JPH03127813A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH03127813A
JPH03127813A JP1267682A JP26768289A JPH03127813A JP H03127813 A JPH03127813 A JP H03127813A JP 1267682 A JP1267682 A JP 1267682A JP 26768289 A JP26768289 A JP 26768289A JP H03127813 A JPH03127813 A JP H03127813A
Authority
JP
Japan
Prior art keywords
capacitor
capacitor element
manufacturing
solid electrolytic
esr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1267682A
Other languages
Japanese (ja)
Inventor
Yukiomi Tanaka
征臣 田中
Masaharu Sato
正春 佐藤
Kunihiko Imanishi
邦彦 今西
Yutaka Yasuda
裕 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP1267682A priority Critical patent/JPH03127813A/en
Publication of JPH03127813A publication Critical patent/JPH03127813A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Abstract

PURPOSE:To improve heat resistance and weather resistance by introducing inert gas containing 1vol.% or lower of concentration of oxygen to an air gap in a capacitor element at the time of manufacturing the element or before sealing a sheath after manufacturing. CONSTITUTION:Inert gas containing 1vol.% or lower of concentration of oxygen is introduced into an air gap in a capacitor element before a heat treating step such as sealing of a sheath in the case of manufacturing a solid electrolytic capacitor in which a cathode material is formed of conductive polymer made of heterocyclic compound. Thus, it can prevent reaction of oxygen with conductive polymer such as polypyrrole, etc., at high temperature. Accordingly, even if a sheath is sealed and a heat resistance test is conducted, a decrease in its capacitance is extremely small, and an increase in its equivalent series resistance(ESR) is reduced. Thus, heat resistance and weather resistance can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極としてピロール、チオフェンおよびフラ
ン等の複素環式化合物の酸化重合体よりなる導電性高分
子を用いる固体電解コンデンサの製造方法に利用され、
特に、耐熱性および耐候性の向上を図った固体電解コン
デンサの製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a solid electrolytic capacitor using a conductive polymer made of an oxidized polymer of a heterocyclic compound such as pyrrole, thiophene, and furan as a cathode. used,
In particular, the present invention relates to a method of manufacturing a solid electrolytic capacitor with improved heat resistance and weather resistance.

〔概要〕〔overview〕

本発明は、皮膜形成金属表面に形成された酸化皮膜層を
誘電体層とし、この誘電体層上に形成された複素環式化
合物の酸化重合体よりなる導電性高分子層を陰極とし、
さらにこの導電性高分子層上に導電体層を積層したコン
デンサ素子を、外装封止してコンデンサを製造する固体
電解コンデンサの製造方法において、 前記コンデンサ素子の作製時およびまたは作製後外装封
止前に、そのコンデンサ素子内の空隙中に酸素の濃度が
1容量%以下である不活性ガスを導入する工程を設ける
ことにより、 耐熱性および耐候性に優れた固体電解コンデンサを製造
できるようにしたものである。
The present invention provides an oxide film layer formed on the surface of a film-forming metal as a dielectric layer, a conductive polymer layer formed on the dielectric layer made of an oxidized polymer of a heterocyclic compound as a cathode,
Furthermore, in a method for manufacturing a solid electrolytic capacitor, in which a capacitor is manufactured by externally sealing a capacitor element in which a conductive layer is laminated on the conductive polymer layer, the capacitor element is manufactured and/or after manufacturing and before the external sealing. A solid electrolytic capacitor with excellent heat resistance and weather resistance can be manufactured by incorporating a process of introducing an inert gas with an oxygen concentration of 1% by volume or less into the void inside the capacitor element. It is.

〔従来の技術〕[Conventional technology]

従来、固体電解コンデンサには二酸化マンガンやTCN
Q錯塩が陰極物質として用いられている。
Conventionally, solid electrolytic capacitors use manganese dioxide or TCN.
A Q complex salt is used as the cathode material.

しかし、前者ではその抵抗値が大きい、製造工程が煩雑
であるという欠点があり、後者においては耐熱性が悪い
という欠点がある。そこで複素環式化合物重合体よりな
る導電性高分子を陰極とする固体電解コンデンサが提案
されている(特開昭6037114号公報など)。
However, the former has the drawbacks of high resistance and a complicated manufacturing process, while the latter has the drawback of poor heat resistance. Therefore, a solid electrolytic capacitor using a conductive polymer made of a heterocyclic compound polymer as a cathode has been proposed (Japanese Patent Laid-Open Publication No. 6037114, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

複素環式化合物よりなる導電性高分子を陰極物質とする
固体電解コンデンサの外装には、通常エポキシ樹脂およ
びシリコン樹脂等を用いた樹脂ケース中へ封止する方法
が用いられている。エポキシ樹脂あるいはその他の樹脂
でも、その硬化に際しては60〜200℃で1〜10時
間の加熱を要するのがほとんどであり、この加熱硬化の
過程でコンデンサ素子のESR(等価直列抵抗)が増大
する問題がある。また、素子からの陰極リードの取出し
を行う際にも、同様に、ESRが増大するという問題が
ある。さらには、外装を終了したコンデンサについても
同様に、高温耐熱試験を行うとESRが増大していくと
いう問題がある。
For the exterior of a solid electrolytic capacitor whose cathode material is a conductive polymer made of a heterocyclic compound, a method of sealing the capacitor in a resin case using epoxy resin, silicone resin, etc. is usually used. Most epoxy resins and other resins require heating at 60 to 200°C for 1 to 10 hours to cure, and the problem is that the ESR (equivalent series resistance) of the capacitor element increases during this heating and curing process. There is. Furthermore, when taking out the cathode lead from the element, there is a similar problem of increased ESR. Furthermore, there is a similar problem in that the ESR increases when a high temperature heat resistance test is performed on a capacitor that has been packaged.

これらの現象はポリピロール等の導電性高分子が酸素お
よび熱により劣化してしまうことによると言われており
、酸素原子を含まないかあるいは活性酸素を発生しない
樹脂等でバリア層を設ける方法(特開平1−13761
9号公報)、外装工程に至る熱処理を不活性ガス中で行
う方法(特開昭63181309号公報)等が提案され
ている。しかし、本発明者らが検討したところ、これら
の方法を講じても特性の低下は完全には防ぎきれず、−
層の耐熱性および耐候性の向上が求められていた。
These phenomena are said to be caused by the deterioration of conductive polymers such as polypyrrole due to oxygen and heat. Kaihei 1-13761
9), a method in which the heat treatment leading to the packaging step is carried out in an inert gas (Japanese Patent Application Laid-Open No. 63181309), etc. have been proposed. However, the present inventors have investigated that even if these methods are used, the deterioration of characteristics cannot be completely prevented, and -
There was a need to improve the heat resistance and weather resistance of the layer.

本発明の目的は、前記の課題を解決することにより、外
装封止さらには耐熱性試験を行っても静電容量の低下が
極めて小さく、かつESRの増大の小さい固体電解コン
デンサの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor that exhibits a very small decrease in capacitance and a small increase in ESR even after being packaged and subjected to a heat resistance test, by solving the above-mentioned problems. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、種々検討の結果、熱処理工程を行う前に
コンデンサ素子内部の微細孔中に不活性ガスを導入する
ことにより前記課題を解決できることを見出し本発明に
至った。すなわち、本発明は、皮膜形成金属表面に酸化
皮膜からなる誘電体層を形成する工程、この誘電体層上
に陰極として複素環式化合物の酸化重合体よりなる導電
性高分子層を積層する工程、およびこの導電性高分子層
上に導電体層を積層する工程を含みコンデンサ素子を作
製する工程と、このコンデンサ素子を外装封止してコン
デンサを作製する工程とを備えた固体電解コンデンサの
製造方法において、前記コンデンサ素子の作製時および
または作製後外装封止前に、そのコンデンサ素子内の空
隙中に酸素の濃度がl容量%以下である不活性ガスを導
入する工程を備えたことを特徴とする。
As a result of various studies, the present inventors have found that the above problem can be solved by introducing an inert gas into the micropores inside the capacitor element before performing the heat treatment process, leading to the present invention. That is, the present invention comprises a step of forming a dielectric layer made of an oxide film on the surface of a film-forming metal, and a step of laminating a conductive polymer layer made of an oxidized polymer of a heterocyclic compound as a cathode on the dielectric layer. , manufacturing a solid electrolytic capacitor comprising: a step of manufacturing a capacitor element including a step of laminating a conductor layer on the conductive polymer layer; and a step of manufacturing a capacitor by externally sealing the capacitor element. The method is characterized by comprising the step of introducing an inert gas having an oxygen concentration of 1% by volume or less into the void inside the capacitor element during the production of the capacitor element and/or after the production and before the exterior sealing. shall be.

本発明が適用可能な複素環式化合物重合体よりなる導電
性高分子としては、ピロール、チオフェン、フラン、お
よびこれらの誘導体の重合物が挙げられるが、これらの
うちでもポリピロールが好ましい。
Examples of the conductive polymer made of a heterocyclic compound polymer to which the present invention can be applied include polymers of pyrrole, thiophene, furan, and derivatives thereof, and among these, polypyrrole is preferred.

また、不活性ガスとは、ポリピロールに対して酸化およ
び脱ドープ等の影響をおよぼさない気体のことで、具体
的には、He、Ne、Ar5KrおよびXe等の希ガス
類や、CO2およびN2ガスが挙げられる。これらの不
活性ガスは単独ではもちろんのこと、数種の混合気体で
も使用可能である。また、酸素の含有量は厳密に0であ
る必要はなく、本発明者らの検討の結果、酸素含有量が
1容量%以下であれば、所期の効果が得られることが明
らかになった。
In addition, inert gas is a gas that does not affect polypyrrole by oxidizing or dedoping, and specifically includes rare gases such as He, Ne, Ar5Kr and Xe, CO2 and N2 gas. can be mentioned. These inert gases can be used alone or in a mixture of several types. Furthermore, the oxygen content does not have to be strictly zero, and as a result of the inventors' studies, it has become clear that the desired effect can be obtained as long as the oxygen content is 1% by volume or less. .

また、コンデンサ素子内の空隙中に前記不活性ガスを充
填する方法としては、コンデンサ素子作製の各工程(導
電性高分子の充填、洗浄、乾燥さらには陰極リードの引
出し等)を不活性ガス雰囲気下で行うのが好ましいが、
装置上あるいは工程上の問題により困難な場合には、例
えば、大気中で導電性高分子を充填した皮膜形成金属多
孔体、あるいは、それに導電性塗料を大気中で塗布・含
浸させて組上げたコンデンサ素子を減圧下に置き、コン
デンサ素子内の空隙中に残存する空気(酸素)等を除去
した後に不活性ガスを常圧あるいは高圧で導入すること
によっても本発明の目的は充分に達成できる。従って、
本発明は、コンデンサ素子を構成する皮膜形成金属の多
孔体中に導電性高分子を充填するいずれの方法(電解酸
化重合法、化学酸化重合法および導電性高分子の溶融物
、あるいは溶液を含浸させる方法、またはこれらを併用
する方法等)にも適用可能である。
In addition, as a method of filling the void inside the capacitor element with the inert gas, each step of capacitor element manufacturing (filling of conductive polymer, cleaning, drying, drawing out the cathode lead, etc.) is carried out in an inert gas atmosphere. It is preferable to do it below,
If this is difficult due to equipment or process problems, for example, a capacitor assembled by forming a film-forming metal porous body filled with a conductive polymer in the atmosphere, or by coating and impregnating it with a conductive paint in the atmosphere. The object of the present invention can also be fully achieved by placing the element under reduced pressure and removing air (oxygen) remaining in the void inside the capacitor element and then introducing an inert gas at normal pressure or high pressure. Therefore,
The present invention is applicable to any method of filling a conductive polymer into a porous body of film-forming metal constituting a capacitor element (electrolytic oxidation polymerization method, chemical oxidation polymerization method, and impregnation with a melt or solution of a conductive polymer). It is also applicable to a method in which the

〔作用〕[Effect]

本発明は、複素環式化合物よりなる導電性高分子を陰極
材料とする固体電解コンデンサの製造において、外装封
止等熱処理工程の前に、コンデンサ素子内部の空隙中に
、酸素濃度l容量%以下の不活性ガスを導入し、高温状
態下における酸素とポリピロール等の導電性高分子との
反応を未然に防止する。これにより、外装樹脂を硬化す
るための加熱や、さらに、その後の耐熱試験を大気中で
行っても、複素環式化合物よりなる導電性高分子の導電
率の低下が小さく、したがってER3,tanδおよび
静電容量等コンデンサ特性の熱劣化の度合いが小さなコ
ンデンサが得られる。
In the production of solid electrolytic capacitors using a conductive polymer made of a heterocyclic compound as a cathode material, the present invention provides an oxygen concentration of 1% by volume or less in a void inside a capacitor element before a heat treatment process such as exterior sealing. An inert gas is introduced to prevent the reaction between oxygen and conductive polymers such as polypyrrole under high temperature conditions. As a result, even when heating is performed to cure the exterior resin and a subsequent heat resistance test is performed in the air, the conductivity of the conductive polymer made of a heterocyclic compound is small, and therefore ER3, tan δ and A capacitor with a small degree of thermal deterioration of capacitor characteristics such as capacitance can be obtained.

〔実施例〕〔Example〕

以下、実施例を上げて本発明を具体的に説明するが、本
発明はこれら実施例にのみ限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples.

実施例■ lX1cm2角のエツチングアルミ箔に高純度アルミ製
の陽極リードをスポット溶接した後、ホウ酸アンモニウ
ム水溶液中、60Vで化成処理を行い酸化皮膜を形成さ
せ、水洗、乾燥させた。
Example 2 A high-purity aluminum anode lead was spot-welded to a 1×1 cm square etched aluminum foil, and then subjected to chemical conversion treatment at 60 V in an aqueous ammonium borate solution to form an oxide film, washed with water, and dried.

このリード付アルミ化成箔をドデシルベンゼンスルホン
酸−鉄(III)塩の25容量%−メタノール溶液に浸
漬した後、デシケーク中で15分間減圧乾燥を行った。
This chemically formed aluminum foil with leads was immersed in a 25% by volume methanol solution of dodecylbenzenesulfonic acid-iron(III) salt, and then dried under reduced pressure in a desicake for 15 minutes.

さらにデシケータ内部に酸素濃度が1容量%以下である
N2ガスを導入し常圧に戻した。この後、常温、常圧下
でピロールモノマー蒸気と30分間接触させ、このアル
ミ箔上でピロールを重合させた。これをメタノールで洗
浄し、デシケーク中で15分間減圧乾燥を行った後、先
と同様にデシケータ内部に酸素濃度が1容量%以下であ
るN2ガスを導入し常圧に戻した。以上の一連の操作を
6回繰返すことにより、このアルミ箔の表面は濃黒縁色
のポリピロールで被覆された。反応前後の重量変化から
求めたアルミ箔微細孔へのポリピロールの充填率は90
%であった。
Furthermore, N2 gas having an oxygen concentration of 1% by volume or less was introduced into the desiccator to return the pressure to normal pressure. Thereafter, the aluminum foil was brought into contact with pyrrole monomer vapor for 30 minutes at room temperature and pressure to polymerize pyrrole on the aluminum foil. After washing this with methanol and drying under reduced pressure in a desiccator for 15 minutes, N2 gas having an oxygen concentration of 1% by volume or less was introduced into the desiccator as before to return it to normal pressure. By repeating the above series of operations six times, the surface of this aluminum foil was coated with polypyrrole with a deep black edge color. The filling rate of polypyrrole into the micropores of aluminum foil, determined from the weight change before and after the reaction, was 90.
%Met.

以下の工程は大気中で連続的に行った。まず銀ペースト
を用いて陰極リードの引出しを行い、コンデンサ素子を
組み上げた。得られたコンデンサ素子は、120Hzに
おいて7.56μFの静電容量を有し、tanδは0.
01以下であった。静電容量の変化率は250kHzま
でl0%以下、またtanδも150kHzまで0.1
以下であった。共振点(540kHz)におけるESR
は32mΩであった。
The following steps were performed continuously in the atmosphere. First, the cathode lead was drawn out using silver paste, and the capacitor element was assembled. The obtained capacitor element has a capacitance of 7.56 μF at 120 Hz and a tan δ of 0.
It was 01 or less. The rate of change in capacitance is less than 10% up to 250kHz, and tan δ is 0.1 up to 150kHz.
It was below. ESR at resonance point (540kHz)
was 32 mΩ.

次に、このコンデンサ素子をエポキシ樹脂中に浸漬し、
150℃、30分間の加熱硬化をおこなって外装を施し
てコンデンサを完成させた。完成したコンデンササンプ
ルにつき、コンデンサ素子と同様に容量、tanδおよ
びESRの測定を行った。
Next, this capacitor element is immersed in epoxy resin,
The capacitor was completed by heating and curing at 150° C. for 30 minutes and applying an exterior cover. The capacitance, tan δ, and ESR of the completed capacitor sample were measured in the same manner as the capacitor element.

120Hzにおける容量およびtanδは外装前とほぼ
同じで、それぞれ7.54μFおよび0.01以下であ
り、また、共振点におけるESRは34mΩであった。
The capacitance and tan δ at 120 Hz were almost the same as before packaging, being 7.54 μF and 0.01 or less, respectively, and the ESR at the resonance point was 34 mΩ.

緒特性の周波数依存性についても樹脂外装の前後におい
て変化は無かった。
There was also no change in the frequency dependence of the mechanical properties before and after the resin coating.

さらに、このコンデンササンプルについて150℃での
加熱を行い、そのESRの変化を測定した。
Further, this capacitor sample was heated at 150° C., and the change in ESR was measured.

500時間経過した後の共振点におけるESRは38m
Ωであった。
ESR at resonance point after 500 hours is 38m
It was Ω.

比較例1 デシケータ内でサンプルを減圧乾燥した後、常圧に戻す
際に空気を導入した以外は実施例1と同様にしてコンデ
ンササンプルを作製した。樹脂モールド前のコンデンサ
素子は、12011zにおいて7,45μFの静電容量
を有し、tanδは0,01以下であった。静電容量の
変化率は300ktlzまで10%以下であり、共振点
(560kHz)におけるESRは35mΩであった。
Comparative Example 1 A capacitor sample was produced in the same manner as in Example 1, except that after drying the sample under reduced pressure in a desiccator, air was introduced when returning to normal pressure. The capacitor element before resin molding had a capacitance of 7.45 μF at 12011z, and tan δ was 0.01 or less. The rate of change in capacitance was 10% or less up to 300 ktlz, and the ESR at the resonance point (560 kHz) was 35 mΩ.

このコンデンサ素子をエポキシ樹脂で外装すると、12
01(zにおける容量およびtanδの値は樹脂0 モールド前と同じであったものの、静電容量の変化率は
30kHzより上の周波数領域で10%以上の減少を示
し、共振点(560kHz)におけるESRも76mΩ
と増大した。
When this capacitor element is covered with epoxy resin, 12
Although the capacitance and tan δ values at 01 (z were the same as before resin 0 molding, the rate of change in capacitance decreased by more than 10% in the frequency range above 30 kHz, and the ESR at the resonance point (560 kHz) decreased. Also 76mΩ
and increased.

このコンデンササンプルを150℃で加熱すると、加熱
開始から200時間経過した時点で、共振点におけるE
SRが2.8Ωと、コンデンサ素子のときの80倍にま
で増大した。また、これに伴い、周波数特性も劣化して
おり、その静電容量は10kHzにおいて、120)i
zでの値の80%にまで減少した。
When this capacitor sample is heated at 150°C, the E at the resonance point is
The SR was 2.8Ω, which was 80 times higher than when using a capacitor element. Additionally, along with this, the frequency characteristics have also deteriorated, and the capacitance is 120)i at 10kHz.
It decreased to 80% of the value at z.

比較例2 比較例1と同様の方法によりコンデンササンプルを作製
した。樹脂モールド前のコンデンサ素子は、120Hz
において7.52μFの静電容量を有し、tanδは0
.01以下であった。静電容量の変化率は300kHz
まで10%以下であり、共振点(560kHz)におけ
るESRは43mΩであった。
Comparative Example 2 A capacitor sample was produced in the same manner as Comparative Example 1. The capacitor element before resin molding is 120Hz
has a capacitance of 7.52 μF and tan δ is 0
.. It was 01 or less. The rate of change of capacitance is 300kHz
The ESR at the resonance point (560 kHz) was 43 mΩ.

このコンデンサ素子を、エポキシ樹脂中に浸漬し、N2
雰囲気下150℃、30分間加熱硬化を行い外装すると
、120Hzにおける静電容量およびjanδ■ の値は樹脂モールド前と同じであったものの、静電容量
の変化率は25kHz以上の周波数領域で10%以上の
減少を示し、共振点(560kHz)におけるESRは
93mΩと増大した。
This capacitor element is immersed in epoxy resin and N2
When the capacitance was heat-cured for 30 minutes at 150℃ in an atmosphere and packaged, the capacitance at 120Hz and the value of janδ■ were the same as before resin molding, but the rate of change in capacitance was 10% in the frequency range of 25kHz or higher. The ESR at the resonance point (560 kHz) increased to 93 mΩ.

さらに、これをN2雰囲気下、150℃で加熱すると、
加熱開始から200時間経過した時点で、共振点におけ
るESRが1,2Ωと、コンデンサ素子のときの30倍
にまで増大した。また、これに伴い、周波数特性も劣化
しており、その静電容量は10kHzにおいて、120
Hzでの値の80%にまで減少した。
Furthermore, when this is heated at 150°C under N2 atmosphere,
After 200 hours had passed from the start of heating, the ESR at the resonance point had increased to 1.2Ω, which was 30 times that of the capacitor element. Along with this, the frequency characteristics have also deteriorated, and the capacitance is 120 at 10kHz.
It decreased to 80% of the value in Hz.

実施例2 直径2mm、高さ2mmの円柱状のタンタル微粉焼結体
ペレット(空隙率50%〉を、硝酸水溶液中、100V
で陽極酸化し、表面に酸化皮膜を形成させた。このペレ
ットを用いて、実施例1と同様の操作を行いタンタル固
体電解コンデンサを完成させた。
Example 2 A cylindrical tantalum fine powder sintered body pellet (porosity 50%) with a diameter of 2 mm and a height of 2 mm was heated at 100 V in an aqueous nitric acid solution.
was anodized to form an oxide film on the surface. Using this pellet, the same operation as in Example 1 was carried out to complete a tantalum solid electrolytic capacitor.

樹脂モールド前のコンデンサ素子は、120Hzにおい
て、静電容量4.86μFおよびtanδは0.01以
下であった。このコンデンサ素子の静電容量の変化率は
300kHzまで10%以下、またtanδも200k
Hzまで0,1以下であった。また、共振点(760k
)lz)におけるESRは68mΩであった。
The capacitor element before resin molding had a capacitance of 4.86 μF and a tan δ of 0.01 or less at 120 Hz. The rate of change in capacitance of this capacitor element is less than 10% up to 300kHz, and the tan δ is also 200k.
It was below 0.1 Hz. Also, the resonance point (760k
) lz) was 68 mΩ.

これをエポキシ樹脂により外装したコンデンササンプル
につき、静電容量、tanδおよびESRを測定した。
Capacitance, tan δ and ESR were measured for the capacitor sample which was packaged with epoxy resin.

12(II(zにおける容量およびta’nδはそれぞ
れ4.85μFおよび0.01以下であり、また、共振
点(760ktlz)におけるESRは63mΩであっ
た。
The capacitance at 12(II(z) and ta'nδ were 4.85 μF and 0.01 or less, respectively, and the ESR at the resonance point (760 ktlz) was 63 mΩ.

これらの緒特性の周波数依存性についても樹脂外装の前
後での変化は無かった。
There was no change in the frequency dependence of these characteristics before and after the resin coating.

さらに、これを150℃で加熱を行い、そのESRの経
時変化を測定したが、加熱開始から500時間後のES
Rは71mΩと小さいものであった。
Furthermore, this was heated at 150°C and the change in ESR over time was measured.
R was as small as 71 mΩ.

実施例3 実施例1で用いたのと同じリード付アルミ化戊箔上でポ
リピロールの電解酸化重合を行い、アルミ箔の微細孔内
をポリピロールで充填した。これを、メタノールで洗浄
し、デシケータ中で減圧乾燥を行った後、デシケータ内
に酸素の濃度が1容量%以下であるArガスを導入して
常圧に戻した。
Example 3 Polypyrrole was electrolytically oxidized and polymerized on the same leaded aluminized foil used in Example 1, and the micropores of the aluminum foil were filled with polypyrrole. After washing this with methanol and drying under reduced pressure in a desiccator, Ar gas having an oxygen concentration of 1% by volume or less was introduced into the desiccator to return to normal pressure.

3 次いで、実施例1と同様に銀ペーストを用いて陰極リー
ドを取付け、コンデンサ素子を組み上げた。
3 Next, as in Example 1, a cathode lead was attached using silver paste, and a capacitor element was assembled.

得られたコンデンサ素子は、120Hzにおいて7.4
5μFの静電容量を有し、tanδは0.01以下であ
った。静電容量の変化率は270kHzまで10%以下
、またtanδも170ktlzまで0.1以下であっ
た。このコンデンサ素子の共振点(540ktlz)に
おけるESRは29mΩであった。
The resulting capacitor element has a frequency of 7.4 at 120Hz.
It had a capacitance of 5 μF, and tan δ was 0.01 or less. The rate of change in capacitance was 10% or less up to 270 kHz, and tan δ was also 0.1 or less up to 170 ktlz. The ESR at the resonance point (540 ktlz) of this capacitor element was 29 mΩ.

次に、このコンデンサ素子を実施例1と同様に大気中で
外装を施してコンデンサを完成させた。
Next, this capacitor element was packaged in the atmosphere in the same manner as in Example 1 to complete a capacitor.

完成したコンデンササンプルにつき、コンデンサ素子と
同様に、容量tanδおよびESRの測定を行った。1
20Hzにおける容量およびtanδはそれぞれ7.4
5μFおよび0.01以下であり、また、共振点におけ
るESRは31mΩであり、これらの緒特性の周波数依
存性についても樹脂外装の前後において特性に変化が無
かった。
The capacitance tan δ and ESR of the completed capacitor sample were measured in the same manner as for the capacitor element. 1
Capacity and tanδ at 20Hz are each 7.4
The ESR at the resonance point was 5 μF and 0.01 or less, and the ESR at the resonance point was 31 mΩ, and there was no change in the frequency dependence of these characteristics before and after the resin coating.

さらにこのコンデンササンプルについて150℃での加
熱を行い、そのESRの経時変化を測定した。加熱開始
500時間後における共振点における4 ESRは36mΩで、加熱によるESRの増加が極めて
小さかった。
Further, this capacitor sample was heated at 150° C., and the change in ESR over time was measured. 4 ESR at the resonance point 500 hours after the start of heating was 36 mΩ, and the increase in ESR due to heating was extremely small.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、耐熱性および耐
候性に優れた固体電解コンデンサを製造することができ
、その効果は大である。
As explained above, according to the present invention, a solid electrolytic capacitor with excellent heat resistance and weather resistance can be manufactured, and the effects thereof are significant.

5

Claims (1)

【特許請求の範囲】[Claims] 1.皮膜形成金属表面に酸化皮膜からなる誘電体層を形
成する工程、この誘電体層上に陰極として複素環式化合
物の酸化重合体よりなる導電性高分子層を積層する工程
、およびこの導電性高分子層上に導電体層を積層する工
程を含みコンデンサ素子を作製する工程と、このコンデ
ンサ素子を外装封止してコンデンサを作製する工程とを
備えた固体電解コンデンサの製造方法において、 前記コンデンサ素子の作製時およびまたは作製後外装封
止前に、そのコンデンサ素子内の空隙中に酸素の濃度が
1容量%以下である不活性ガスを導入する工程を備えた ことを特徴とする固体電解コンデンサの製造方法。
1. A step of forming a dielectric layer made of an oxide film on the surface of the film-forming metal, a step of laminating a conductive polymer layer made of an oxidized polymer of a heterocyclic compound as a cathode on the dielectric layer, and a step of laminating the conductive polymer layer made of an oxidized polymer of a heterocyclic compound on the dielectric layer. A method for manufacturing a solid electrolytic capacitor, comprising a step of manufacturing a capacitor element including a step of laminating a conductor layer on a molecular layer, and a step of manufacturing a capacitor by externally sealing the capacitor element, the capacitor element A solid electrolytic capacitor comprising a step of introducing an inert gas having an oxygen concentration of 1% by volume or less into the void in the capacitor element during the production and/or after the production and before the exterior sealing. Production method.
JP1267682A 1989-10-13 1989-10-13 Manufacture of solid electrolytic capacitor Pending JPH03127813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267682A JPH03127813A (en) 1989-10-13 1989-10-13 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267682A JPH03127813A (en) 1989-10-13 1989-10-13 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03127813A true JPH03127813A (en) 1991-05-30

Family

ID=17448067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267682A Pending JPH03127813A (en) 1989-10-13 1989-10-13 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03127813A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0720188A2 (en) * 1994-12-28 1996-07-03 Nec Corporation Heat resistant conducting polymer, solid electrolytic capacitor using the same and method for fabricating such capacitor
US5586000A (en) * 1993-12-28 1996-12-17 Nec Corporation Solid electrolytic capacitor and process for production thereof
US6506007B1 (en) 1997-12-17 2003-01-14 Kawasaki Jukogyo Kabushiki Kaisha Fastening bolt
JP2007281268A (en) * 2006-04-10 2007-10-25 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
GB2461765A (en) * 2008-04-01 2010-01-20 Avx Corp Hermetically sealed ceramic housing for an electrolytic capacitor
WO2010070878A1 (en) * 2008-12-15 2010-06-24 昭和電工株式会社 Solid electrolytic capacitor and method for manufacturing same
JP2012099812A (en) * 2010-11-01 2012-05-24 Avx Corp Solid electrolytic capacitor for high voltage and high temperature application
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US9508492B2 (en) 2011-04-07 2016-11-29 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9865401B2 (en) 2012-08-30 2018-01-09 Avx Corporation Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586000A (en) * 1993-12-28 1996-12-17 Nec Corporation Solid electrolytic capacitor and process for production thereof
US5951840A (en) * 1994-12-28 1999-09-14 Nec Corporation Heat resistant conducting polymer, solid electrolytic capacitor using the same and method for fabricating such capacitor
EP0720188A3 (en) * 1994-12-28 2001-04-04 Nec Corporation Heat resistant conducting polymer, solid electrolytic capacitor using the same and method for fabricating such capacitor
EP0720188A2 (en) * 1994-12-28 1996-07-03 Nec Corporation Heat resistant conducting polymer, solid electrolytic capacitor using the same and method for fabricating such capacitor
US6506007B1 (en) 1997-12-17 2003-01-14 Kawasaki Jukogyo Kabushiki Kaisha Fastening bolt
JP2007281268A (en) * 2006-04-10 2007-10-25 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
GB2461765B (en) * 2008-04-01 2012-06-20 Avx Corp Hermetically sealed capacitor assembly
GB2461765A (en) * 2008-04-01 2010-01-20 Avx Corp Hermetically sealed ceramic housing for an electrolytic capacitor
US8576544B2 (en) 2008-04-01 2013-11-05 Avx Corporation Hermetically sealed capacitor assembly
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
JP4547466B2 (en) * 2008-12-15 2010-09-22 昭和電工株式会社 Solid electrolytic capacitor and manufacturing method thereof
JPWO2010070878A1 (en) * 2008-12-15 2012-05-24 昭和電工株式会社 Solid electrolytic capacitor and manufacturing method thereof
US8529642B2 (en) 2008-12-15 2013-09-10 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
WO2010070878A1 (en) * 2008-12-15 2010-06-24 昭和電工株式会社 Solid electrolytic capacitor and method for manufacturing same
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
JP2012099812A (en) * 2010-11-01 2012-05-24 Avx Corp Solid electrolytic capacitor for high voltage and high temperature application
US9224541B2 (en) 2010-11-01 2015-12-29 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US9508492B2 (en) 2011-04-07 2016-11-29 Avx Corporation Manganese oxide capacitor for use in extreme environments
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US9865401B2 (en) 2012-08-30 2018-01-09 Avx Corporation Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9824826B2 (en) 2013-05-13 2017-11-21 Avx Corporation Solid electrolytic capacitor containing conductive polymer particles
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPH03127813A (en) Manufacture of solid electrolytic capacitor
US6136176A (en) Capacitor with conductive polymer
US6134099A (en) Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH05121274A (en) Solid electrolytic capacitor and its manufacture
JPH11121281A (en) Method for manufacturing solid electrolytic capacitor
JPH1064761A (en) Method of manufacturing solid electrolytic capacitor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP3362600B2 (en) Manufacturing method of capacitor
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
JPH02207518A (en) Solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JPH01225110A (en) Solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JP2000228331A (en) Manufacture of electrolytic capacitor
JPH10284351A (en) Solid-state electrolytic capacitor and manufacture of the same
JPH03123013A (en) Solid electrolytic capacitor
JPH0494107A (en) Manufacture of solid electrolytic capacitor
JP3332238B2 (en) Method for manufacturing solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02117121A (en) Solid electrolytic capacitor
JP2003197478A (en) Solid electrolytic capacitor and manufacturing method therefor