JPH03129145A - Transmission belt of thermoplastic elastomer - Google Patents

Transmission belt of thermoplastic elastomer

Info

Publication number
JPH03129145A
JPH03129145A JP26552489A JP26552489A JPH03129145A JP H03129145 A JPH03129145 A JP H03129145A JP 26552489 A JP26552489 A JP 26552489A JP 26552489 A JP26552489 A JP 26552489A JP H03129145 A JPH03129145 A JP H03129145A
Authority
JP
Japan
Prior art keywords
thermoplastic elastomer
liquid crystal
crystal polymer
transmission belt
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26552489A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hata
克彦 畑
Koji Kimura
浩二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP26552489A priority Critical patent/JPH03129145A/en
Publication of JPH03129145A publication Critical patent/JPH03129145A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a transmission belt having a sufficient transmission capacity and excellent molding characteristics by constituting a tension body of a resin composition consisting of thermoplastic elastomer and liquid crystal polymer. CONSTITUTION:The orientation of liquid crystal polymer is set longitudinally of a transmission belt. For example, polyester system thermoplastic elastomer, polyamide system thermoplastic elastomer, etc., excellent in the antiwar property and strength property are used for thermoplastic elastomer. The liquid crystal polymer is selected according to the working temperature of the mating thermoplastic elastomer. The compounding ratio of the thermoplastic elastomer(TPE) and liquid crystal polymer (LCP) are set to TPE:LCP=95-5:5-95 for example. The transmission belt is molded for instance by the same method as that of extruding and injecting the general thermoplastic resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は熱可塑性エラストマー組成物よりなる伝動ヘル
ドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a power transmission heald made of a thermoplastic elastomer composition.

(従来の技術および背景) 従来より伝動ヘルドは、天然ゴム、クロロプレンゴム等
の化学架橋型エラストマーにより製造されているが、こ
の場合、配合、混練、架橋という煩雑な作業工程を必要
とする。
(Prior Art and Background) Transmission healds have conventionally been manufactured using chemically crosslinked elastomers such as natural rubber and chloroprene rubber, but in this case, complicated work processes such as compounding, kneading, and crosslinking are required.

一方、熱可塑性エラストマーはソフトセグメントとハー
ドセグメントとの両成分からなるもので、上記化学架橋
型エラストマーと異なり、ハードセグメントの結晶化ま
たはガラス状化により物理的架橋点が形成されるため、
通常の熱可塑性樹脂用成形機で迅速に成形加工できる長
所を有する。
On the other hand, thermoplastic elastomers are composed of both soft segments and hard segments, and unlike the above-mentioned chemically crosslinked elastomers, physical crosslinking points are formed by crystallization or vitrification of the hard segments.
It has the advantage of being able to be quickly molded using a normal thermoplastic resin molding machine.

ところで、伝動ベルトは、通常、負荷を受は持つ張力体
とゴム状弾性体とからなり、張力体には、ポリエステル
繊維コード、ガラス繊維コード、アラ稟ド繊維コード等
の高弾性率材料が用いられている。上記熱可塑性エラス
トマーを伝動ベルト用材料に適用しようとする場合、張
力体に上記繊維コード類を使用すれば、熱可塑性エラス
トマーの有する優れた成形加工性を活かすことができな
い。
By the way, power transmission belts usually consist of a tension body that receives the load and a rubber-like elastic body, and the tension body is made of a high elastic modulus material such as a polyester fiber cord, a glass fiber cord, or an aramid fiber cord. It is being When applying the above thermoplastic elastomer to a material for a power transmission belt, if the above fiber cords are used for the tension member, the excellent moldability of the thermoplastic elastomer cannot be utilized.

そこで、熱可塑性エラストマーの成形加工性を活かすた
めに、張力体を含め、伝動ベルト全体を熱可塑性エラス
トマー単体で構成したものがある。(以下、従来技fl
r Iという)また、従来技術lの伝動ベルトを改良す
るものとして、炭素短繊維、アラミド短繊維等の耐熱高
弾性率短繊維を配合した熱可塑性エラストマーからなる
伝動ベルトが知られている。(以下、従来技術■という
) (発明が解決しようとする課題) 従来技術Iの伝動ベルトは熱可塑性エラストマー単体か
らなるので、低弾性率であり、僅かな伝動能力しか得ら
れない。
Therefore, in order to take advantage of the moldability of thermoplastic elastomer, there are some transmission belts in which the entire transmission belt, including the tension member, is made of a single thermoplastic elastomer. (Hereinafter, conventional technique fl
In addition, as an improvement over the power transmission belt of the prior art, a power transmission belt made of a thermoplastic elastomer blended with heat-resistant high modulus short fibers such as carbon short fibers and aramid short fibers is known. (Hereinafter, referred to as Prior Art ■) (Problem to be Solved by the Invention) The transmission belt of Prior Art I is made of a single thermoplastic elastomer, so it has a low elastic modulus and only a small transmission capacity can be obtained.

また、従来技術■の伝動ベルトでは十分な伝動能力は得
られるが、溶融粘度が上昇して成形加工性が損なわれる
という問題がある。
Further, although the power transmission belt of prior art (2) can provide sufficient power transmission ability, there is a problem in that the melt viscosity increases and moldability is impaired.

本発明は従来の技術の有するこのような問題点に鑑みて
なされたものであり、その目的は、十分な伝動能力を有
し、かつ成形性に優れた熱可塑性エラストマー伝動ベル
トを提供することにある。
The present invention was made in view of the above-mentioned problems of the conventional technology, and its purpose is to provide a thermoplastic elastomer power transmission belt that has sufficient transmission capacity and is excellent in formability. be.

(課題を解決するための手段) 上記目的を達成するために本発明の要旨は、少な(とも
張力体を熱可塑性エラストマーと液晶ポリマーとからな
る樹脂Mi戒物により構成したことを特徴とする熱可塑
性エラストマー伝動ベルトを第一の発明とし、 上記第一の発明において、液晶ポリマーの配向方向が伝
動ベルトの長平方向であることを特徴とする熱可塑性エ
ラストマー伝動ベルトを第二の発明とする。
(Means for Solving the Problems) In order to achieve the above object, the gist of the present invention is to provide a thermal A first invention is a plastic elastomer power transmission belt, and a second invention is a thermoplastic elastomer power transmission belt characterized in that, in the first invention, the orientation direction of the liquid crystal polymer is the longitudinal direction of the power transmission belt.

本発明の熱可塑性エラストマーとしては、特に限定され
るものではないが、耐摩耗性、強度特性に優れるポリエ
ステル系熱可塑性エラストマー、ポリアミド系熱可塑性
エラストマー、ポリウレタン系熱可塑性エラストマー等
を挙げることができる。
The thermoplastic elastomer of the present invention is not particularly limited, but may include polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polyurethane thermoplastic elastomers, etc., which have excellent abrasion resistance and strength properties.

また、本発明において使用する液晶ポリマーとしては、
配合相手の熱可塑性エラストマーの加工温度に応じて適
宜選択すればよいが、例えば、出光石油化学■製の出光
LCP、三菱化成■製のツバキュレート、ユニチカ■製
のロッドランなどの中から任意に選択できる。
In addition, the liquid crystal polymer used in the present invention includes:
It may be selected as appropriate depending on the processing temperature of the thermoplastic elastomer to be compounded, but for example, it can be arbitrarily selected from Idemitsu LCP manufactured by Idemitsu Petrochemical, Tubacurate manufactured by Mitsubishi Kasei, Rodlan manufactured by Unitika, etc. can.

そして、本発明において、熱可塑性エラストマー(TP
Eともいう)と液晶ポリマー(LCPともいう)との配
合比(重量比)としては、後記する理由によりTPE:
LCP=95〜5:5〜95が好ましい。
In the present invention, thermoplastic elastomer (TP
The blending ratio (weight ratio) of liquid crystal polymer (also referred to as E) and liquid crystal polymer (also referred to as LCP) is TPE:
LCP=95-5:5-95 is preferred.

本発明の伝動ベルトの成形方法としては、押出成形、射
出成形等の一般の熱可塑性樹脂と同様の方法によればよ
い。
The power transmission belt of the present invention may be formed by a method similar to that for general thermoplastic resins, such as extrusion molding or injection molding.

(作用) 液晶ポリマーは剛直な分子が整然と並んでいる。そのた
め、粘度が低く流動性に冨むので精密な成形がしやすく
、その状態のまま紡糸すると分子が配向して結晶化する
ため、配向方向には高弾性率・高強度を示す。しかし、
配向方向に直角の方向には分子が絡みあっていないため
強度が低く、容易に割れてしまう。
(Function) Liquid crystal polymers have rigid molecules arranged in an orderly manner. Therefore, it has a low viscosity and high fluidity, making it easy to form precisely, and when it is spun in that state, the molecules become oriented and crystallized, so it exhibits high elastic modulus and high strength in the orientation direction. but,
Because the molecules are not intertwined in the direction perpendicular to the orientation direction, the strength is low and it breaks easily.

上記特性を有する液晶ポリマーと熱可塑性エラストマー
は基本的には非相溶性であるが、これらを配合して一方
向に剪断力を加えて成形すると、剪断力方向に液晶ポリ
マーが配向し、この方向の引張強度および弾性率の高い
異方性材料が得られる。従って、液晶ポリマーの配向方
向を伝動ベルトの長手方向とすることにより、高負荷伝
動が可能となる。
Liquid crystal polymers and thermoplastic elastomers having the above characteristics are basically incompatible, but when they are blended and molded by applying shear force in one direction, the liquid crystal polymer is oriented in the direction of the shear force, and this direction An anisotropic material with high tensile strength and elastic modulus is obtained. Therefore, by aligning the liquid crystal polymer in the longitudinal direction of the transmission belt, high load transmission becomes possible.

また、基本成分として熱可塑性エラストマーを含有して
いるので、液晶ポリマーの配向方向に直角の方向にも所
定の強度を有する。
Furthermore, since it contains a thermoplastic elastomer as a basic component, it also has a certain strength in the direction perpendicular to the orientation direction of the liquid crystal polymer.

そして、熱可塑性エラストマーと液晶ポリマーとの配合
比として液晶ポリマーが5重量%未満では、熱可塑性エ
ラストマーマトリックス中で液晶ポリマーが繊維状化し
にくいため高弾性率のものが得にくく、一方、熱可塑性
エラストマーが5重量%未満では、液晶ポリマーの配向
方向に対して直角方向の強度が低くなる傾向がある。
If the blending ratio of the thermoplastic elastomer and the liquid crystal polymer is less than 5% by weight, the liquid crystal polymer is difficult to form into fibers in the thermoplastic elastomer matrix, making it difficult to obtain a high elastic modulus. is less than 5% by weight, the strength in the direction perpendicular to the orientation direction of the liquid crystal polymer tends to decrease.

(実施例) 以下に実施例を挙げて本発明の詳細な説明するが、本発
明はこれら実施例により何等限定されるものではない。
(Examples) The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples in any way.

1)実施例1 8頁の表1に示すようにポリエステル系熱可塑性エラス
トマー(東洋紡績■製ペルプレン)に所定量の液晶ポリ
マー(ユニチカ■製ロッドラン)を配合して混合した試
料について、射出圧力を1000kg/cm2とした射
出成形による流動長(流路=20mm幅×1鴫厚さ、金
型温度25“C)を測定した。また、同じ試料からll
llIn厚のシートを射出成形により作製し、このシー
トの液晶ポリマーの配向方向の引張弾性率(ASTM−
D638)を測定した。これらの測定結果を表1に示す
1) Example 1 As shown in Table 1 on page 8, a sample was prepared by blending and mixing a polyester thermoplastic elastomer (Pelprene, manufactured by Toyobo ■) with a predetermined amount of liquid crystal polymer (Rodlan, manufactured by Unitika ■), and the injection pressure was adjusted. The flow length was measured by injection molding at 1000kg/cm2 (flow path = 20mm width x 1mm thickness, mold temperature 25"C).
A sheet of llIn thickness was produced by injection molding, and the tensile modulus of elasticity in the orientation direction of the liquid crystal polymer (ASTM-
D638) was measured. The results of these measurements are shown in Table 1.

2)比較例1 表1に示すように実施例1と同じ熱可塑性エラストマー
に所定量の炭素短繊維を配合して混合した試料について
、射出圧力を1000kg/cm2とした射出成形によ
る流動長(流路=20悶幅×1胴厚さ、金型温度40°
C)を測定した。
2) Comparative Example 1 As shown in Table 1, for a sample prepared by mixing the same thermoplastic elastomer as in Example 1 with a predetermined amount of short carbon fibers, the flow length (flow length) was determined by injection molding at an injection pressure of 1000 kg/cm2. Path = 20 width x 1 body thickness, mold temperature 40°
C) was measured.

また、同し試料から1m厚のシートを射出成形により作
製し、このシートの流れ方向の引張弾性率(ASTM−
D638)を測定した。
In addition, a sheet with a thickness of 1 m was made from the same sample by injection molding, and the tensile modulus of elasticity in the machine direction (ASTM-
D638) was measured.

これらの測定結果を表1に示す。The results of these measurements are shown in Table 1.

以下の表1において、樹脂組成物の配合を示す数値は重
量比を示す。
In Table 1 below, the numerical values indicating the formulations of the resin compositions indicate weight ratios.

表1 表1より、熱可塑性エラストマーに液晶ポリマーを配合
した実施例(a) (b) (c)は、炭素短繊維を配
合した比較例(d) (e) (f)に比して、極めて
優れた流動性を有すると共に引張弾性率も大幅に向上し
ている。
Table 1 From Table 1, Examples (a), (b), and (c) in which a liquid crystal polymer was blended with a thermoplastic elastomer had a higher It has extremely excellent fluidity and has significantly improved tensile modulus.

3)実施例2 表1の(c)に示した配合の熱可塑性エラストマーと液
晶ポリマーとからなる樹脂組成物を用い、液晶ポリマー
の配向方向が伝動ベルトの周長方向になるように流路設
計を行った第1図に示すインジェクシゴン金型により、
型温30“C1樹脂温245°C1射出圧力1000k
g/cm”にて、第2図に示すような断面のMXLヘル
ド(歯ピッチ2.032飾、歯数200)を作製した。
3) Example 2 Using a resin composition consisting of a thermoplastic elastomer and a liquid crystal polymer having the composition shown in Table 1 (c), a flow path was designed so that the orientation direction of the liquid crystal polymer was in the circumferential direction of the power transmission belt. With the injection mold shown in Fig. 1,
Mold temperature 30"C1 Resin temperature 245°C1 Injection pressure 1000K
An MXL heald (tooth pitch 2.032 decoration, number of teeth 200) with a cross section as shown in FIG.

このMXLベルトを3.2 mm幅に切断した後、歯数
が20で回転数が5000rpmの駆動ブーりと歯数が
20の従動プーリとの間に掛は渡して、設定軸間荷重を
1000gまたは200gとして150時間走行させた
。この走行前後のベルト伸び率およびベルト破断強度残
存率について測定した結果を次頁の表2に示す。
After cutting this MXL belt to a width of 3.2 mm, it was passed between a driving pulley with 20 teeth and a rotation speed of 5000 rpm and a driven pulley with 20 teeth, and the set center-to-shaft load was 1000 g. Or, it was run for 150 hours at 200g. Table 2 on the next page shows the results of measuring belt elongation and belt breaking strength remaining before and after running.

第2図において、1は張力体、2は歯部である。この場
合、張力体1、歯部2は共に熱可塑性エラストマーに液
晶ポリマーが配合されたものであるが、歯部2は熱可塑
性エラストマーのみとし、張力体lを熱可塑性エラスト
マーに液晶ポリマーを配合したもので構成したMXLヘ
ルドも作製できる。
In FIG. 2, 1 is a tension body and 2 is a tooth portion. In this case, the tension member 1 and the tooth portion 2 are both made of a thermoplastic elastomer mixed with a liquid crystal polymer, but the tooth portion 2 is made only of thermoplastic elastomer, and the tension member 1 is made of a thermoplastic elastomer mixed with a liquid crystal polymer. MXL healds made of materials can also be made.

4)比較例2 表1の(f)に示した配合の熱可塑性エラストマーと炭
素短繊維とからなる樹脂組成物を用い、実施例2と同一
金型および同一条件でMXLベルトの作製を試みたが、
流動性が悪いため金型内に樹脂組成物を充填できなかっ
た。そこで、型温を段階的に上昇させ、70°Cでやっ
と充填が可能になった。このようにして作製したMXL
ベルトを3.2mm幅に切断し、実施例2と同じベルト
走行試験を行い、走行前後のベルト伸び率およびヘルド
破断強度残存率について測定した結果を以下の表2に示
す。
4) Comparative Example 2 Using a resin composition consisting of a thermoplastic elastomer and short carbon fibers having the composition shown in Table 1 (f), an attempt was made to manufacture an MXL belt using the same mold and under the same conditions as in Example 2. but,
Due to poor fluidity, the resin composition could not be filled into the mold. Therefore, the mold temperature was raised in stages, and filling was finally possible at 70°C. MXL produced in this way
The belt was cut to a width of 3.2 mm and subjected to the same belt running test as in Example 2, and the results of measuring the belt elongation rate and remaining heald breaking strength before and after running are shown in Table 2 below.

以上のベルト走行試験結果より、以下の点が明らかであ
る。
From the above belt running test results, the following points are clear.

■本発明に係る樹脂組成物は流動性が良好であるため射
出成形時の型温を低く設定できる。
(2) Since the resin composition according to the present invention has good fluidity, the mold temperature during injection molding can be set low.

すなわち、サイクルタイムが短く、生産性がよい。That is, cycle time is short and productivity is good.

■本発明に係る熱可塑性エラストマー伝動ベルトは液晶
ポリマーがベルトの長手方向に配向しているので、ベル
ト長手方向に極めて高い引張強度を有し、ベルト伸び率
は炭素短繊維を配合したベルトの1/3以下で極めて少
なく破断強度残存率においても高い値を示している。
■The thermoplastic elastomer power transmission belt according to the present invention has extremely high tensile strength in the longitudinal direction of the belt because the liquid crystal polymer is oriented in the longitudinal direction of the belt, and the elongation rate of the belt is 10% higher than that of belts containing short carbon fibers. /3 or less, which is extremely low, and also shows a high value in terms of residual strength at break.

(発明の効果) l)本発明に係る樹脂組成物は流動性が良好であるため
射出成形時の型温を低く設定できる。
(Effects of the Invention) l) Since the resin composition according to the present invention has good fluidity, the mold temperature during injection molding can be set low.

すなわち、サイクルタイムが短いので、生産性がよい。That is, since the cycle time is short, productivity is good.

2)本発明に係る熱可塑性エラストマー伝動ベルトは少
なくとも張力体がこのような樹脂組成物から構成されて
いるので、極めて高い生産性を有する。
2) Since at least the tension member of the thermoplastic elastomer power transmission belt according to the present invention is made of such a resin composition, it has extremely high productivity.

3)本発明に係る熱可塑性エラストマー伝動ベルトは、
液晶ポリマーがベルトの長手方向に一致するように配向
しているので、ベルトの長手方向に高強度を有し、ヘル
ドの伸び率も極めて少なく、高負荷伝動が可能である。
3) The thermoplastic elastomer power transmission belt according to the present invention includes:
Since the liquid crystal polymer is oriented to match the longitudinal direction of the belt, it has high strength in the longitudinal direction of the belt, has extremely low elongation of the heald, and is capable of high-load transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は射出成形金型の断面図、第2図はMXLベルト
の断面図である。 ■・・張力体、2・・歯部
FIG. 1 is a sectional view of an injection mold, and FIG. 2 is a sectional view of an MXL belt. ■...Tension body, 2...Tooth section

Claims (1)

【特許請求の範囲】 1)少なくとも張力体を熱可塑性エラストマーと液晶ポ
リマーとからなる樹脂組成物により構成したことを特徴
とする熱可塑性エラストマー伝動ベルト 2)液晶ポリマーの配向方向が伝動ベルトの長手方向で
あることを特徴とする請求項1記載の熱可塑性エラスト
マー伝動ベルト
[Scope of Claims] 1) A thermoplastic elastomer power transmission belt characterized in that at least the tension member is made of a resin composition consisting of a thermoplastic elastomer and a liquid crystal polymer. 2) The orientation direction of the liquid crystal polymer is the longitudinal direction of the power transmission belt. Thermoplastic elastomer power transmission belt according to claim 1, characterized in that:
JP26552489A 1989-10-11 1989-10-11 Transmission belt of thermoplastic elastomer Pending JPH03129145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26552489A JPH03129145A (en) 1989-10-11 1989-10-11 Transmission belt of thermoplastic elastomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26552489A JPH03129145A (en) 1989-10-11 1989-10-11 Transmission belt of thermoplastic elastomer

Publications (1)

Publication Number Publication Date
JPH03129145A true JPH03129145A (en) 1991-06-03

Family

ID=17418340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26552489A Pending JPH03129145A (en) 1989-10-11 1989-10-11 Transmission belt of thermoplastic elastomer

Country Status (1)

Country Link
JP (1) JPH03129145A (en)

Similar Documents

Publication Publication Date Title
SU584751A3 (en) Elastomer pneumatic tyre
CA1236620A (en) High shearing of polymer blends to elastoplastics
EP0367305B1 (en) Non-metallic polymeric twist tie
JPS62268612A (en) Glass-fiber reinforced resin molded form
Derringer Short fiber-elastomer composites
JPS62230838A (en) Elastic plastic composition
US4123476A (en) Reinforced plastic material and a process for the production thereof
US5376723A (en) Thermoplastic polyurethane elastomer blend and process for its manufacture
EP0342344A1 (en) Improved polymer blends containing isocyanate reacting agents
JPH05413B2 (en)
EP0566149A2 (en) Molding composite composition and method for molding the same
JPH03129145A (en) Transmission belt of thermoplastic elastomer
Wall The processing of fiber reinforced thermoplastics using co‐rotating twin screw extruders
JPH03129147A (en) Transmission belt of thermoplastic elastomer
JP3193164B2 (en) Polymer composite and manufacturing method thereof
KR920019831A (en) In-situ preparation method of reinforcing material in elastomer and elastomer prepared by the method
KR960006785B1 (en) Molding resin composition
CN112745658B (en) Glass fiber reinforced TPU material and preparation method thereof
KR960007276B1 (en) Method of injection molding of liquid crystal resin composite and the article
JPH04175537A (en) Transmission belt of thermo-plastic elastomer
JPH05112709A (en) Resin composition for molding
KR0185562B1 (en) Polymer composite and production thereof
JP3473111B2 (en) Polymer composite and manufacturing method thereof
JP3332258B2 (en) Material for molding liquid crystal resin composite and molding method
JP2001247785A (en) Composite thermoplastic elastomer composition and molding therefrom