JPH03129638A - Manufacture of ion accelerating electrode plate - Google Patents

Manufacture of ion accelerating electrode plate

Info

Publication number
JPH03129638A
JPH03129638A JP1266176A JP26617689A JPH03129638A JP H03129638 A JPH03129638 A JP H03129638A JP 1266176 A JP1266176 A JP 1266176A JP 26617689 A JP26617689 A JP 26617689A JP H03129638 A JPH03129638 A JP H03129638A
Authority
JP
Japan
Prior art keywords
molybdenum
nickel
cooling water
grooves
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1266176A
Other languages
Japanese (ja)
Inventor
Satoru Asai
知 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1266176A priority Critical patent/JPH03129638A/en
Publication of JPH03129638A publication Critical patent/JPH03129638A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To form grooves for cooling water at positions in the vicinity of beam holes by bringing the nickel coating layers of molybdenum plates into diffused junction at a predetermined temperature, and forming grooves for passing the cooling water on the junction surface. CONSTITUTION:For example, grooves each having a width of 1.5mm and a depth of 1mm are formed on a molybdenum plate 1 coated with an electroless nickel plating 2b having a thickness of 10mu. Another molybdenum plate 3 having a thickness of 0.5mm is coated with electroless nickel 2a having a thickness of 10mu. The respective nickel coated surfaces of the molybdenum plates 1 and 3 are disposed opposite to each other, to be diffusively jointed at a temperature lower than a molybdenum recrystallization temperature. Therefore, grooves 4 for cooling water are made of nickel having a high corrosion resistance so that any corrosion of molybdenum can be prevented. Beam holes 5 can be formed at arbitrary positions in the vicinity of the grooves 4 with preferable cooling effect.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、核融合装置の中性粒子入射装置や能動粒子線
入射装置等に用いられるイオン源におけるイオン加速電
極板の製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to an ion accelerating electrode plate in an ion source used in a neutral particle injection device, an active particle beam injection device, etc. of a nuclear fusion device. Regarding the manufacturing method.

(従来の技術) 核融合装置の中性粒子入射装置は、高エネルギの中性粒
子ビームを外部から核融合装置内のプラズマ中へ入射し
、加熱する装置である。この中性粒子ビームを生成する
もとになるイオン源は、水素ガス中でアーク放電を行う
ことによりプラズマを生威し、その由のイオンを高電圧
を印加した電極で加速し、高速水素イオンビームを発生
させる装置であり、この水素イオンビームが電子を付着
され、中性化し入射ビームとなる。(参考文献、核融合
研究開発の現状、1985年、日本原子力研究所発行) このイオンビームを加速する電極板は、高融点材料のモ
リブデンから成り、第5図、第6図に示すようにイオン
を通過する多数のビーム穴5を設けた構造となっている
。尚、第5図のビーム穴5の1部は中心線で位置を示し
ている。さらに、イオンビームの衝突などによる加熱損
傷を防止する為、モリブデン平板3の周囲に銅バイブ1
2をろう材13でろう付し、水冷した構造が用いられて
いる。
(Prior Art) A neutral particle injection device for a nuclear fusion device is a device that injects a high-energy neutral particle beam from the outside into the plasma inside the fusion device to heat it. The ion source that generates this neutral particle beam generates plasma by performing an arc discharge in hydrogen gas, then accelerates the resulting ions with an electrode to which a high voltage is applied, and generates high-speed hydrogen ions. This is a device that generates a beam. Electrons are attached to this hydrogen ion beam, which neutralizes it and becomes an incident beam. (Reference, Current Status of Nuclear Fusion Research and Development, 1985, published by the Japan Atomic Energy Research Institute) The electrode plate that accelerates this ion beam is made of molybdenum, a material with a high melting point, and as shown in Figures 5 and 6, the electrode plates accelerate the ion beam. It has a structure in which a large number of beam holes 5 are provided through which the beam passes. Note that the position of a portion of the beam hole 5 in FIG. 5 is indicated by the center line. Furthermore, a copper vibrator 1 is installed around the molybdenum flat plate 3 to prevent heating damage caused by ion beam collisions.
2 are brazed with a brazing material 13 and cooled with water.

これらは、プラズマ中心部の温度測定を行う能動粒子線
入射装置のイオン加速電極板も同様の構造がとられてい
る。
The ion accelerating electrode plate of an active particle beam injection device that measures the temperature at the center of plasma has a similar structure.

(発明が解決しようとする課題) 近年、上記中性粒子入射装置等の高性能化に伴い、イオ
ン源の高出力化、さらにビーム出力時間の長パルス化が
要求されており、イオン加速電極板の耐久化が問題とな
っている。これらの長パルス化、高出力化により、モリ
ブデン平板への加熱負荷が高くなることから、周囲を冷
却した従来構造では、冷却効果が不十分で、ビーム穴周
囲を直接冷却するように高冷却性能構造が必要となるし
かしながら、ビーム穴間隔は狭く、冷却用水路を設ける
には、1〜2nの幅しか許容出来ない為、水冷鋼パイプ
を表面に取り付けることは製作上困難である。さらに、
こうした水路をパイプ等のろう付で行なった場合、ろう
材に含まれる蒸気圧の高い元素が、加熱中に蒸発し、装
置内の真空度を劣化させる欠点を有している。
(Problems to be Solved by the Invention) In recent years, as the performance of the above-mentioned neutral particle injection devices has improved, there has been a demand for higher output of ion sources and longer pulses of beam output time. Durability has become an issue. Due to these longer pulses and higher output, the heating load on the molybdenum flat plate increases, so the conventional structure that cools the surrounding area has insufficient cooling effect, so a high cooling performance that directly cools the area around the beam hole is used. However, it is difficult to attach water-cooled steel pipes to the surface because the spacing between the beam holes is narrow and only a width of 1 to 2 nm is allowed for providing cooling water channels. moreover,
When such a waterway is formed by brazing a pipe or the like, there is a drawback that elements with high vapor pressure contained in the brazing material evaporate during heating, degrading the degree of vacuum inside the device.

また、モリブデンは、酸化されやすく湿気を帯びた大気
中に放置しておくと青色に変色し、容易に酸化この為ビ
ーム穴周囲を直接冷却するように冷却孔を設けたとして
も、直接冷却水と接した場合、酸化され長時間の使用で
は腐食が進行し近接するビーム穴に貫通する問題が有る
In addition, molybdenum is easily oxidized and will turn blue if left in a humid atmosphere. Because of this, even if cooling holes are provided to directly cool the area around the beam hole, molybdenum cannot be directly cooled by direct cooling water. If it comes into contact with the beam, it will oxidize, and if used for a long time, corrosion will progress and there is a problem that it will penetrate into the adjacent beam hole.

一方、モリブデンは溶接性が悪く、割れが生じやすい点
のみならず、1100〜1200℃以上に加熱されるこ
とにより、再結晶化し、脆化する問題が有する為、溶融
溶接による製作は信頼性に欠ける問題がある。
On the other hand, molybdenum has poor weldability and is prone to cracking, but also recrystallizes and becomes brittle when heated above 1,100 to 1,200 degrees Celsius, so manufacturing by fusion welding is not reliable. There is a problem that is missing.

また、モリブデン同志の拡散接合は再結晶温度以下では
不可能であり、他の金属をインサート材として挿入する
必要がある。たとえば、銅などをインサート材として用
いた場合、接合はされるもののモリブデンとの拡散反応
は行われず接合部は気密性に劣る問題がある。また、チ
タンをインサート材とした場合、気密性に優れた接合部
が得られるが、挿入方法としてはハクあるいは比較的ポ
ーラスでかつ薄膜しか付与出来ないイオンブレーティン
グ法しかない為、接合時に冷却水通路孔表面に耐食被覆
を行うことは困難である為、冷却水通路孔の腐食の問題
が残る。
Further, diffusion bonding of molybdenum to each other is impossible below the recrystallization temperature, and it is necessary to insert another metal as an insert material. For example, when copper or the like is used as the insert material, there is a problem that although the insert material is bonded, the diffusion reaction with molybdenum does not take place and the bonded portion has poor airtightness. In addition, when titanium is used as the insert material, a joint with excellent airtightness can be obtained, but the only insertion methods available are thinning or ion-blating, which is relatively porous and can only apply a thin film. Since it is difficult to apply a corrosion-resistant coating to the surface of the passage hole, the problem of corrosion of the cooling water passage hole remains.

本発明は、上記事情に鑑みてなされたもので、ビーム穴
近傍を任意に冷却出来る冷媒通路を有し冷却性能が高く
、耐久性ならびに耐食性に優れたモリブデン製のイオン
加速電極板の製作方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for manufacturing an ion accelerating electrode plate made of molybdenum, which has a coolant passage that can optionally cool the vicinity of the beam hole, has high cooling performance, and has excellent durability and corrosion resistance. The purpose is to provide.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記課題を解決するために、本発明では、モリブデン板
上にあらかじめ冷却水通路用の溝を設は溝表面にはニッ
ケルを被覆し、その上にニッケルを被覆したモリブデン
平板を重ね、これらをモリブデン再結晶温度以下の温度
範囲で拡散接合し、ニッケルにて被覆された冷却水通路
孔を形成した後、ビーム穴を加工により設けることを特
徴とするイオン加速電極板の製造方法である。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, grooves for cooling water passages are formed in advance on a molybdenum plate, the groove surface is coated with nickel, and the groove surface is coated with nickel. An ion accelerating electrode characterized by stacking molybdenum flat plates, diffusion bonding them at a temperature range below the molybdenum recrystallization temperature, forming cooling water passage holes coated with nickel, and then providing beam holes by machining. This is a method of manufacturing a board.

(作 用) 本発明によれば、あらかじめモリブデン板に冷却水通路
用冷却溝を加工して溝付モリブデン板を製作することか
ら、°任意の冷却経路、ならびに微小な断面積を有する
冷媒通路を設けることが可能な為、冷却性能の向上がは
かれる。さらに、拡散接合にて、モリブデン平板が表面
に取り付けられる為、冷却水通路の気密性は確保され、
接合面が表面に露出しない利点がある。
(Function) According to the present invention, since a grooved molybdenum plate is manufactured by processing cooling grooves for cooling water passages in a molybdenum plate in advance, an arbitrary cooling passage and a refrigerant passage having a minute cross-sectional area can be formed. Since it can be provided, cooling performance can be improved. Furthermore, since a molybdenum flat plate is attached to the surface using diffusion bonding, the airtightness of the cooling water passage is ensured.
This has the advantage that the joint surface is not exposed to the surface.

拡散接合のインサート材料として、ニッケルを用いてい
る為、接合部のみならず、冷却水通路孔を形成する部位
にもあらかじめ被覆しておくことが可能で拡散接合にて
一体化されると同時に、ニッケル被覆された耐腐蝕性の
優れた冷却水通路孔の形成を行うことが出来る為、ビー
ム穴と冷却水通路孔の距離を近づけることが可能となり
、冷却効率の向上がはかれる利点がある。さらに、腐食
生成物が冷却水中に混入し、電場へ影響を与える問題も
なく、ビーム効率をおとすことがない利点も有している
Since nickel is used as the insert material for diffusion bonding, it is possible to pre-coat not only the joint parts but also the areas where the cooling water passage holes will be formed. Since it is possible to form a cooling water passage hole coated with nickel and having excellent corrosion resistance, it is possible to make the distance between the beam hole and the cooling water passage hole close, which has the advantage of improving cooling efficiency. Furthermore, there is no problem of corrosion products entering the cooling water and affecting the electric field, and there is also the advantage that beam efficiency is not reduced.

(実施例) 以下、本発明の第1の実施例について第1図ないし第3
図を参照して説明する。
(Example) Hereinafter, the first example of the present invention will be described in Figures 1 to 3.
This will be explained with reference to the figures.

第1図は冷却水を流す1.5mm幅、1關深さの冷却溝
4を設けた溝付きモリブデン板1の溝の表面に10μの
厚さのニッケル2bを無電解メツキにて被覆しておき、
その上に10μの厚さのニッケル2aを同様に無電解メ
ツキにて被覆された0、5mm厚さのモリブデン平板3
を重ね、真空中でホットプレス装置を用いて拡散接合一
体化したものを示している。この拡散接合時の処理温度
は950℃保持時間は0.511r 、圧力は接合面積
に対し面圧1.5 kgf’/m!真空度はI X l
O= Torrである。
Figure 1 shows a grooved molybdenum plate 1 with cooling grooves 4 of 1.5 mm width and 1 depth deep, which are provided with cooling grooves 4 for flowing cooling water.The grooves of the grooved molybdenum plate 1 are coated with nickel 2b with a thickness of 10μ by electroless plating. Ok,
A molybdenum flat plate 3 with a thickness of 0.5mm is coated with nickel 2a with a thickness of 10μ by electroless plating.
The figure shows the two parts stacked one on top of the other and integrated by diffusion bonding using a hot press machine in a vacuum. The processing temperature during this diffusion bonding was 950°C, the holding time was 0.511r, and the pressure was 1.5 kgf'/m relative to the bonding area! The degree of vacuum is I
O=Torr.

この拡散接合部の密着強度は冷却水の水圧に対し、はる
かに高い値である。また、気密性は冷却水路を真空に引
き外部からヘリウムガスを吹きつけたヘリウムリークテ
ストにてI X 1O−9Torr、 jl/see以
下の十分な気密性を有していた。
The adhesion strength of this diffusion joint is much higher than the water pressure of the cooling water. In addition, a helium leak test in which the cooling channel was evacuated and helium gas was blown from the outside showed sufficient airtightness of less than I x 10-9 Torr, jl/see.

第2図は、上記一体化されたモリブデン板を機槻加工に
て直径が6〜8mmで、無数と云われる程に多数のビー
ム穴5を明け、また、冷却溝4に連通ずる冷却水出入口
穴6を明けて製作したイオン加速電極板を示す。この場
合、ビーム大端と冷却溝の距離は最も近いところで0.
4muであった。また、冷却水通路孔表面はニッケル被
覆面にて形成されておりモリブデンが直接冷却水と接す
ることはない。
Figure 2 shows the integrated molybdenum plate machined to have a large number of beam holes 5 with a diameter of 6 to 8 mm, and a cooling water inlet/outlet communicating with the cooling groove 4. An ion accelerating electrode plate manufactured with holes 6 is shown. In this case, the distance between the large end of the beam and the cooling groove is 0.
It was 4 mu. Furthermore, the surface of the cooling water passage hole is formed of a nickel-coated surface, so that molybdenum does not come into direct contact with the cooling water.

このようにすると、ビーム穴5近傍をより近接し任意に
冷却出来る冷却水通路を有し、冷却性能が高く耐食、耐
久性に優れたモリブデン製のイオン加速電極板の製作方
法となる。
In this way, the method of manufacturing an ion accelerating electrode plate made of molybdenum, which has a cooling water passage which can be arbitrarily cooled by bringing the vicinity of the beam hole 5 closer to the beam hole 5, has a high cooling performance, and is excellent in corrosion resistance and durability.

第4図に示す第2の実施例は冷却水溝が幅が0.5、深
さが1mmと非常に狭い場合で冷却構4の側面に10μ
厚さのニッケルメッキ2bを施した溝付モリブデン9の
上に厚さ10μのニッケルにて被覆10されたモリブデ
ン平板7を同様に厚さ10μのニッケルにて被覆11さ
れたモリブデン平板8を下にし、これらを重ね拡散接合
し一体化したものである。この場合、溝幅が狭いため、
ニッケルメッキ皮膜が溝内面に不均一になることを避け
る為、溝付モリブデン板の溝を慣通し、さらにその上、
下にモリブデン平板を接合するようにしているこの場合
、モリブデン平板のニッケル?、H3には、ニッケルハ
クを用いた。このようにすると冷却溝の寸法を広範囲に
設定することか可能で微細な満ち製作することが出来る
他、第1の実施例と同様な作用効果が得られる。
In the second embodiment shown in FIG. 4, the cooling water groove is very narrow with a width of 0.5 mm and a depth of 1 mm.
A flat molybdenum plate 7 coated with nickel 10 of a thickness of 10 μm is placed on a grooved molybdenum 9 plated with nickel 2b of a thickness of 2b, and a flat molybdenum plate 8 similarly coated with nickel of a thickness of 10 μm is placed on the bottom. , these are stacked and diffusion bonded to form an integrated structure. In this case, since the groove width is narrow,
In order to prevent the nickel plating film from becoming uneven on the inner surface of the groove, the grooves of the grooved molybdenum plate are made uniform, and in addition,
In this case, I am trying to bond a molybdenum flat plate to the bottom, is the molybdenum flat plate nickel? , H3, nickel halide was used. In this way, the dimensions of the cooling grooves can be set over a wide range, fine fillings can be manufactured, and the same effects as in the first embodiment can be obtained.

[発明の効果] 本発明によれば、冷却水路をビーム穴周囲に精密かつ任
意な位置に設けることが可能であり、さらにニッケルを
介して再結晶温度以下で接合−体化される為、モリブデ
ンをを脆化させることなく高い密着度を有した接合体を
与えることが出来る。
[Effects of the Invention] According to the present invention, it is possible to provide cooling channels precisely and at arbitrary positions around the beam hole, and furthermore, since the cooling channels are bonded through nickel at a temperature below the recrystallization temperature, molybdenum It is possible to provide a bonded body with high adhesion without causing embrittlement.

また、接合と同時に冷却水路面にニッケル皮膜を付与出
来る為、耐食性が優れており、ビーム穴に近接して冷却
水路を設けることが出来る。
Furthermore, since a nickel film can be applied to the surface of the cooling channel at the same time as bonding, corrosion resistance is excellent, and the cooling channel can be provided close to the beam hole.

したがって本発明によれば、モリブデンから成る電極板
に高い冷却性能を与えることが出来、電極板の耐久性、
耐食性を向上させることができる。
Therefore, according to the present invention, high cooling performance can be given to the electrode plate made of molybdenum, and the durability of the electrode plate can be improved.
Corrosion resistance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の第1の実施例にて製作途中のイ
オン加速電極阪の状態を示す要部拡大断面図、第2図は
第1図のものにビーム穴を明けた状態を示す要部拡大断
面図、第3図は第2図の上面図、第4図は第2図の実施
例にて製作途中の電極板の状態を示す要部断面図、第5
図は従来の電極板を示す上面図、第6図は第5図の要部
拡大断面図である。 1・・・溝付モリブデン板 2・・・ニッケル皮膜2a
・・・ニッケルメッキ皮膜 2b・・・ニッケルメッキ皮膜 3・・・モリブデン平板  4・・・冷却構5・・・ビ
ーム穴     6冷却水出入ロア・・・モリブデン平
板  8・・・モリブデン平板9・・・溝付モリブデン
板 lO・・・ニッケル皮膜it・・・ニッケル皮膜 
  12・・・銅パイプ13・・・ろう材
Fig. 1 is an enlarged cross-sectional view of the main part showing the state of the ion accelerating electrode in the process of being manufactured in the first embodiment of the method of the present invention, and Fig. 2 shows the state in which the beam hole is drilled in the one in Fig. 1. 3 is a top view of FIG. 2, FIG. 4 is a sectional view of essential parts showing the state of the electrode plate being manufactured in the embodiment of FIG. 2, and FIG.
The figure is a top view showing a conventional electrode plate, and FIG. 6 is an enlarged sectional view of the main part of FIG. 5. 1... Grooved molybdenum plate 2... Nickel film 2a
...Nickel plating film 2b...Nickel plating film 3...Molybdenum flat plate 4...Cooling structure 5...Beam hole 6 Cooling water inlet/output lower...Molybdenum flat plate 8...Molybdenum flat plate 9...・Grooved molybdenum plate lO...Nickel coating IT...Nickel coating
12...Copper pipe 13...Brazing metal

Claims (1)

【特許請求の範囲】[Claims] 冷却水通路用の溝を設けた溝付モリブデン板の溝表面に
ニッケルを被覆しておき、その上にニッケルにて被覆さ
れたモリブデン平板を重ね、拡散接合により溝付モリブ
デンとモリブデン平板を一体化固着させるとともに、ニ
ッケルにて被覆された冷却水通路孔を形成し、その後ビ
ーム穴加工を行うことを特徴とするイオン加速電極板の
製造方法。
The groove surface of a grooved molybdenum plate with grooves for cooling water passages is coated with nickel, and a molybdenum plate coated with nickel is placed on top of it, and the grooved molybdenum and molybdenum plate are integrated by diffusion bonding. A method for manufacturing an ion accelerating electrode plate, which comprises fixing, forming cooling water passage holes coated with nickel, and then performing beam hole processing.
JP1266176A 1989-10-16 1989-10-16 Manufacture of ion accelerating electrode plate Pending JPH03129638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266176A JPH03129638A (en) 1989-10-16 1989-10-16 Manufacture of ion accelerating electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266176A JPH03129638A (en) 1989-10-16 1989-10-16 Manufacture of ion accelerating electrode plate

Publications (1)

Publication Number Publication Date
JPH03129638A true JPH03129638A (en) 1991-06-03

Family

ID=17427319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266176A Pending JPH03129638A (en) 1989-10-16 1989-10-16 Manufacture of ion accelerating electrode plate

Country Status (1)

Country Link
JP (1) JPH03129638A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529093A (en) * 1991-07-25 1993-02-05 Toshiba Corp Ion acceleration electrode and its manufacture
JP2008078042A (en) * 2006-09-22 2008-04-03 Toshiba Corp Ion source electrode and its manufacturing method
JP2010095791A (en) * 2008-09-19 2010-04-30 Sanyo Special Steel Co Ltd Molybdenum alloy-formed body having excellent machinability of drilling and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529093A (en) * 1991-07-25 1993-02-05 Toshiba Corp Ion acceleration electrode and its manufacture
JP2008078042A (en) * 2006-09-22 2008-04-03 Toshiba Corp Ion source electrode and its manufacturing method
JP2010095791A (en) * 2008-09-19 2010-04-30 Sanyo Special Steel Co Ltd Molybdenum alloy-formed body having excellent machinability of drilling and method for producing the same

Similar Documents

Publication Publication Date Title
KR100856592B1 (en) Cooling block and plasma processing apparatus
KR20020063519A (en) Backing plate used for sputtering apparatus and sputtering method
CN112475796B (en) Welding method of target assembly
TW200831691A (en) Sputter target assemblies having a controlled solder thickness
JP2005150053A (en) Solid electrolyte fuel cell
JPH03129638A (en) Manufacture of ion accelerating electrode plate
US6511759B1 (en) Means and method for producing multi-element laminar structures
JP2011076937A (en) Electrode for ion source
US8597858B2 (en) Electroformed bipolar plates for fuel cells
JP2006172964A (en) Stack structure of solid electrolyte fuel cell
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
JPH02215099A (en) Manufacture of ion accelerating electrode plate
JP2001281398A (en) Ion source electrode
JP2002305005A (en) Gas separator and its manufacturing method
JPH06314600A (en) Ion accelerating electrode plate and manufacture thereof
JPH0529093A (en) Ion acceleration electrode and its manufacture
KR101515048B1 (en) Cathode
JP5019200B2 (en) Ion source electrode
JPH10321152A (en) Ion acceleration electrode plate and its manufacture
JP3207375B2 (en) Ion acceleration electrode plate and method of manufacturing the same
JP2000294123A (en) Manufacture of ion source electrode plate
JP2703975B2 (en) Accelerator electrode plate and method of manufacturing the same
JP3802257B2 (en) Manufacturing method of ion source electrode plate
JP2005050600A (en) Electrode plate for ion source and its manufacturing method
JP3719945B2 (en) Hot static pressure bonding method and first wall structure manufacturing method