JPH03132078A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH03132078A
JPH03132078A JP1268926A JP26892689A JPH03132078A JP H03132078 A JPH03132078 A JP H03132078A JP 1268926 A JP1268926 A JP 1268926A JP 26892689 A JP26892689 A JP 26892689A JP H03132078 A JPH03132078 A JP H03132078A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
silicon film
silicon
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1268926A
Other languages
Japanese (ja)
Other versions
JP3140023B2 (en
Inventor
Takashi Kobayashi
孝 小林
Atsushi Hiraiwa
篤 平岩
Shinpei Iijima
飯島 晋平
Yuzuru Oji
譲 大路
Masahiro Ushiyama
牛山 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01268926A priority Critical patent/JP3140023B2/en
Publication of JPH03132078A publication Critical patent/JPH03132078A/en
Application granted granted Critical
Publication of JP3140023B2 publication Critical patent/JP3140023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable an oxide film having improved insulation breakdown voltage to be formed on a polycrystal Si film by adding crystal grains having specified grain diameter into an Si film, setting the concentration of impurity P or As within the film to a specified value, and forming an SiO2 insulation film on the Si film. CONSTITUTION:A field oxide film 102 is formed on an n-type Si substrate 101 in face orientation (100) by selective oxidation, P is doped and deposited onto it by the LPCVD method using Si2H6 and PH3 as material thus depositing a first Si film 103, and then it is machined by dry etching to form a first electrode. An SiO2 film 104 is formed on that surface by thermal oxidation for multiple crystallization. Then, a second Si film 105 is deposited as in a film 103, and subjected to heat treatment, thus achieving polycrystallization of film and activation of impurities. The film 105 is machined to form a second electrode. The grain diameter of the crystal grain within the Si films 103 and 105 is made at least ten times larger than the film thickness and the concentration of P or As within the film is set to 1X10<20>-8X10<20>cm<-3>.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は半導体装置及びその製造方法に係り。 特に高耐圧、高信頼性を有するMOS型半導体装置およ
びその製造方法に関する。 [従来の技術] 今日のLSIの発展をささえてきた技術の一つに、多結
晶シリコン(Si)電極・配線形成技術がある。多結晶
Si膜は、膜堆積直後の状態では、極めて抵抗が高いた
め、その後の工程で、イオン打込み法や熱拡散法により
不純物をドーピングし、導電性を得ている−0 MO5型不揮発性メモリ等では、上記方法により形成し
た第1の多結晶Si膜の表面を熱酸化して二酸化シリコ
ン(Sin、)から成るkn膜を形成し、更にこの絶縁
膜上に、第2の多結晶Si膜を第1の多結晶Si膜と同
様の方法で形成して、トランジスタやキャパシタを構成
している。この種の半導体装置の製造方法に関連するも
のとじては、電子情報通信学会技術研究報告第184巻
、1985年、第43頁から48頁が挙げられる。 [発明が解決しようとする課題] しかし、上記従来技術により形成した多結晶Siの熱酸
化膜の絶縁耐圧は、基板単結晶Siの熱酸化膜のそれに
比べて著しく劣るという問題があった。これは、以下の
2つの理由によると考えられている。 (D多結晶Si/5in2界面に存在する凹凸での電界
集中。 膜堆積後の多結晶Siの表面には、多数の凹凸が存在す
る。この凹凸に局所的に電界が集中する結果、S i 
O,膜の絶縁破壊が起こる。更に、この凹凸に起因して
、多結晶Siが酸化されずにSiO2膜中に取り残され
ることもあり、電流漏洩の原因となる。 この問題を解決するために、例えば、Si膜の堆積を5
5×1020Cから575℃の範囲という従来より低温
で行ない、膜堆積時のSi膜の状態を非晶質とすること
により、Si膜表面の凹凸を低減する方法も提案されて
いる。しかし、多結晶S1膜の表面を平滑にしただけで
は、高い絶縁耐圧は得られなかった。 ■不純物の酸化膜中への取り込み。 多結晶Si膜中の不純物、特に、結晶粒界に偏析してい
た不純物が、酸化の際にSiO□中に取り込まれる結果
、準位が生じ、漏洩電流が増大する。 本発明の目的は、単結晶Si基板上に形成した熱酸化膜
と同等の高い絶縁耐圧を有する酸化膜を、多結晶Si膜
上に形成する方法を提供することにある。
The present invention relates to a semiconductor device and a method for manufacturing the same. In particular, the present invention relates to a MOS type semiconductor device having high breakdown voltage and high reliability, and a method for manufacturing the same. [Prior Art] One of the technologies that has supported the development of today's LSI is polycrystalline silicon (Si) electrode/wiring formation technology. Polycrystalline Si films have extremely high resistance immediately after film deposition, so in subsequent steps, impurities are doped using ion implantation or thermal diffusion to obtain conductivity.-0 MO5 nonvolatile memory et al., the surface of the first polycrystalline Si film formed by the above method is thermally oxidized to form a kn film made of silicon dioxide (Sin), and a second polycrystalline Si film is further formed on this insulating film. is formed by the same method as the first polycrystalline Si film to constitute a transistor or a capacitor. Related to this type of semiconductor device manufacturing method, there can be mentioned IEICE Technical Research Report, Vol. 184, 1985, pages 43 to 48. [Problems to be Solved by the Invention] However, there was a problem in that the dielectric strength of the thermally oxidized film of polycrystalline Si formed by the above-mentioned conventional technique was significantly inferior to that of the thermally oxidized film of single-crystalline Si on the substrate. This is thought to be due to the following two reasons. (D Electric field concentration on the unevenness existing at the polycrystalline Si/5in2 interface. There are many unevenness on the surface of polycrystalline Si after film deposition. As a result of the electric field being locally concentrated on these unevenness, the Si
O, dielectric breakdown of the film occurs. Further, due to the unevenness, polycrystalline Si may be left behind in the SiO2 film without being oxidized, causing current leakage. To solve this problem, for example, the deposition of a Si film was
A method has also been proposed in which the unevenness of the Si film surface is reduced by performing the process at a lower temperature than conventionally in the range of 5×10 20 C to 575° C. and making the Si film in an amorphous state during film deposition. However, simply by smoothing the surface of the polycrystalline S1 film, a high dielectric strength voltage could not be obtained. ■Incorporation of impurities into the oxide film. Impurities in the polycrystalline Si film, particularly impurities segregated at grain boundaries, are incorporated into SiO□ during oxidation, resulting in generation of levels and an increase in leakage current. An object of the present invention is to provide a method for forming an oxide film on a polycrystalline Si film, which has a dielectric strength as high as that of a thermal oxide film formed on a single-crystal Si substrate.

【課題を解決するための手段] 上記目的は以下の構成。 (1)第1のSi膜を、不純物をドーピングしながら堆
積する、 (2)第1のSi膜の堆積温度を550℃以下とし、非
晶質状態で行なう。 (3)第1のSi膜中の不純物濃度を、8X102fl
C「3以下とする、 ことにより達成される。 【作用】 上記製造方法によれば、第1のSi膜とSiO2膜との
界面、及びS i O2膜と第2のSi膜の界面の凹凸
は5nm以下となり、極めて平滑となる。 従って、従来技術で生じていた、多結晶Si膜の凹凸に
起因した局所的な電界集中がない。更に、本Si膜の結
晶粒径は従来の多結晶Si膜の約10倍と大きいうえ、
不純物をドーピングしながら膜を堆積しているので、粒
界に偏析する不純物の濃度が小さい。従って、酸化によ
りS i O2膜中に取り込まれる不純物の量が低減さ
れる。よって、高い絶縁耐圧を有する多結晶5i−3i
n、−多結晶Si構造を形成することが可能となる。 【実施例1 実施例1 まず、第2図を用いて、本発明の第一の実施例につき詳
細に説明する。本実施は以下の手順で作成した。 まず、抵抗率0.1ΩQm、面方位(100)のn型S
i基板101の表面に、周知の選択酸化技術によりフィ
ールド酸化膜102を形成した。 次いで、第1のSi膜103を、原料ガスにジシラン(
sxaHa)とフォスフイン(PH,)を用い、減圧化
学気相成長法(LPCVD法)により、リンをドーピン
グしながら525℃で200nm堆積した。Si膜10
3は、膜堆積直後の状態は非晶質である。 Si膜103の堆積に際しては、窒素を希釈ガスとして
用いた。これは、PH,の流量が小さいため、希釈ガス
を用いることにより、その制御を容易とするためである
。更に、希釈ガスを用いると、同一バッチ四のウェーハ
間の膜厚・濃度の均一性が向上するという効果もある。 希釈ガスとしては、窒素の他に、ヘリウム、アルゴン等
の不活性ガスを用いてもよい。 このSi膜103を、周知のりソグラフイ技術とドライ
エツチング技術により加工し、第1の電極とした。 次いで、Si膜表面に、熱酸化法により20nmのS 
i O2膜104を形成した。酸化は、1000℃の温
度で、10%の酸素を含有したアルゴンガス雰囲気中で
行なった。なお、この酸化の際。 第1のSi膜は非晶質状態から多結晶状態に遷移し、同
時に不純物の活性化も完了する。続いて、厚さ200n
mの第2のSi膜105を、第1のSi膜103と同様
の条件により堆積した。そして、650℃の窒素雰囲気
で20分間熱処理を行ない、第2のSi膜の多結晶化と
不純物の活性化を行なった。その後、第2のSi膜を加
工し、第2の電極とした。 上記方法により形成したMO8型キャパシタの絶縁耐圧
(lO””A/cm2の漏洩電流が生じたときの印加電
界強度)と第1のSi膜中のリン濃度の関係を第1図に
示す。絶縁耐圧の測定においては、第1の電極103を
基準とし、第2の電極105に正の電圧を印加した。な
お、この場合の第2のSi膜中のリン濃度は4X1×1
020cm−3とした。 図のように、第1のSi膜中のリン濃度の増加とともに
絶縁耐圧は向上し、リン濃度が7×101020a’で
は7.8MV/cmと、従来、約6MV/cmが限界で
あったものが、単結晶Si基板上に形成したS i O
,膜と同等の値を示した。しかしながら、リン濃度が更
に増加すると、絶縁耐圧は急激に劣化した。従って、第
1のSi膜中のリン濃度は、8X1×1020cm−”
以下とすべきである。なお、第1のSi膜中のリン濃度
が1×1×1020Qm−”以下であると、膜のシート
抵抗が大きくなり、実用に適さない。 ここで、第1のSi膜103を酸化する際の希釈ガスと
して、アルゴンの代わりに窒素を用いても、第1図と同
様の結果が得られた。しかし、絶縁耐圧は、各リン濃度
の値に対して、第1図より小さめであった。従って、希
釈用のガスとしては、窒素よりもアルゴン、ネオン等の
不活性ガスが望ましい。 比較のため、第1図には、従来法における結果も併せて
示した。従来法(a)は、S i H4を原料ガスに用
い、630℃、すなわち多結晶状態で第1のSi膜を2
00nm堆積し、続いてLPCVD法により10nmの
S i O,膜を形成した後、40keVでリンイオン
を打込み、SiO□膜を除去した後、1000℃の温度
で、10%の酸素を含有したアルゴン雰囲気中で酸化を
行なったものである。従来法(b)は、従来法(a)の
Si膜の堆積を525℃、つまり非晶質状態としたもの
である。なお、従来法(a)、従来法(b)ともに、第
2のSi膜の堆積は、本発明の方法によった。同図から
明らかなように、第1のSi膜の堆積を多結晶、非晶質
いずれの状態で行なっても、リンのドーピングを膜堆積
後に行なったのでは、高いM緑耐圧は得られず、6.6
MV/cmが最高であった。 本実施例によれば、Si、HsとPH3を用いて、リン
をドーピングしながら、非晶質状態で第1及び第2のS
i膜を堆積することにより、Si電極間のSiO2膜の
絶縁耐圧を向上する効果がある。 なお、S i O,膜として、CVD法で形成した膜を
用いても、同様の効果を得ることができる。 実施例2 第3図に、本発明の第2の実施例の断面概略図を示す。 本実施例は一括消去型EEPROMであり、以下に示す
手順で作成した。 まず、抵抗率10Ωam、面方位(100)のp型Si
基板201の表面に、周知の選択酸化技術によりフィー
ルド酸化膜202を形成した。次いで、酸素雰囲気中で
Si基板を酸化し、15nmのゲート酸化膜203を形
成した。続いて、5izH=とPI(3を原料ガスに用
い、LPCVD法によりリンをドーピングしながら、5
25℃で第1のSi膜204を200nm堆積した。S
i膜中のリン濃度は5−X 1×1020 c m−3
である。次に、公知の技術を用いて第1のSi膜204
を加工し、フローティングゲートとした。 次に、1000℃の温度で、10%の酸素を含有したア
ルゴン雰囲気中で第1のS i rJ!A204の表面
を酸化し、20nmのSiO2膜20膜製05した。続
いて、第2のSi膜206を第1のSi膜と同様の方法
で200nm堆積した後、公知の技術により第2のSi
膜を加工し、コントロールゲートとした。その後、リン
及びヒ素イオンを順次打込んでソース、ドレイン領域2
07を形成した後、LPCVD法により眉間酸化膜20
8を形成し、これに接続孔を開け、A1膜209を堆積
して引出し配線とした。 本方法により形成したEEPROMのフローティングゲ
ート204とコントロールゲート206間のS i O
,膜205の絶縁耐圧は、従来法に比べ、20%以上向
上した。これとともに、フローティングゲートの電荷保
持時間が一桁向上した。 なお、本実施例において第1のSi膜204の堆積の際
、膜中のリン濃度を、膜堆積の進行に従い0から5 X
 1×1020 c m””へと漸次増加させる実験も
併せて行なった。この場合、S i O,膜205の絶
縁耐圧は、上記方法と同一であったにもかかわらず、ゲ
ート酸化膜203の耐圧は15%向上し、消去後のしき
い値電圧が2vから1vに低減した。 本実施例によれば、−括消去型E E P ROMのフ
ローティングゲート及びコントロールゲートを、5i2
HGとPH,を用いて、リンをドーピングしながら、非
晶質状態で堆積することにより、電荷保持特性を大幅に
向上できるという効果がある。 なお、実施例1及び2では、第1及び第2のSi膜の堆
積に際し、ドーピングガスにフォスフインを用い、リン
を不純物として導入したが、ドーピングガスにアルシン
を用い、ヒ素を導入しても同様の効果が得られる。 【発明の効果] 本発明によれば、多結晶Si膜上に高い絶縁耐圧を有す
るSiO2膜を形成することができる。 これにより、LSIデバイスの高信頼化が図れる。 更に、従来室なわれていた熱拡散やイオン打込みが不要
となるので、LSIデバイス製造工程の大幅な簡略化が
図れる。
[Means for solving the problem] The above purpose has the following structure. (1) The first Si film is deposited while doping with impurities. (2) The first Si film is deposited at a deposition temperature of 550° C. or less in an amorphous state. (3) Set the impurity concentration in the first Si film to 8×102fl
This is achieved by making C'3 or less. [Operation] According to the above manufacturing method, the unevenness of the interface between the first Si film and the SiO2 film and the interface between the SiO2 film and the second Si film is is less than 5 nm, making it extremely smooth.Therefore, there is no local electric field concentration caused by the unevenness of the polycrystalline Si film, which occurs in the conventional technology.Furthermore, the crystal grain size of the present Si film is smaller than that of the conventional polycrystalline Si film. It is approximately 10 times larger than a Si film, and
Since the film is deposited while doping with impurities, the concentration of impurities that segregate at grain boundaries is small. Therefore, the amount of impurities incorporated into the SiO2 film due to oxidation is reduced. Therefore, polycrystalline 5i-3i with high dielectric strength
It becomes possible to form an n,-polycrystalline Si structure. Example 1 Example 1 First, a first example of the present invention will be described in detail with reference to FIG. This implementation was created using the following steps. First, an n-type S with a resistivity of 0.1ΩQm and a plane orientation of (100)
A field oxide film 102 was formed on the surface of the i-substrate 101 by a well-known selective oxidation technique. Next, the first Si film 103 is coated with disilane (
sxaHa) and phosphine (PH, ) were deposited to a thickness of 200 nm at 525° C. by low pressure chemical vapor deposition (LPCVD) while doping with phosphorus. Si film 10
No. 3 is amorphous immediately after film deposition. When depositing the Si film 103, nitrogen was used as a diluent gas. This is because since the flow rate of PH is small, it can be easily controlled by using diluent gas. Furthermore, the use of a diluent gas has the effect of improving the uniformity of film thickness and concentration among wafers of the same batch. In addition to nitrogen, an inert gas such as helium or argon may be used as the diluent gas. This Si film 103 was processed using well-known lamination techniques and dry etching techniques to form a first electrode. Next, 20 nm of S was deposited on the surface of the Si film using a thermal oxidation method.
An iO2 film 104 was formed. The oxidation was carried out at a temperature of 1000° C. in an argon gas atmosphere containing 10% oxygen. Note that during this oxidation. The first Si film transitions from an amorphous state to a polycrystalline state, and at the same time, activation of impurities is completed. Next, a thickness of 200n
A second Si film 105 of m was deposited under the same conditions as the first Si film 103. Then, heat treatment was performed in a nitrogen atmosphere at 650° C. for 20 minutes to polycrystallize the second Si film and activate impurities. Thereafter, the second Si film was processed to form a second electrode. FIG. 1 shows the relationship between the dielectric strength of the MO8 type capacitor formed by the above method (the applied electric field strength when a leakage current of 1O""A/cm2 occurs) and the phosphorus concentration in the first Si film. In measuring the dielectric strength, a positive voltage was applied to the second electrode 105 using the first electrode 103 as a reference. Note that the phosphorus concentration in the second Si film in this case is 4×1×1
020 cm-3. As shown in the figure, the dielectric strength voltage improves as the phosphorus concentration in the first Si film increases, and when the phosphorus concentration is 7×101020a', it is 7.8 MV/cm, whereas the conventional limit was about 6 MV/cm. However, S i O formed on a single crystal Si substrate
, showed a value equivalent to that of the membrane. However, when the phosphorus concentration further increased, the dielectric strength deteriorated rapidly. Therefore, the phosphorus concentration in the first Si film is 8×1×1020 cm-”
It should be: Note that if the phosphorus concentration in the first Si film is less than 1 x 1 x 1020Qm-'', the sheet resistance of the film becomes large and is not suitable for practical use.Here, when oxidizing the first Si film 103, Even when nitrogen was used instead of argon as the diluent gas, the same results as in Fig. 1 were obtained.However, the dielectric strength voltage was smaller than in Fig. 1 for each phosphorus concentration value. Therefore, as a diluent gas, an inert gas such as argon or neon is preferable to nitrogen.For comparison, Figure 1 also shows the results of the conventional method.Conventional method (a) , using S i H4 as the raw material gas, the first Si film was heated at 630°C, that is, in a polycrystalline state.
After forming a 10 nm SiO film by LPCVD, phosphorus ions were implanted at 40 keV, the SiO□ film was removed, and an argon atmosphere containing 10% oxygen was deposited at a temperature of 1000°C. Oxidation was carried out inside. In the conventional method (b), the Si film of the conventional method (a) is deposited at 525° C., that is, in an amorphous state. In both conventional method (a) and conventional method (b), the second Si film was deposited by the method of the present invention. As is clear from the figure, regardless of whether the first Si film is deposited in a polycrystalline or amorphous state, a high M green breakdown voltage cannot be obtained if phosphorus doping is performed after the film is deposited. , 6.6
MV/cm was the highest. According to this embodiment, Si, Hs and PH3 are used to form the first and second S in an amorphous state while doping phosphorus.
Depositing the i film has the effect of improving the dielectric strength of the SiO2 film between the Si electrodes. Note that the same effect can be obtained even if a film formed by a CVD method is used as the S i O film. Embodiment 2 FIG. 3 shows a schematic cross-sectional view of a second embodiment of the present invention. This example is a batch erasing type EEPROM, which was created according to the procedure shown below. First, p-type Si with a resistivity of 10 Ωam and a plane orientation of (100)
A field oxide film 202 was formed on the surface of the substrate 201 by a well-known selective oxidation technique. Next, the Si substrate was oxidized in an oxygen atmosphere to form a 15 nm gate oxide film 203. Subsequently, using 5izH= and PI (3 as raw material gases) and doping phosphorus by the LPCVD method, 5
A first Si film 204 was deposited to a thickness of 200 nm at 25°C. S
The phosphorus concentration in the i film is 5-X 1 x 1020 cm-3
It is. Next, a first Si film 204 is formed using a known technique.
was processed into a floating gate. Next, a first S i rJ! was performed at a temperature of 1000° C. in an argon atmosphere containing 10% oxygen. The surface of A204 was oxidized to form 20 20 nm SiO2 films. Subsequently, a second Si film 206 is deposited to a thickness of 200 nm in the same manner as the first Si film, and then a second Si film 206 is deposited using a known technique.
The membrane was processed and used as a control gate. After that, phosphorus and arsenic ions are sequentially implanted into the source and drain regions 2.
After forming 07, a glabellar oxide film 20 is formed by LPCVD method.
8 was formed, a connection hole was opened in this, and an A1 film 209 was deposited to form a lead wiring. S i O between the floating gate 204 and the control gate 206 of the EEPROM formed by this method.
, the dielectric strength of the film 205 was improved by more than 20% compared to the conventional method. Along with this, the charge retention time of the floating gate has been improved by an order of magnitude. In this example, when depositing the first Si film 204, the phosphorus concentration in the film was varied from 0 to 5X as the film deposition progressed.
Experiments were also conducted in which the thickness was gradually increased to 1 x 1020 cm''. In this case, although the dielectric strength voltage of the SiO film 205 was the same as in the above method, the withstand voltage of the gate oxide film 203 was improved by 15%, and the threshold voltage after erasing was increased from 2V to 1V. Reduced. According to this embodiment, the floating gate and control gate of the bulk erase type EEPROM are 5i2
By using HG and PH and depositing in an amorphous state while doping phosphorus, there is an effect that charge retention characteristics can be significantly improved. In Examples 1 and 2, when depositing the first and second Si films, phosphine was used as the doping gas and phosphorus was introduced as an impurity, but the same result could be obtained even if arsine was used as the doping gas and arsenic was introduced. The effect of this can be obtained. [Effects of the Invention] According to the present invention, a SiO2 film having a high dielectric strength can be formed on a polycrystalline Si film. This makes it possible to improve the reliability of the LSI device. Furthermore, since thermal diffusion and ion implantation, which were conventionally performed in a chamber, are no longer necessary, the LSI device manufacturing process can be greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の実施例と従来例によるS1膜中の不
純物濃度と絶縁耐圧の関係を示す曲線図、第2図及び第
3図は、本発明の実施例を示す半導体装置の断面図であ
る。 符号の説明 101.201・・・Si基板、102,202・・・
フィールド酸化膜、203・・・ゲート酸化膜、103
.204・・・第1のSi膜、104.205・・・S
iO2膜、105.206・・・第2のSi膜、207
・・・拡散層、208・・層間酸化膜、209・・・A
I膜遁 口 猶 ス
FIG. 1 is a curve diagram showing the relationship between impurity concentration in the S1 film and dielectric strength voltage according to an embodiment of the present invention and a conventional example, and FIGS. 2 and 3 are cross-sections of a semiconductor device showing an embodiment of the present invention. It is a diagram. Explanation of symbols 101.201...Si substrate, 102,202...
Field oxide film, 203... Gate oxide film, 103
.. 204...first Si film, 104.205...S
iO2 film, 105.206... second Si film, 207
...Diffusion layer, 208...Interlayer oxide film, 209...A
I-membrane evacuation

Claims (1)

【特許請求の範囲】 1、不純物を含んだシリコン膜を具備する半導体装置に
おいて、該シリコン膜中に、粒径が少なくとも膜厚の1
0倍以上の結晶粒を含むことを特徴とする半導体装置。 2、上記シリコン膜中の不純物としてリンもしくはヒ素
を含み、その濃度が、1×10^2^0cm^−^3以
上、8×10^2^0cm^−^3以下であることを特
徴とする請求項第1項記載の半導体装置。 3、上記シリコン膜上に、二酸化シリコンからなる絶縁
膜を形成した請求項第1項ないし第2項記載の半導体装
置。 4、上記絶縁膜上に第2のシリコン膜を形成した請求項
第3項記載の半導体装置。 5、上記シリコン膜と絶縁膜の界面の凹凸が5nm以下
であることを特徴とする請求項第3項ないし第4項記載
の半導体装置。 6、10^−^6A/cm^2の漏洩電流が生じる際の
絶縁耐圧が7MV/cm以上である多結晶シリコンの熱
酸化膜を具備した半導体装置。 7、上記半導体装置がMOS型不揮発性メモリであるこ
とを特徴とする請求項第1項ないし第6項記載の半導体
装置。 8、上記シリコン膜内の下層側領域における不純物濃度
が、内部もしくは上層側領域における不純物濃度よりも
小さいことを特徴とする請求項第1項ないし第7項記載
の半導体装置。 9、任意の段差を有する半導体基板上に、不純物をドー
ピングしながら第1のシリコン膜を堆積し、その後、第
1のシリコン膜上に、二酸化シリコンから成る絶縁膜を
形成する半導体装置の製造方法において、第1のシリコ
ン膜の堆積を、ジシランもしくはトリシランとフォスフ
ィンとを含む原料ガスを用い、減圧化学気相成長法によ
り、450℃以上、550℃以下の範囲で行なうことを
特徴とする半導体装置の製造方法。 10、上記絶縁膜上に第2のシリコン膜を、第1のSi
膜の堆積と同種の原料ガスを用い、同様の温度範囲で堆
積することを特徴とする請求項第9項記載の半導体装置
の製造方法。 11、上記第1及び第2のSi膜の堆積のいずれか一方
もしくは双方を、フォスフィンにかえてアルシンを原料
ガスに用いて行なうことを特徴とする請求項第9項ない
し第10項記載の半導体装置の製造方法。 12、上記絶縁膜が、第1のシリコン膜を酸化して形成
した二酸化シリコン膜であることを特徴とする請求項第
9項ないし第11項記載の半導体装置の製造方法。 13、上記第1のシリコン膜の酸化の一部分を、アルゴ
ン、ネオン等の不活性ガスで希釈された酸素雰囲気中で
行なうことを特徴とする請求項第9項ないし第12項記
載の半導体装置の製造方法。 14、上記絶縁膜が、化学気相成長法により形成した二
酸化シリコン膜であることを特徴とする請求項第9項な
いし第11項記載の半導体装置の製造方法。
[Claims] 1. In a semiconductor device comprising a silicon film containing impurities, the silicon film contains grains with a particle size of at least 1 film thickness.
A semiconductor device characterized by containing 0 times or more crystal grains. 2. The silicon film contains phosphorus or arsenic as an impurity, and its concentration is 1 x 10^2^0 cm^-^3 or more and 8 x 10^2^0 cm^-^3 or less. The semiconductor device according to claim 1. 3. The semiconductor device according to claim 1 or 2, wherein an insulating film made of silicon dioxide is formed on the silicon film. 4. The semiconductor device according to claim 3, wherein a second silicon film is formed on the insulating film. 5. The semiconductor device according to claim 3 or 4, wherein the unevenness of the interface between the silicon film and the insulating film is 5 nm or less. 6. A semiconductor device comprising a polycrystalline silicon thermal oxide film having a dielectric strength of 7 MV/cm or more when a leakage current of 10^-^6 A/cm^2 occurs. 7. The semiconductor device according to any one of claims 1 to 6, wherein the semiconductor device is a MOS type nonvolatile memory. 8. The semiconductor device according to claim 1, wherein the impurity concentration in the lower region of the silicon film is lower than the impurity concentration in the internal or upper region. 9. A method for manufacturing a semiconductor device in which a first silicon film is deposited on a semiconductor substrate having arbitrary steps while doping with impurities, and then an insulating film made of silicon dioxide is formed on the first silicon film. A semiconductor device characterized in that the first silicon film is deposited by a low pressure chemical vapor deposition method using a source gas containing disilane or trisilane and phosphine at a temperature of 450° C. or higher and 550° C. or lower. manufacturing method. 10. Place a second silicon film on the insulating film, and place a second silicon film on the first silicon film.
10. The method of manufacturing a semiconductor device according to claim 9, wherein the deposition is performed using the same type of source gas as that used for film deposition and in the same temperature range. 11. The semiconductor according to claim 9 or 10, wherein either or both of the first and second Si films are deposited using arsine as a raw material gas instead of phosphine. Method of manufacturing the device. 12. The method of manufacturing a semiconductor device according to claim 9, wherein the insulating film is a silicon dioxide film formed by oxidizing a first silicon film. 13. The semiconductor device according to any one of claims 9 to 12, wherein a part of the oxidation of the first silicon film is performed in an oxygen atmosphere diluted with an inert gas such as argon or neon. Production method. 14. The method of manufacturing a semiconductor device according to claim 9, wherein the insulating film is a silicon dioxide film formed by chemical vapor deposition.
JP01268926A 1989-10-18 1989-10-18 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3140023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01268926A JP3140023B2 (en) 1989-10-18 1989-10-18 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01268926A JP3140023B2 (en) 1989-10-18 1989-10-18 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03132078A true JPH03132078A (en) 1991-06-05
JP3140023B2 JP3140023B2 (en) 2001-03-05

Family

ID=17465200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01268926A Expired - Lifetime JP3140023B2 (en) 1989-10-18 1989-10-18 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3140023B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023559A1 (en) * 2002-08-30 2004-03-18 Fujitsu Amd Semiconductor Limited Semiconductor storage device and its manufacturing method
JP2004096093A (en) * 2002-07-18 2004-03-25 Hynix Semiconductor Inc Manufacture of semiconductor memory element
JP2008047870A (en) * 2006-07-19 2008-02-28 Toshiba Corp Nonvolatile semiconductor memory device
JP2012044229A (en) * 2006-07-19 2012-03-01 Toshiba Corp Nonvolatile semiconductor memory device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096093A (en) * 2002-07-18 2004-03-25 Hynix Semiconductor Inc Manufacture of semiconductor memory element
JP4669655B2 (en) * 2002-07-18 2011-04-13 株式会社ハイニックスセミコンダクター Manufacturing method of semiconductor memory device
WO2004023559A1 (en) * 2002-08-30 2004-03-18 Fujitsu Amd Semiconductor Limited Semiconductor storage device and its manufacturing method
JP2008047870A (en) * 2006-07-19 2008-02-28 Toshiba Corp Nonvolatile semiconductor memory device
JP2012044229A (en) * 2006-07-19 2012-03-01 Toshiba Corp Nonvolatile semiconductor memory device
US8133782B2 (en) 2006-07-19 2012-03-13 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US8330206B2 (en) 2006-07-19 2012-12-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3140023B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JPH11288883A (en) Manufacture of polycrystalline silicon structure
US5712181A (en) Method for the formation of polycide gate in semiconductor device
TW200408074A (en) Method of manufacturing a flash memory cell
US20030168706A1 (en) Semiconductor device and method for fabricating same
JPH03132078A (en) Semiconductor device and its manufacture
US7358198B2 (en) Semiconductor device and method for fabricating same
JP2953396B2 (en) Method for manufacturing silicon thin film conductive element
JPH03266471A (en) Semiconductor device and manufacture thereof
JP3673538B2 (en) Method for forming nonvolatile semiconductor memory device
JPH10125617A (en) Method of manufacturing semiconductor device
JP2814962B2 (en) Method for manufacturing semiconductor device
JPH0689904A (en) Manufacture of insulated gate type field-effect semiconductor device
JP2635086B2 (en) Method for manufacturing semiconductor device
JP3064363B2 (en) Method of forming Si thin film
JPH11176959A (en) Manufacture of semiconductor device
KR100955924B1 (en) Method for forming contact plug of semicondutor device
JPS6358875A (en) Thin film transistor element
JP3139835B2 (en) Method for manufacturing semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JP3231757B2 (en) Method for manufacturing semiconductor device
JP2000150803A (en) Manufacture of semiconductor device
JPH04150036A (en) Manufacture of semiconductor device
JP3361310B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH0810765B2 (en) Method for manufacturing semiconductor device
JPH04336466A (en) Fabrication of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

EXPY Cancellation because of completion of term