4……収束レンズ、5……ノズ
ル、6……槽、7……液体窒素、8……Ag、9
……Ni粒子。
FIG. 1 is a diagram showing the principle of the powder manufacturing method of the present invention;
Figure 2 is a schematic diagram showing an example of the powder manufacturing method of the present invention, and Figure 3 is a schematic diagram showing an example of the powder manufacturing method of the present invention.
FIG. 2 is a cross-sectional view of the structure of Ag-Ni alloy powder. 1... Wire, 2... Laser beam, 3... Roll feeder, 4... Converging lens, 5... Nozzle, 6... Tank, 7... Liquid nitrogen, 8... Ag, 9
...Ni particles.

Claims (1)

【特許請求の範囲】[Claims] 1 液状二相分離する性質の貴金属含有合金を所
望とする粉末径の1〜2倍の径の線状に加工し、
次にこの線状素材をパルス発振レーザーを用いて
1パルス当りのレーザービームエネルギーでレー
ザービーム照射部分が溶融する照射条件以上のエ
ネルギーで一気に溶融しノズルより適当なアシス
トガスを溶融金属に吹き付けて飛散させ適当な液
体中に強制的に投入し急冷することを繰り返し、
次いでこれらの飛散物を濾過または乾燥させ回収
することを特徴とする貴金属含有合金の粉末製造
法。
1 Processing a noble metal-containing alloy having the property of liquid two-phase separation into a linear shape with a diameter 1 to 2 times the desired powder diameter,
Next, this linear material is melted all at once using a pulse oscillation laser with laser beam energy per pulse that exceeds the irradiation conditions that melt the laser beam irradiated part, and a suitable assist gas is sprayed onto the molten metal from a nozzle to scatter it. Repeatedly forcefully pouring it into a suitable liquid and rapidly cooling it.
A method for producing powder of a precious metal-containing alloy, which comprises then collecting these scattered substances by filtering or drying them.
JP386683A 1983-01-13 1983-01-13 Production of powder of metal or nonmetal or alloy thereof Granted JPS59129701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP386683A JPS59129701A (en) 1983-01-13 1983-01-13 Production of powder of metal or nonmetal or alloy thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP386683A JPS59129701A (en) 1983-01-13 1983-01-13 Production of powder of metal or nonmetal or alloy thereof

Publications (2)

Publication Number Publication Date
JPS59129701A JPS59129701A (en) 1984-07-26
JPH0313286B2 true JPH0313286B2 (en) 1991-02-22

Family

ID=11569111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP386683A Granted JPS59129701A (en) 1983-01-13 1983-01-13 Production of powder of metal or nonmetal or alloy thereof

Country Status (1)

Country Link
JP (1) JPS59129701A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114250B2 (en) * 2008-03-05 2013-01-09 旭化成ケミカルズ株式会社 Method for producing metal fine powder
CN102962466A (en) * 2012-11-29 2013-03-13 哈尔滨工业大学 Method for preparing metal nanoparticles through laser
CN105689727B (en) * 2016-01-29 2017-10-03 中国工程物理研究院流体物理研究所 The method that pulsed power technology prepares high bactericidal properties nanometer Ag Cu alloyed powders
CN113275579B (en) * 2021-05-24 2023-01-24 北京科技大学顺德研究生院 Device for preparing metal powder by laser thermal explosion of metal foil strip and preparation method of metal powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505666A (en) * 1973-05-23 1975-01-21
JPS5360360A (en) * 1976-11-11 1978-05-30 Tanaka Precious Metal Ind Method of producing composite silverrnickel powder
JPS54142111A (en) * 1978-04-28 1979-11-06 Tanaka Precious Metal Ind Production of contact material
JPS56136634A (en) * 1980-03-29 1981-10-26 Res Dev Corp Of Japan Production of ultra-fine powder and particle using laser beam
JPS5719304A (en) * 1980-07-07 1982-02-01 Daido Steel Co Ltd Production of fine powder
JPS5726109A (en) * 1980-07-22 1982-02-12 Daido Steel Co Ltd Producing device for finely pulverized powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505666A (en) * 1973-05-23 1975-01-21
JPS5360360A (en) * 1976-11-11 1978-05-30 Tanaka Precious Metal Ind Method of producing composite silverrnickel powder
JPS54142111A (en) * 1978-04-28 1979-11-06 Tanaka Precious Metal Ind Production of contact material
JPS56136634A (en) * 1980-03-29 1981-10-26 Res Dev Corp Of Japan Production of ultra-fine powder and particle using laser beam
JPS5719304A (en) * 1980-07-07 1982-02-01 Daido Steel Co Ltd Production of fine powder
JPS5726109A (en) * 1980-07-22 1982-02-12 Daido Steel Co Ltd Producing device for finely pulverized powder

Also Published As

Publication number Publication date
JPS59129701A (en) 1984-07-26

Similar Documents

Publication Publication Date Title
EP3691815B1 (en) Additive manufactured component and method of manufacturing thereof
US4374075A (en) Method for the plasma-arc production of metal powder
JPH0593213A (en) Production of titanium and titanium alloy powder
EP3247530B1 (en) Alloy for hard soldering
DE3005662C2 (en) Method for producing a contact element
KR920021241A (en) Hard particle dispersed alloy powder and its manufacturing method
US3434831A (en) Fabrication of spherical powders
US4818283A (en) Dispersion hardened copper alloys and production process therefore
JPH0313286B2 (en)
JPH0313287B2 (en)
DE3424958A1 (en) WIRE ELECTRODE FOR ELECTRICAL DISCHARGE PROCESSING BY MEANS OF CUTTING WIRE
Naesstroem et al. From mine to part: directed energy deposition of iron ore
JPH02156003A (en) Manufacture of alloy powder containing titanium-aluminum intermetallic compound
US3511646A (en) Filler metal for the electric arc welding,and method for its manufacture
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder
US4842955A (en) Homogeneous, metastable BAg-group brazing alloys
DE3541584A1 (en) Process and appliance for preparing metal-composite materials, and contact pieces produced therewith for electrical switchgear
EP1239983B1 (en) Method for producing a powder
RU2769190C1 (en) Welding flux granulation method
WO2023104778A1 (en) Method for producing a porous layer or a porous body
Supriadi et al. Effect of gas pressure on conduit plasma atomization for fabricating spherical stainless steel powder
DE3238240A1 (en) Method of producing zinc powder for alkaline batteries by atomisation
US4928872A (en) Method of brazing employing bag-group homogeneous microcrystalline brazing powders
WO2024090447A1 (en) Method for manufacturing copper alloy powder for metal am
Miller Rotating electrode process