JPH03126665A - Production of lead titanate/zirconate sintered body - Google Patents

Production of lead titanate/zirconate sintered body

Info

Publication number
JPH03126665A
JPH03126665A JP1262117A JP26211789A JPH03126665A JP H03126665 A JPH03126665 A JP H03126665A JP 1262117 A JP1262117 A JP 1262117A JP 26211789 A JP26211789 A JP 26211789A JP H03126665 A JPH03126665 A JP H03126665A
Authority
JP
Japan
Prior art keywords
soln
precursor
sintered body
type oxide
perovskite type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1262117A
Other languages
Japanese (ja)
Inventor
Koichiro Sakata
坂田 好一郎
Michiko Oda
享子 織田
Kunimasa Takahashi
高橋 邦昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP1262117A priority Critical patent/JPH03126665A/en
Publication of JPH03126665A publication Critical patent/JPH03126665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To enhance piezoelectric characteristics by bringing an alcoholic soln. contg. a specified amount of oxalic acid into contact with the soln. of Pb, Ti and Zr to produce a coprecipitate and dehydrating this coprecipitate and thereafter roasting it to obtain perovskite type oxide, compressing and molding this perovskite type oxide and thereafter sintering the molded perovskite type oxide. CONSTITUTION:A mixed soln. contg. Pb, Ti and Zr at a prescribed rate is prepared by mixing the solns. of metallic salt such as lead nitrate, titanium oxynitrate and zirconium uitrate. An ethanol soln. is prepared which contains total amount of both (0.49-0.51)mol oxalic acid for 1mol (Ti+Zr) contained in the above mixed soln. and (0.98-1.02) mol oxalic acid for 1mol Pb contained in the same. Slurry is obtained by adding the mixed soln. of Pb, Ti and Zr to this ethanol soln. and mixing both solns. and regulated to the prescribed pH. After reaction is completed, filtered cake is washed, heated and dried to obtain a precursor. Perovskite type oxide shown in a formula (0.56<x<0.96) is obtained by grinding this precursor and thereafter raising it to 500-1000 deg.C at the velocity of (0.5-50) deg.C/min to roast the precursor. A lead titanate/ zirconate sintered body is obtained by pressure-molding the roasted precursor and thereafter sintering it at <=1380 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた成形加工性、誘電性、圧電性および焦
電性等を得ることのできる、強誘電性セラミックス焼結
体に関するものである。さらに詳しくは本発明は、微細
加工が容易で、特に15モードの圧電性に優れた特性を
示す、チタン酸ジルコン酸鉛の焼結体に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ferroelectric ceramic sintered body that can obtain excellent moldability, dielectricity, piezoelectricity, pyroelectricity, etc. be. More specifically, the present invention relates to a sintered body of lead zirconate titanate that is easily microfabricated and exhibits particularly excellent 15-mode piezoelectric properties.

〔従来の技術および課題〕[Conventional technology and issues]

ジルコン酸鉛は代表的な反強誘電体であり、自由エネル
ギーの近い状態が幾つもあるので、少量の添加物を使っ
てその組成を変えると、各相の安定性の関係が変化し、
その結果種々の相が出現する。例えば、pbの一部をB
aで、あるいはZrの一部をTiで置換するとP b 
Z r O3近傍の組成に強誘電相が出現し、反強誘電
相−強誘電相の相境界が存在する。従って、P bZ 
ro z近傍の組成は相変態にともなう機能が期待され
る。例えば、誘電、圧電あるいは焦電セラミックス材料
となり得る。
Lead zirconate is a typical antiferroelectric material, and it has many states with similar free energies, so if you change its composition using a small amount of additives, the relationship between the stability of each phase will change.
As a result, various phases appear. For example, part of pb is B
When a or part of Zr is replaced with Ti, P b
A ferroelectric phase appears in the composition near Z r O3, and a phase boundary between an antiferroelectric phase and a ferroelectric phase exists. Therefore, P bZ
The composition near ro z is expected to have a function associated with phase transformation. For example, it can be a dielectric, piezoelectric or pyroelectric ceramic material.

このような相境界近傍組成のセラミックスを再現性よく
得るためには、焼結体の組成の厳密な制御が必要である
。しかし、一般的なセラミックス焼結体の製造方法、す
なわち各金属酸化物粉末を混合、仮焼、粉砕を繰り返し
た後生成形体を作り、これを焼結する酸化物混合法では
、各酸化物粒子間の反応を進めるために蒸発し易い酸化
鉛を高温に曝さざるを得ないこと、かつ鉛とジルコニウ
ムの結合力は弱いことも相俟って、組成制御および組成
分布、の均質化には困難が伴った。さらにこの鉛の蒸発
、偏析により、焼結体中の異常粒成長が促進され、微細
加工時には粒界面での欠は落ちや巨大粒子自体の亀裂等
が頻発し、製品歩留まりが不良となるなどの難点がある
In order to obtain ceramics with a composition near the phase boundary with good reproducibility, strict control of the composition of the sintered body is required. However, in the general manufacturing method of ceramic sintered bodies, that is, the oxide mixing method in which each metal oxide powder is repeatedly mixed, calcined, and pulverized to create a formed body and then sintered, each oxide particle It is difficult to control the composition and homogenize the composition distribution because lead oxide, which easily evaporates, must be exposed to high temperatures to promote the reaction between lead and zirconium, and the bonding force between lead and zirconium is weak. accompanied. Furthermore, the evaporation and segregation of lead promotes abnormal grain growth in the sintered body, and during microfabrication, chips at the grain interface and cracks in the giant grains themselves occur frequently, resulting in poor product yield. There are some difficulties.

酸化物混合法によっては、良質な焼結□体を再現性よく
得ることが難しい相境界近傍の組成を厳密に制御し、か
つどの部分も均質なセラミックス・焼結体を得るために
は、原料粉体自体、個々の粒子において厳密な組成制御
が達成されていることがまず必要である。またさらに、
その焼結温度および時間の低減により畢常粒子戒長を抑
制するために、微細で粒度分布巾の狭い粒子群から構成
されていることが必要である。
It is difficult to obtain high-quality sintered bodies with good reproducibility depending on the oxide mixing method.In order to strictly control the composition near the phase boundaries and obtain homogeneous ceramics/sintered bodies in all parts, it is necessary to First of all, it is necessary that strict compositional control be achieved in each individual particle of the powder itself. Furthermore,
In order to suppress the particle length by reducing the sintering temperature and time, it is necessary to be composed of fine particles with a narrow particle size distribution.

以上のような観点にたち、本発明者らは原料粉体につい
て鋭意検討した。その結果、本発明者らが先に開発した
、新規なしゆう酸塩共沈澱合威法による金属しゅう酸塩
共沈澱物を仮焼して得られる複合酸化物微粒子において
、例えばP b(Z r。
Based on the above viewpoints, the present inventors conducted extensive studies on raw material powder. As a result, in composite oxide fine particles obtained by calcining a metal oxalate coprecipitate by the novel oxalate coprecipitation method previously developed by the present inventors, for example, P b (Z r .

Tie−、)○、におけるX(モル分率)を微粒子単位
で0.01刻みの精度で厳密に任意の組成に制御が可能
なことを見いだした。
It has been found that X (mole fraction) in Tie-, )○, can be strictly controlled to any composition in fine particle units with an accuracy of 0.01.

また、金属しゆう酸塩の1次粒子は数百人と小さいので
、仮焼粉体粒径も焼結を低温セ促進することができる5
μm以下、例えば1μmと任意に設定することができる
ことを見いだした。すなわち、本発明で得られる粉体は
酸化物混合法による粉体に比べて焼結体の微細構造にお
いて厳密な組成制御が可能であることと同時に低温焼結
によって巨大結晶が発生しないために、微細な加工や電
極印刷焼付けが可能な15モードの圧電特性に優れた焼
結体を与えることを確認して、本願発明の完成に至った
In addition, since the primary particles of metal oxalate are small, on the order of several hundred, the particle size of the calcined powder can also promote sintering at low temperatures.
It has been found that the thickness can be arbitrarily set to 1 μm or less, for example, 1 μm. In other words, the powder obtained by the present invention allows strict composition control in the fine structure of the sintered body compared to powder obtained by the oxide mixing method, and at the same time, does not generate giant crystals due to low temperature sintering. The present invention was completed by confirming that a sintered body with excellent piezoelectric properties in 15 modes, which is capable of fine processing and electrode printing and baking, can be provided.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、鉛、チタンおよびジルコニウムの溶
液と、チタンとジルコニウムの含量1モル当り0.49
〜0.51モル量と鉛1モル当り0゜98〜1.02モ
ル量の合計量のしゅう酸のアルコール溶液を接触させて
、しゅう酸塩共沈澱物を生成させ、該沈澱物を脱水後仮
焼して、P b(Z r。
That is, the present invention provides a solution of lead, titanium and zirconium, and a content of titanium and zirconium of 0.49 per mole.
~0.51 mole and an alcoholic solution of oxalic acid in a total amount of 0.98 to 1.02 mole per mole of lead to form an oxalate co-precipitate, and after dehydrating the precipitate. After calcining, P b (Z r.

T i 1−)Os (但し0.86<x<0.96>
なる組成のペロブスカイト型酸化物を得、これを圧縮成
形した後、焼結することを特徴とするチタン酸ジルコン
酸鉛焼結体の製造方法を提供するものである。
T i 1-)Os (0.86<x<0.96>
The present invention provides a method for producing a lead zirconate titanate sintered body, which comprises obtaining a perovskite-type oxide having the following composition, compression molding it, and then sintering it.

チタン酸ジルコン酸鉛(P b(Z r−T i+−)
Oa)の中でも、本発明により得られる0、86<x<
0.96の組成のものは、15モードの特性に優れてい
る。具体的には、電気機械結合定数KISが40〜50
%と大きく、比誘電率が約500と比較的低いため、高
周波用圧電製品に用いることができる。また、相境界に
おいて結晶系が変化することより、強制相変態による歪
み変化を利用した、スイッチング素子、あるいはディジ
タル変位素子等への展開も可能である。さらに比較的低
誘電率であるが15モードにおける電気機械結合定数k
15が大きいことから、交差指電極(IDT)の設計に
有利であり、表面弾性波フィルターにも用いることがで
きる。
Lead zirconate titanate (P b (Z r-T i+-)
Among Oa), 0, 86<x< obtained by the present invention
The one with a composition of 0.96 has excellent 15 mode characteristics. Specifically, the electromechanical coupling constant KIS is 40 to 50.
% and relatively low dielectric constant of approximately 500, it can be used in high frequency piezoelectric products. Furthermore, since the crystal system changes at the phase boundary, it is also possible to develop switching elements or digital displacement elements that utilize strain changes due to forced phase transformation. Furthermore, although the dielectric constant is relatively low, the electromechanical coupling constant k in 15 modes is
15 is advantageous in designing interdigital electrodes (IDTs) and can also be used in surface acoustic wave filters.

さらに、本発明により得られる酸化物焼結体は、原料酸
化物粉体が微粒子であることがら、従来の酸化物混合法
のものより低温で良好な焼結体物が得られるので、焼結
体中の1次粒子の成長が抑制され、焼結体ドメインに均
一性が付与される。さらには、各粒子内の組成が均一で
あり組成成分の偏在がないので、過剰の鉛を添加する必
要が無くなることから、異常粒成長は本質的に起こりに
くく、微細加工にも容易に耐え得る焼結体を得ることが
できる。
Furthermore, since the raw material oxide powder of the oxide sintered body obtained by the present invention is fine particles, a good sintered body can be obtained at a lower temperature than that of the conventional oxide mixing method. The growth of primary particles in the body is suppressed and uniformity is imparted to the sintered body domains. Furthermore, since the composition within each grain is uniform and there is no uneven distribution of compositional components, there is no need to add excessive lead, so abnormal grain growth is essentially unlikely to occur and it can easily withstand fine processing. A sintered body can be obtained.

本発明による焼結体の他の応用例としては、例えば、電
気機械結合係数が高く、音響インピーダンスが低く、水
中や人体に体する超音波の放射効率に優れ、かつ2次的
加工性にも優れた樹脂とセラミックスとの複合構造体が
考えられるが、その一つに複合構造の形態を設計した従
来例として、特開昭第62−281599号には、圧電
性セラミックスを細長い柱状に切削加工した後、その空
隙を樹脂で充填した複合材料が提案されている。本発明
による酸化物焼結体を微細加工したものの具体的用途と
しては、これら複合材料への展開も一例として考えられ
る。
Other application examples of the sintered body according to the present invention include, for example, a high electromechanical coupling coefficient, low acoustic impedance, excellent radiation efficiency of ultrasonic waves that are exposed to water or the human body, and good secondary processability. An excellent composite structure of resin and ceramics can be considered, and as one of the conventional examples of designing the form of a composite structure, Japanese Patent Application Laid-Open No. 62-281599 describes a method of cutting piezoelectric ceramics into elongated columns. A composite material has been proposed in which the voids are then filled with resin. As a specific application of the microfabricated oxide sintered body according to the present invention, application to these composite materials can be considered as one example.

〔本発明の詳細な説明〕[Detailed description of the invention]

P b(Z r−T ll−x O,1本発明で対象と
する酸化物粉体は、ABO3型を基本構造とするペロブ
スカイト型酸化物であり、具体的には、P b(Z r
XT i+−x)Os(但し0.86 <x<0.96
)である。
P b (Z r - T ll -
XT i+-x)Os (however, 0.86 <x<0.96
).

さらに種々の微量成分、例えばマンガンやニッケル等の
酸化物を含むことも可能である。
Furthermore, it is possible to contain various trace components, such as oxides of manganese, nickel, etc.

これら酸化物粉体は、本発明者らが発見した新規なしゆ
う酸塩共沈製合成法(例えば特開昭63182217)
から得られる前駆体共沈澱物を脱水、乾燥後仮焼して得
ることができる。
These oxide powders can be synthesized using a new sulfate coprecipitation method discovered by the present inventors (e.g., JP-A-63182217).
It can be obtained by dehydrating, drying and calcining the precursor co-precipitate obtained from.

該乾燥しゆう酸塩共沈側の仮焼において、昇温速度は重
要である。特にしゆう酸塩共沈側が分解する200〜4
00℃の範囲では速度は余り大きくとらない方が好まし
い。0.1〜50°C/分、好ましくは0.5〜b ことができる。仮焼温度は500 ’Cから1000℃
、好ましくは550 ’Cから980℃、さらに好まし
くは580℃から950℃をとることができる。降温速
度は炉冷で充分である。
In the calcination of the dried oxalate coprecipitation side, the rate of temperature rise is important. Especially the oxalate co-precipitation side decomposes 200-4
It is preferable that the speed is not too high in the range of 00°C. 0.1-50°C/min, preferably 0.5-b. Calcining temperature is 500'C to 1000℃
, preferably from 550'C to 980°C, more preferably from 580°C to 950°C. Furnace cooling is sufficient for temperature reduction rate.

仮焼時の炉内雰囲気は空気雰囲気が好ましい。The atmosphere in the furnace during calcination is preferably an air atmosphere.

仮焼された酸化物粉末の平均粒径は5μm以下、さらに
は3μm以下に設定することが、焼結において好ましい
In sintering, the average particle size of the calcined oxide powder is preferably set to 5 μm or less, more preferably 3 μm or less.

の 1゛口 次ぎに、前記のようにして得られた仮焼酸化物粉体を金
型に充填し、0.1から2トン/am2の充填圧力で成
形する。粉末の充填性を高めるために、セラミックス粉
末成形法で公知の技術、例えば、水やアセトンを含ませ
たスラリーを圧縮成形する方法や、湿潤剤や分散剤を添
加した後、充分混合した水もしくは有機溶媒スラリーを
圧縮成形する方法も用いることができる。また、ポリビ
ニルアルコールやメチルセルロースの如き粘結剤を含む
スラリーを噴霧乾燥によって造粒し、これを金型にて圧
縮成形して均一な充填密度を持つ成形体とし、空気雰囲
気中で粘結剤を燃焼除去した後焼結する手法を用いるこ
ともできる。また、該スラリーをドクターブレード法等
で成M後、乾燥、助剤除去の工程を経、必要に応じて電
極を付与した後に焼結する方法を用いることもできる。
Next, the calcined oxide powder obtained as described above is filled into a mold and molded at a filling pressure of 0.1 to 2 tons/am2. In order to improve the filling properties of the powder, techniques known in the ceramics powder molding method are used, such as compression molding a slurry containing water or acetone, or adding a wetting agent or dispersant and then adding water or a well-mixed slurry. A method of compression molding an organic solvent slurry can also be used. In addition, a slurry containing a binder such as polyvinyl alcohol or methyl cellulose is granulated by spray drying, and this is compression molded in a mold to form a molded body with uniform packing density, and the binder is granulated in an air atmosphere. It is also possible to use a method of burning and removing and then sintering. It is also possible to use a method in which the slurry is formed into M by a doctor blade method or the like, followed by drying and removal of the auxiliary agent, and if necessary, electrodes are applied thereto and then sintered.

焼結はホットプレス機や熱間等方性プレス機(HIP)
を用いて、加圧下で行うことができる。
Sintering is done using a hot press machine or hot isotropic press (HIP)
It can be carried out under pressure using.

また、常圧下でも行うことができる。It can also be carried out under normal pressure.

焼結体を得る条件を選定するにあたっては、磁器的性質
、すなわち焼結密度や成形体強度は充分に満たすが、結
晶粒子が成長し過ぎないような焼結温度、焼結時間、昇
温速度、降温速度および焼結雰囲気を定める必要がある
。焼結温度は好ましくは1380℃以下、さらに好まし
くは1350℃以下である。
When selecting the conditions for obtaining a sintered body, the sintering temperature, sintering time, and heating rate must be such that the porcelain properties, such as sintered density and strength of the compact, are sufficiently satisfied, but the crystal grains do not grow too much. , it is necessary to determine the temperature decreasing rate and sintering atmosphere. The sintering temperature is preferably 1380°C or lower, more preferably 1350°C or lower.

鉛とジルコニウムの結合は比較的弱く、PbOが蒸発し
易いので、再現性のある高密度焼結体を得るために、P
bOの雰囲気調整を行うことが好ましい。雰囲気調整の
仕方は当業者には公知の様々な方法を用いることができ
る。例えば蓋付きのルツボの中に、成形体と共に3 P
 b O+ 2 Z r O2の混合粉末を弱い圧力で
成形したものを同封することで、PbO雰囲気をつくる
ことができる。
The bond between lead and zirconium is relatively weak and PbO evaporates easily, so in order to obtain a reproducible high-density sintered body, PbO is
It is preferable to adjust the bO atmosphere. Various methods known to those skilled in the art can be used to adjust the atmosphere. For example, place 3P together with the molded product in a crucible with a lid.
A PbO atmosphere can be created by enclosing a mixed powder of b O+ 2 Z r O2 molded under weak pressure.

以下に、実施例により本発明の内容をさらに具体的に説
明する。なお、焼結手法に関して、昇温速度、焼結温度
等は本実施例に開示された方法に限定されたものではな
い。焼結炉の温度特性の差異によって選択肢を広げるこ
とができるのは当業者にとっては自明のことである。
EXAMPLES Below, the content of the present invention will be explained in more detail with reference to Examples. Note that regarding the sintering method, the heating rate, sintering temperature, etc. are not limited to the method disclosed in this example. It is obvious to those skilled in the art that the options can be expanded by varying the temperature characteristics of the sintering furnaces.

市販テトライソプロピルチタン250m1をイオン交換
水3500mNに滴下して水酸化物を得て、これを濾過
した。同様操作にて、合計4バッチ分の水酸化物を得た
。これをイオン交換水21で15分間洗浄、濾過を3回
を繰り返し、水酸化チタンを得た。これを水冷した市販
特級の濃硝酸400m1に加え、昼夜放置後濾過してオ
キシ硝酸チタン水溶液とした。チタン濃度をTiO2と
して重量分析法で決定して、0.1202gTi/mf
の結果が得られた。
250 ml of commercially available tetraisopropyl titanium was added dropwise to 3500 mN of ion-exchanged water to obtain a hydroxide, which was filtered. A total of four batches of hydroxide were obtained in the same manner. This was washed with ion-exchanged water 21 for 15 minutes and filtered three times to obtain titanium hydroxide. This was added to 400 ml of water-cooled commercially available special grade concentrated nitric acid, and after being left for day and night, it was filtered to obtain an aqueous titanium oxynitrate solution. The titanium concentration was determined gravimetrically as TiO2 and was 0.1202 gTi/mf.
The results were obtained.

オキシ硝酸チタン水溶液4−を市販特級硝酸鉛66.8
53g、市販1級の硝酸ジルコニウム・二水和物52.
569gとイオン交換水10100Oとの混合水溶液に
加え、Pb/Zr/Ti= 1.0010.9510.
□05(モル比)なる水溶液を得て、これを室温に保持
した。
Titanium oxynitrate aqueous solution 4- commercially available special grade lead nitrate 66.8
53g, commercially available first grade zirconium nitrate dihydrate 52.
In addition to a mixed aqueous solution of 569 g and 10,100 O of ion-exchanged water, Pb/Zr/Ti=1.0010.9510.
An aqueous solution of □05 (molar ratio) was obtained and kept at room temperature.

エタノール3013mlに市販特級しゆう酸・二水和物
38.1701?を溶かして、しゆう酸/(Pb+Z’
r+Ti)= 1.50(モル比)に相当するエタノー
ル溶液として、室温に保持した。
Commercially available special grade oxalic acid dihydrate 38.1701? Dissolve oxalic acid/(Pb+Z'
An ethanol solution corresponding to r+Ti)=1.50 (molar ratio) was maintained at room temperature.

激しく撹拌した該しゆう酸エタノール溶液に、該金属含
有酸性溶液を定量ポンプを用いて約220 ml1分の
速度で注加し、白色スラリーを得た。引き続き、撹拌中
の該スラリー溶液中に、市販特級アンモニア水63.3
−を約1分間で注加した。この時の該スラリー溶液のp
HをBTB試験紙およびMR試験紙にて測定して、6.
6の値を得た。
About 220 ml of the metal-containing acidic solution was poured into the vigorously stirred oxalic acid ethanol solution using a metering pump at a rate of 1 minute to obtain a white slurry. Subsequently, commercially available special grade ammonia water 63.3 was added to the slurry solution while stirring.
- was injected over about 1 minute. p of the slurry solution at this time
6. Measure H using BTB test paper and MR test paper.
A value of 6 was obtained.

反応終了後、加圧濾過器を用いて母液を分離しi− て白色ケーキを得た。得られた白色ケーキをエタノール
2766m1に投入して解砕、洗浄を30分間行い、加
圧濾過器を用いて洗浄液を分離した。
After the reaction was completed, the mother liquor was separated using a pressure filter to obtain a white cake. The obtained white cake was poured into 2766 ml of ethanol, crushed and washed for 30 minutes, and the washing liquid was separated using a pressure filter.

同様な洗浄操作をもう1回繰り返した。洗浄液を分離し
た加圧濾過器中に窒素を1時間通気して、中の白色ケー
キを半乾燥状態とした。この半乾燥ケーキを、ドラフト
中に設置した表面温度を約150℃に保持したステンレ
ス製プレート上に薄く延伸してエタノールを蒸発せしめ
た後に、100℃に保持した熱風循環乾燥機中で6時間
、さらに乾燥し、前駆体粉末を得た。
The same washing operation was repeated once more. Nitrogen was bubbled through the pressure filter from which the washing liquid had been separated for 1 hour to render the white cake inside semi-dry. This semi-dried cake was thinly stretched onto a stainless steel plate placed in a draft with a surface temperature maintained at approximately 150°C to evaporate the ethanol, and then placed in a hot air circulating dryer maintained at 100°C for 6 hours. It was further dried to obtain a precursor powder.

得られた乾燥前駆体粉末をメノウ乳鉢で軽く粉砕した後
、マツフル炉中で1.5℃/分の昇温速度で700℃ま
で昇温し、2時間保持した後炉冷した。目的とする酸化
物を仕込み原料を基準として97重量%の収率で得た。
The obtained dry precursor powder was lightly ground in an agate mortar, then heated to 700°C at a heating rate of 1.5°C/min in a Matsufuru furnace, held for 2 hours, and then cooled in the furnace. The desired oxide was obtained in a yield of 97% by weight based on the charged raw materials.

蛍光X線回折法で酸化物中のP b/ Z r/ T 
i比(モル比)1..0010.9410.05を得た
。この粉末のX線回折図を第1図に示す。
Pb/Zr/T in oxides by X-ray fluorescence diffraction method
i ratio (molar ratio) 1. .. 0010.9410.05 was obtained. The X-ray diffraction pattern of this powder is shown in FIG.

該酸化物を超音波振動装置を用いて水中に分散2 せしめ、マイクロトラックDR粒度分析計にて粒度分布
を測定し、第2図に示す結果を得たく平均粒径2.2μ
m〉。
The oxide was dispersed in water using an ultrasonic vibrator, and the particle size distribution was measured using a Microtrack DR particle size analyzer.The average particle size was 2.2μ to obtain the results shown in Figure 2.
m〉.

の  ゛ 該酸化物粉体の吸湿を考慮し、乾燥機を用いて約100
℃で1時間以上保ち水分を蒸発させた。
゛Taking into consideration the moisture absorption of the oxide powder, dry it in a dryer for about 100%
It was kept at ℃ for more than 1 hour to evaporate water.

さらに成型に先立ち該酸化物粉体同士の弱い結合を切る
ことを目的として乾燥粉末を所定量、ポリエチレン製ポ
ットに入れ、アセトンを加えて直径21のジルコニア製
ボールとともに100時間以上混合、粉砕した。該酸化
物粉体はホーローバットへ取り出し、ドラフト内で加熱
乾燥を行った。
Furthermore, in order to break the weak bonds between the oxide powders prior to molding, a predetermined amount of the dry powder was placed in a polyethylene pot, acetone was added, and the mixture was mixed and crushed for over 100 hours with a zirconia ball having a diameter of 21 mm. The oxide powder was taken out into a hollow vat and dried by heating in a draft.

これを金型に入れて、油圧プレスにて800〜1200
kg/cI112で加圧成型を行った。
Put this into a mold and press it with a hydraulic press for 800~1200
Pressure molding was performed at 112 kg/cI.

アルミナ板上にチタン酸ジルコニウムをプレス成型した
ものをのせ、さらに大検をひいた上に該成型体をのせた
。この上にチタン酸ジルコニウム成型体をのせ、雰囲気
調整のためのP bs Z r20 tの低圧プレス成
型体を入れた。これをアルミナルツボで覆い、焼成炉に
入れた。
A press-molded piece of zirconium titanate was placed on an alumina plate, and the molded body was placed on top of a large-scale inspection. A zirconium titanate molded body was placed on top of this, and a low-pressure press molded body of P bs Z r20 t was placed therein for atmosphere adjustment. This was covered with an aluminum crucible and placed in a firing furnace.

このアルミナルツボをマツフル炉に入れ、200℃/時
間の速度で昇温して1300℃で1時間保持した後、2
00℃/時間の速度で冷却した。
This aluminum crucible was placed in a Matsufuru furnace, heated at a rate of 200°C/hour, held at 1300°C for 1 hour, and then
Cooling was performed at a rate of 00°C/hour.

焼結により成型体は約18.9%収縮し、この。The molded body shrinks by about 18.9% due to sintering.

収縮により多少の歪みや反りを生じた。Some distortion and warping occurred due to shrinkage.

研磨により平行平面を出し、密度測定を行って7.64
1 g/ cm”、対理論密度94.2%を得た。
A parallel plane was obtained by polishing, and the density was measured to be 7.64.
1 g/cm'', a theoretical density of 94.2% was obtained.

低温焼付銀あるいは銀を真空蒸着したものを電極として
様々な電気的特性を測定した。
Various electrical properties were measured using low-temperature baked silver or vacuum-deposited silver as electrodes.

誘電特性はLCRメータ(YHP4275A)とデスク
トップコンピュータ(HP9825B)を用いた自動測
定装置により比誘電率ε8および誘電正接tanδを測
定した。この結果を第1表に示す。
Regarding the dielectric properties, relative dielectric constant ε8 and dielectric loss tangent tan δ were measured using an automatic measuring device using an LCR meter (YHP4275A) and a desktop computer (HP9825B). The results are shown in Table 1.

圧電的性質は試料を各モード測定用に切り出して電極を
付けた後、シリコンオイル中で直流高電界を印加して分
極を行った。この分極サンプルをベクトルインピーダン
スメータ()(P4800A)およびLFインピーダン
スアナライザ(Y)(P4192A)を用いてIRE基
準に基づいて、共振−***振法により測定した。結果を
第2表に示す。
Piezoelectric properties were determined by cutting out a sample for each mode measurement, attaching electrodes, and then polarizing it by applying a high DC electric field in silicone oil. This polarized sample was measured using a vector impedance meter (P4800A) and an LF impedance analyzer (Y) (P4192A) according to the resonance-anti-resonance method based on the IRE standard. The results are shown in Table 2.

実4虹倒≦しミ」。Fruit 4 rainbow fall ≦ Shimi”.

第3表の仕込み量論比に従い、実施例1と同様の手法に
より各組成の酸化物仮焼粉体を得た。この仮焼粉体の蛍
光X線回折法による酸化物のpb/ Z r / T 
i比(モル比)の測定結果を第4表に示す。
Calcined oxide powders of each composition were obtained in the same manner as in Example 1 according to the charging stoichiometric ratios shown in Table 3. The pb/Zr/T of the oxide by the fluorescent X-ray diffraction method of this calcined powder
Table 4 shows the measurement results of i ratio (molar ratio).

さらに、実施例1と同様手法にて焼結体を作製し、測定
した焼結体の磁器的特性を第5表に示す。
Furthermore, a sintered body was produced using the same method as in Example 1, and the measured porcelain properties of the sintered body are shown in Table 5.

この誘電的特性は第1表に、圧電的特性は第2表に合わ
せて示す。
The dielectric properties are shown in Table 1, and the piezoelectric properties are shown in Table 2.

表1表 (於IMtlz) 第2表 5 6− 第4表 第5表 〔発明の効果〕 本発明は上記のように構成したので、P b(Z rx
T i、−、)03におけるX(モル分率)を、微粒子
単位で0.01刻みの精度で、厳密に組成の制御が可能
である。またこの酸化物焼結体は、15モードの圧電特
性に優れており、また微細加工や電極印刷焼付けも可能
であるので、種々の高周波用圧電製品やスライディング
素子、ディジタル素子等にも応用が見込まれるものであ
る。
Table 1 (at IMtlz) Table 2 5 6- Table 4 Table 5 [Effects of the invention] Since the present invention is configured as described above, P b (Z rx
It is possible to strictly control the composition of X (mole fraction) in T i, -, )03 with an accuracy of 0.01 in units of fine particles. In addition, this oxide sintered body has excellent piezoelectric properties in 15 modes, and can be microfabricated and printed with electrodes, so it is expected to be applied to various high-frequency piezoelectric products, sliding elements, digital elements, etc. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例1の過程で得られた酸化物粉末
のX線回折図である。 第2図は、同上酸化物粉末の粒度分布を示す図である。 9− 特開平3 126665 (7)
FIG. 1 is an X-ray diffraction diagram of the oxide powder obtained in the process of Example 1 of the present invention. FIG. 2 is a diagram showing the particle size distribution of the above oxide powder. 9- Unexamined Japanese Patent Publication No. 3 126665 (7)

Claims (1)

【特許請求の範囲】[Claims]  鉛、チタンおよびジルコニウムの溶液と、チタンとジ
ルコニウムの合量1モル当り0.49〜0.51モル量
と鉛1モル当り0.98〜1.02モル量の合計量のし
ゅう酸のアルコール溶液を接触させて、しゅう酸塩共沈
澱物を生成させ、該共沈澱物を脱水後仮焼して、Pb(
Zr_xTi_1_−_x)O_3(但し0.86<x
<0.96)なる組成のペロブスカイト型酸化物を得、
これを圧縮成形した後、焼結することを特徴とする、チ
タン酸ジルコン酸鉛焼結体の製造方法。
A solution of lead, titanium and zirconium, and an alcoholic solution of oxalic acid in a total amount of 0.49 to 0.51 mole per mole of titanium and zirconium and 0.98 to 1.02 mole per mole of lead. to form an oxalate coprecipitate, and the coprecipitate is dehydrated and calcined to produce Pb(
Zr_xTi_1_-_x)O_3 (0.86<x
<0.96) to obtain a perovskite-type oxide with a composition of
A method for producing a lead zirconate titanate sintered body, which comprises compression molding the body and then sintering it.
JP1262117A 1989-10-09 1989-10-09 Production of lead titanate/zirconate sintered body Pending JPH03126665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262117A JPH03126665A (en) 1989-10-09 1989-10-09 Production of lead titanate/zirconate sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262117A JPH03126665A (en) 1989-10-09 1989-10-09 Production of lead titanate/zirconate sintered body

Publications (1)

Publication Number Publication Date
JPH03126665A true JPH03126665A (en) 1991-05-29

Family

ID=17371285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262117A Pending JPH03126665A (en) 1989-10-09 1989-10-09 Production of lead titanate/zirconate sintered body

Country Status (1)

Country Link
JP (1) JPH03126665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177911B1 (en) 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
JP2011029537A (en) * 2009-07-29 2011-02-10 Kyocera Corp Multilayer electronic component and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177911B1 (en) 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
JP2011029537A (en) * 2009-07-29 2011-02-10 Kyocera Corp Multilayer electronic component and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN103866386A (en) Preparation method of novel ternary piezoelectric crystal monophase material
Lal et al. Piezoelectric characteristics of spray-dried PZT ceramics modified by isovalent, supervalent and subvalent substitutions
JP3135036B2 (en) Method for producing composite oxide ceramics
CN101618965B (en) Ferroelectric sosoloid niobium ytterbium acid barium-lead titanate, preparation method and application thereof
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JPH03126665A (en) Production of lead titanate/zirconate sintered body
JPH08319162A (en) Dielectric ceramic and its production
CN113024249B (en) Microwave dielectric ceramic composite material and preparation method thereof
US5308807A (en) Production of lead zirconate titanates using zirconia sol as a reactant
EP1642874A1 (en) High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
JPH03126664A (en) Perovskite type oxide porcelain and production therefor
CN114988864B (en) Preparation method of rutile structure high entropy oxide powder and ceramic
JPH0555661A (en) Manufacture of piezoelectric porcelain
JPH0797260A (en) Manufacture of piezoelectric ceramics
JP2687287B2 (en) Dielectric ceramic composition for microwave and method for producing the same
KR101110365B1 (en) Method for manufacturing ferroelectric ceramics
JPH0733440A (en) Production of porcelain composition
JP3243692B2 (en) Manufacturing method of piezoelectric ceramics
JPH04209762A (en) Production of piezoelectric porcelain
KR100236185B1 (en) Particulate lead titanate ceramic and method thereof
JPH03208858A (en) Production of piezoelectric porcelain
JPH0433383A (en) Manufacture of piezoelectric ceramics
JP2768068B2 (en) Manufacturing method of PZT piezoelectric plate
JPH03232755A (en) Production of piezoelectric porcelain
Ahmad et al. Processing and characterization of Ca, Ce and Na ion doped lead titanates