JPH03130653A - Conductivity measuring apparatus having measured temperature correcting circuit - Google Patents

Conductivity measuring apparatus having measured temperature correcting circuit

Info

Publication number
JPH03130653A
JPH03130653A JP26752989A JP26752989A JPH03130653A JP H03130653 A JPH03130653 A JP H03130653A JP 26752989 A JP26752989 A JP 26752989A JP 26752989 A JP26752989 A JP 26752989A JP H03130653 A JPH03130653 A JP H03130653A
Authority
JP
Japan
Prior art keywords
conductivity
output
sensor
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26752989A
Other languages
Japanese (ja)
Other versions
JPH0682111B2 (en
Inventor
Akio Ikeda
池田 晃郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKOKU KIKAI KOGYO KK
Original Assignee
NIKOKU KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKOKU KIKAI KOGYO KK filed Critical NIKOKU KIKAI KOGYO KK
Priority to JP26752989A priority Critical patent/JPH0682111B2/en
Publication of JPH03130653A publication Critical patent/JPH03130653A/en
Publication of JPH0682111B2 publication Critical patent/JPH0682111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain correct measurements all the time even if the temperature of fluid to be measured is rapidly changed by correcting the output of a conduc tivity sensor fed through an integrating circuit based on the output from a temperature sensor. CONSTITUTION:A correcting operation circuit 4 is provided in a conductivity measuring apparatus which outputs the conductivity at a specified reference temperature based on the output from a conductivity sensor 1 for detecting the conductivity of liquid and the output from a temperature sensor 2. The output from the sensor 1 fed through an integrating circuit 3 and the output from the sensor 2 are inputted into the circuit 4. The actually measured value which is detected with the sensor 1 is subjected to temperature compensation. Therefore, even if the temperature of the fluid to be measured is rapidly changed, correct measurements can be obtained all the time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工業用水、汚水、その他の流体の導電率を測
定する導電率測定装置に関し、特に被測定流体の温度変
化が急速な場合にも、安定した温度補正動作を行なう測
定値温度補正回路付き導電率測定装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a conductivity measuring device for measuring the conductivity of industrial water, sewage, and other fluids, particularly when the temperature of the fluid to be measured is rapidly changing. The present invention also relates to a conductivity measuring device with a measured value temperature correction circuit that performs stable temperature correction operation.

(従来の技術) 従来、液体の導電率を測定する装置として、第2図に示
すような複数の電極6a、6bを持つ電極棒5と泡抜き
孔7aを有するセル外筒7との間に円筒状の被測定流体
空間を形成し、前記空間の流体の導電率を検知する導電
率センサの出力を、前記電極の近くに配置した温度セン
サ2の出力によって摂氏25度における導電率値に補正
して出力する装置が知られている。
(Prior Art) Conventionally, as a device for measuring the electrical conductivity of a liquid, as shown in FIG. A cylindrical fluid space to be measured is formed, and the output of a conductivity sensor that detects the conductivity of the fluid in the space is corrected to a conductivity value at 25 degrees Celsius by the output of a temperature sensor 2 placed near the electrode. There are known devices that output the following information.

そして、その補正方法は、第5図に示す温度補正回路を
含む導電率センサ10に温度センサを一体に組み込み、
ブリッジ回路などにより、導電率センサ出力の変化と温
度センサ出力の変化が互いに打ち消すようにして、温度
補正された信号波形として増幅回路11に送り、これを
増幅して測定出力としている。
The correction method includes integrally incorporating a temperature sensor into a conductivity sensor 10 including a temperature correction circuit shown in FIG.
Using a bridge circuit or the like, changes in the conductivity sensor output and changes in the temperature sensor output cancel each other out, and are sent to the amplifier circuit 11 as a temperature-corrected signal waveform, which is amplified and used as a measurement output.

(発明が解決しようとする課題) 導電率は電気の通りやすさを示すものであるから、導電
率測定は、逆数関係にある抵抗値を測定することに他な
らない。
(Problems to be Solved by the Invention) Since electrical conductivity indicates the ease with which electricity passes, measuring electrical conductivity is nothing but measuring a resistance value that is in a reciprocal relationship.

したがって、流体の導電率測定装置でも、流体、の2点
間の抵抗値を測定するが、抵抗値は温度変化とともに変
わるので、一般に基準となる摂氏25度の導電率に補正
して表示することになっている。
Therefore, a fluid conductivity measurement device measures the resistance value between two points in the fluid, but since the resistance value changes with temperature changes, it is generally corrected to the standard conductivity of 25 degrees Celsius and displayed. It has become.

一方、測定の対象として厳格な監理を要する工業用水な
どでは、冷却水、あるいは工場処理の過程で暖められた
液体が、常温の同一液体と相前後して急速に放出される
ことがしばしばある。
On the other hand, in industrial water systems that require strict monitoring, cooling water or liquids that have been warmed during factory processing are often rapidly released in tandem with the same liquid at room temperature.

ところが従来の導電率測定装置は、導電率センサの出力
を温度センサの出力で直接補正しているので、均一な流
体の導電率測定中に流体の温度が急速に変化した場合、
抵抗値はこれに追従して急速に変化するが、温度センサ
の出力は直ぐには追従しないで、適正値にゆっくり近づ
く。
However, in conventional conductivity measuring devices, the output of the conductivity sensor is directly corrected by the output of the temperature sensor, so if the temperature of the fluid changes rapidly during conductivity measurement of a homogeneous fluid,
The resistance value follows this and changes rapidly, but the output of the temperature sensor does not follow this immediately, but slowly approaches the appropriate value.

この追従の遅れは、温度センサを構成する各部の熱伝導
率、熱抵抗、比熱、形状によって異なる。
This follow-up delay varies depending on the thermal conductivity, thermal resistance, specific heat, and shape of each part constituting the temperature sensor.

例えば、第4図(a)のような被測定流体の温度変化が
あったとき、温度センサの出力が第4図(b)のようで
あったとすると、導電率センサの出力は、第4図(C)
に実線で示すように流体の温度変化に直ちに追従するの
で、補正された測定値は、第4図(d)の2点鎖線で示
すように、流体の温度変化を微分したような波形となる
For example, when there is a temperature change in the measured fluid as shown in Figure 4(a), and the output of the temperature sensor is as shown in Figure 4(b), the output of the conductivity sensor is as shown in Figure 4(a). (C)
As shown by the solid line, the corrected measurement value immediately follows the temperature change of the fluid, so the corrected measurement value has a waveform that looks like the differentiation of the temperature change of the fluid, as shown by the two-dot chain line in Fig. 4(d). .

このように摂氏25度に換算した実際の導電率に変化が
ないのにかかわらず、出力測定値に第4図(d)の21
点、22点において導電率変化が許容値を越えたと判定
されて警報を出す場合は、誤報となり、工業用水などの
監視をする人々の判断と処置を謝らせることになる。
In this way, even though there is no change in the actual conductivity converted to 25 degrees Celsius, the output measurement value is 21 in Figure 4 (d).
If it is determined that the change in conductivity exceeds the allowable value at point 22 and an alarm is issued, it will be a false alarm and the people who monitor industrial water will be forced to apologize for their judgment and actions.

このような欠点を防ぐ方法として、流体を少しずつかき
混ぜながらケース内に入れセンサに触れさせるとか、セ
ンサを熱容量の大きい鉄筺に入れるなどして、21点、
22点のピークの尖頭値を低くする方法があるが、いず
れも構造が複雑で、製作費用が高くなるという欠点があ
る。
As a way to prevent these drawbacks, there are 21 points, such as stirring the fluid little by little into the case and letting it touch the sensor, or placing the sensor in an iron box with a large heat capacity.
There are methods of lowering the peak values of the 22 points, but all of them have the drawbacks of complex structures and high manufacturing costs.

本発明の目的は、このような欠点を解消し、被測定流体
の温度に急速な変化があっても、常に正しい測定値を出
力するような測定値温度補正回路付き導電率測定装置を
提供することにある。
An object of the present invention is to eliminate such drawbacks and provide a conductivity measuring device with a measured value temperature correction circuit that always outputs correct measured values even if there is a rapid change in the temperature of the fluid to be measured. There is a particular thing.

(課題を解決するための手段) 前記目的を達成するため、本発明の測定値温度補正回路
付き導電率測定装置は、流体の導電率を検知する導電率
センサlと、温度センサ2を有し、導電率センサ1の出
力と温度センサ2の出力とがら定められた基準温度にお
ける導電率を得て出方する導電率測定装置において、導
電率センサ1により検知した導電率実測値の温度補正を
行なう補正演算回路4を設け、積分回路3を通過させた
導電率センサ1の出力と温度センサ2の出力を前記補正
演算回路4に入力し、その演算結果を測定値として出力
する構成とする。
(Means for Solving the Problems) In order to achieve the above object, a conductivity measuring device with a measured value temperature correction circuit of the present invention includes a conductivity sensor l for detecting the conductivity of a fluid, and a temperature sensor 2. In a conductivity measurement device that obtains and outputs the conductivity at a predetermined reference temperature from the output of the conductivity sensor 1 and the output of the temperature sensor 2, temperature correction is performed on the actual conductivity value detected by the conductivity sensor 1. A correction calculation circuit 4 is provided, and the output of the conductivity sensor 1 and the output of the temperature sensor 2, which have passed through the integration circuit 3, are input to the correction calculation circuit 4, and the calculation results are output as measured values.

(実施例) 次に、本発明の実施例について図面を参照して詳しく説
明する。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明による測定値温度補正回路付き導電測
定装置の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a conductivity measuring device with a measured value temperature correction circuit according to the present invention.

第2図は、第1図の実施例の導電率センサ1の電極棒5
と温度センサ2の配置を示す構造図である。
FIG. 2 shows the electrode rod 5 of the conductivity sensor 1 of the embodiment shown in FIG.
2 is a structural diagram showing the arrangement of a temperature sensor 2. FIG.

ただし、電極棒5を覆うケース7を取り除いた状態で示
しである。
However, the case 7 covering the electrode rod 5 is shown removed.

第3図は、第1図の実施例の積分回路3の一例を示す回
路図である。
FIG. 3 is a circuit diagram showing an example of the integrating circuit 3 of the embodiment shown in FIG.

第4図は、第1図の実施例の各要部の出方波形例を示す
波形図である。
FIG. 4 is a waveform diagram showing an example of the output waveform of each main part of the embodiment shown in FIG.

第1図に示すように、本実施例は、導電率センサ1.温
度センサ2.積分回路3.補正演算回路4とから構成さ
れている。
As shown in FIG. 1, this embodiment has a conductivity sensor 1. Temperature sensor 2. Integrating circuit 3. It is composed of a correction calculation circuit 4.

補正演算回路4には、導電率センサ1の出力が積分回路
3を通して入力される一方、温度センサ2の出力はその
まま入力され、補正演算回路4の出力が、本実施例の出
力となる。
The output of the conductivity sensor 1 is input to the correction calculation circuit 4 through the integration circuit 3, while the output of the temperature sensor 2 is input as is, and the output of the correction calculation circuit 4 becomes the output of this embodiment.

導電率センサ1は、第2図に示す電極棒5に設けた電t
i6a、6bの間の抵抗を測る図示しない内蔵の抵抗値
計測回路がら実測値をケーブル9を介して出力する。
The conductivity sensor 1 includes an electric conductor provided on an electrode rod 5 shown in FIG.
An actual measured value is output via a cable 9 from a built-in resistance value measuring circuit (not shown) that measures the resistance between i6a and 6b.

温度センサ2は、電極棒5に埋め込まれ、検知した温度
に応じたレベルの出力を、ケーブル9を介して出力する
The temperature sensor 2 is embedded in the electrode rod 5 and outputs an output via a cable 9 at a level corresponding to the detected temperature.

積分回路3は、導電率センサ1の出力がアナログ波形の
信号の場合は、第3図に示すような抵抗器Rとコンデン
サCの組み合わせ、その他の積分回路が用いられる。導
電率センサ1の出力をディジタル化した後に、ディジタ
ル回路によりディジタル処理をしても良い。なお、積分
後の波形を形成する曲線の指数は、温度変化が矩形であ
ったときの温度センサ2の出力波形を形成する曲線の指
数に合致するよう回路定数あるいは2回路構成が決定さ
れる。
When the output of the conductivity sensor 1 is an analog waveform signal, the integrating circuit 3 is a combination of a resistor R and a capacitor C as shown in FIG. 3, or another integrating circuit is used. After the output of the conductivity sensor 1 is digitized, it may be digitally processed by a digital circuit. Note that the circuit constant or the two-circuit configuration is determined so that the index of the curve forming the waveform after integration matches the index of the curve forming the output waveform of the temperature sensor 2 when the temperature change is rectangular.

補正演算回路4は、入力がアナログ信号であるか、ディ
ジタル信号であるかによって回路構成が決定され、積分
回路3からの入力の中に含まれる温度変化による変化分
を、温度センサ2からの入力によって打ち消すよう演算
し、その結果を出力する。
The correction calculation circuit 4 has a circuit configuration determined depending on whether the input is an analog signal or a digital signal. Compute to cancel by and output the result.

例えば、均一な質の液体が流れている中に、第2図に示
す電極棒5を投入し、電極棒5とケース7の間に存在す
る液体の導電率を測定している間に、第4図(a)に示
すように液体温度が、時刻t。
For example, the electrode rod 5 shown in FIG. As shown in FIG. 4(a), the liquid temperature changes at time t.

およびt2において急激に変化した場合について説明す
る。このとき導電率センサ1の出力は第4図(C)の実
線で示すように、その波形は液体温度の変化の波形と相
似の形となるが、積分回路3を通すと、第4図(C)の
点線に示すように立ち上がり。
A case in which there is a sudden change at t2 and t2 will be explained. At this time, the output of the conductivity sensor 1 has a waveform similar to the waveform of the liquid temperature change, as shown by the solid line in FIG. Rise as shown by the dotted line in C).

および立ち下がり遅れた波形となる。and a waveform with a delayed fall.

一方、第4図(′b)に示す温度センサ2の出力波形も
、積分回路3の出力に相似の形となるので、補正演算回
路4の出力には第4図(C)の点線に波形の非直線部分
が打ち消され、第4図(d)に実線に示すように、温度
変化によって影響されない正しい基準温度(摂氏25度
)における導電率値が出力される。
On the other hand, since the output waveform of the temperature sensor 2 shown in FIG. 4('b) also has a similar shape to the output of the integrating circuit 3, the output of the correction calculation circuit 4 has a waveform as shown by the dotted line in FIG. 4(C). The nonlinear portion of is canceled out, and the conductivity value at the correct reference temperature (25 degrees Celsius), which is unaffected by temperature changes, is output, as shown by the solid line in FIG. 4(d).

もし、第1図のブロック図において、従来の装置のよう
に積分回路3のない場合を考えると、補正演算回路には
第4図(d)の2点鎖線で示すように、時刻P1および
P2にピーク値が現れ、誤報の原因となる。
In the block diagram of FIG. 1, if we consider a case where there is no integration circuit 3 like in the conventional device, the correction calculation circuit will have time points P1 and P2 as shown by the two-dot chain line in FIG. 4(d). A peak value appears at , causing false alarms.

(発明の効果) 以上詳しく説明したように本発明の測定値温度補正回路
付き導電率測定装置は、積分回路を通した導電率センサ
出力を、導電率センサの近くに配置した温度センサの出
力によって補正することにより、被測定流体の温度の急
激な変化に際しても、出力測定値に、従来のような、実
際には無い見掛は上のピーク値が現れることがないので
、常に正しく基準温度における導電率値に補正された値
が、出力として得られるという効果がある。
(Effects of the Invention) As explained in detail above, the conductivity measuring device with a measured value temperature correction circuit of the present invention converts the conductivity sensor output through the integrating circuit into the output of the temperature sensor placed near the conductivity sensor. By making the correction, even when the temperature of the fluid to be measured changes suddenly, the output measurement value will not have an apparent upper peak value that does not actually exist, which is the case in the past, so it will always be possible to accurately calculate the value at the reference temperature. This has the effect that a value corrected to the conductivity value can be obtained as an output.

したがって、本実施例を使用することにより、無用の誤
報が無くなるので、信頼性は向上し、工場用水の厳密な
監理が実行可能となるなどの効果がある。
Therefore, by using this embodiment, unnecessary false alarms are eliminated, reliability is improved, and strict supervision of factory water becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による測定値温度補正回路付き導電測
定装置の一実施例を示すブロック図である。 第2図は、第1図の実施例の導電率センサの電極棒と温
度センサの配置を示す構造図である。 第3図は、第1図の実施例の積分回路の一例を示す回路
図である。 第4図は、第1図の実施例の各要部の出力波形例を示す
波形図である。 第5図は、従来の導電率測定装置の例を示すブロック図
である。 1・・・導電率センサ 2・・・温度センサ 3・・・積分回路 4・・・補正演算回路 5・・・電極棒 6a、6b・・・電極 7・・・ケース 10・・・温度補正回路を含む導電率センサIL・・・
増幅回路 特許出廓人 二國機械工業株式会社
FIG. 1 is a block diagram showing an embodiment of a conductivity measuring device with a measured value temperature correction circuit according to the present invention. FIG. 2 is a structural diagram showing the arrangement of the electrode rod and temperature sensor of the conductivity sensor of the embodiment shown in FIG. FIG. 3 is a circuit diagram showing an example of the integrating circuit of the embodiment shown in FIG. 1. FIG. 4 is a waveform diagram showing an example of output waveforms of each main part of the embodiment of FIG. 1. FIG. 5 is a block diagram showing an example of a conventional conductivity measuring device. 1... Conductivity sensor 2... Temperature sensor 3... Integrating circuit 4... Correction calculation circuit 5... Electrode rods 6a, 6b... Electrode 7... Case 10... Temperature correction Conductivity sensor IL including circuit...
Amplifier circuit patent distributor Nikoku Kikai Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 流体の導電率を検知する導電率センサと、その流体の温
度を検知する温度センサとを有し、前記導電率センサの
出力と前記温度センサの出力とから定められた基準温度
における導電率を得て出力する導電率測定装置において
、 前記導電率センサにより検知した導電率実測値の温度補
正を行なう補正演算回路を設け、積分回路を通過させた
前記導電率センサの出力と前記温度センサの出力を前記
補正演算回路に入力し、その演算結果を測定値として出
力する測定値温度補正回路付き導電率測定装置。
[Scope of Claims] A conductivity sensor that detects the conductivity of a fluid and a temperature sensor that detects the temperature of the fluid, and a standard determined from the output of the conductivity sensor and the output of the temperature sensor. A conductivity measuring device that obtains and outputs conductivity at a temperature is provided with a correction calculation circuit that performs temperature correction of the actual measured value of conductivity detected by the conductivity sensor, and the output of the conductivity sensor that has passed through an integrating circuit is A conductivity measuring device with a measured value temperature correction circuit that inputs the output of the temperature sensor to the correction calculation circuit and outputs the calculation result as a measured value.
JP26752989A 1989-10-13 1989-10-13 Conductivity measurement device with measured value temperature correction circuit Expired - Lifetime JPH0682111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26752989A JPH0682111B2 (en) 1989-10-13 1989-10-13 Conductivity measurement device with measured value temperature correction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26752989A JPH0682111B2 (en) 1989-10-13 1989-10-13 Conductivity measurement device with measured value temperature correction circuit

Publications (2)

Publication Number Publication Date
JPH03130653A true JPH03130653A (en) 1991-06-04
JPH0682111B2 JPH0682111B2 (en) 1994-10-19

Family

ID=17446098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26752989A Expired - Lifetime JPH0682111B2 (en) 1989-10-13 1989-10-13 Conductivity measurement device with measured value temperature correction circuit

Country Status (1)

Country Link
JP (1) JPH0682111B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537833A (en) * 2006-05-24 2009-10-29 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー Sensor device for conductivity measurement and its operating method
JP2011058971A (en) * 2009-09-10 2011-03-24 Denso Corp Liquid concentration detection device
US9689821B2 (en) 2008-12-31 2017-06-27 Spd Swiss Precision Diagnostics Gmbh Conductivity measurement cell
JP2022505418A (en) * 2018-10-30 2022-01-14 ラ マルゾッコ エス アール エル Active system for monitoring and filtering water in espresso coffee machines, as well as related espresso coffee machines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537833A (en) * 2006-05-24 2009-10-29 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー Sensor device for conductivity measurement and its operating method
US9689821B2 (en) 2008-12-31 2017-06-27 Spd Swiss Precision Diagnostics Gmbh Conductivity measurement cell
JP2011058971A (en) * 2009-09-10 2011-03-24 Denso Corp Liquid concentration detection device
JP2022505418A (en) * 2018-10-30 2022-01-14 ラ マルゾッコ エス アール エル Active system for monitoring and filtering water in espresso coffee machines, as well as related espresso coffee machines

Also Published As

Publication number Publication date
JPH0682111B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US3636444A (en) Apparatus for measuring small changes in condition-sensitive capacitance transducers
JP6401811B2 (en) Fluid property detector
US10330538B2 (en) Thermocouple temperature sensor with cold junction compensation
US4132944A (en) Apparatus for monitoring electrical properties of a liquid
JPH03130653A (en) Conductivity measuring apparatus having measured temperature correcting circuit
US5130640A (en) Soldering iron testing apparatus
JPH0356848A (en) Method and device for surface cracking measurement
JPH0766480B2 (en) Measuring head
JP2000310654A (en) Current detection system
JP2850514B2 (en) PH meter with life expectancy display
JPH0575058B2 (en)
JPH0619472B2 (en) Groundwater flow direction and flow velocity measuring method and device
JPH056485Y2 (en)
JPS6336250Y2 (en)
JP2928751B2 (en) Gauge pressure measuring device
SU970545A1 (en) Device for protecting block generator from stator insulation resistance decreasing
SU623098A1 (en) Method of monitoring condition of melting unit lining
GB2275533A (en) System for structural monitoring
JPS55122161A (en) Device for measuring velocity of wind
JPH02156120A (en) Piezo-electric type sensor apparatus having temperature measuring function
JPS60146143A (en) Hygrometer
JPH01303016A (en) Diagnostic method and device for power supply facility
JPS5932905Y2 (en) Eddy current thermometer
JPH0850047A (en) Water-level measuring method
FI92632C (en) Method and apparatus for calibrating amplifier of wire strain sensors in crane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 15

EXPY Cancellation because of completion of term