JPH0312631A - Liquid crystal electrooptic element - Google Patents

Liquid crystal electrooptic element

Info

Publication number
JPH0312631A
JPH0312631A JP1147708A JP14770889A JPH0312631A JP H0312631 A JPH0312631 A JP H0312631A JP 1147708 A JP1147708 A JP 1147708A JP 14770889 A JP14770889 A JP 14770889A JP H0312631 A JPH0312631 A JP H0312631A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
electric field
pixel
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1147708A
Other languages
Japanese (ja)
Inventor
Hiroshi Watabe
渡部 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1147708A priority Critical patent/JPH0312631A/en
Publication of JPH0312631A publication Critical patent/JPH0312631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the contrast and transmissivity by placing liquid crystal in a uniform homogeneous orientation state when no electric field is applied, transmitting only light corresponding to a spot part as to light which is incident on a picture element part, and controlling the ON-OFF state of picture elements with an electric field. CONSTITUTION:An array of liquid crystal molecules is controlled by applying the electric field to a liquid crystal layer 106 to provide lens effect and thus the incident light 108 is converged on the spot part 110 to transmit much of the light incident on the picture element part. When no electric field is applied, the liquid crystal is placed in the uniform homogeneous orientation state to transmit only the light corresponding to the spot part 110 as to the light incident on the picture element part, thereby controlling the ON-OFF state of picture elements with the electric field. Namely, there is a difference in refractive index according to whether the liquid crystal molecules are raised or laid, so the light is refracted and much light is transmitted through the spot part 110 through the lens effect. Consequently, the high contrast and transmissivity are obtained at low cost.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は端末用やテレビ用の液晶表示素子、投写型表示
装置用液晶ライトバルブ、電子写真プロセス用液晶光シ
ャッターアレイ等に用いられる液晶電気光学素子に関す
る。
Detailed Description of the Invention [Industrial Application Field 1] The present invention is applied to liquid crystal display devices for terminals and televisions, liquid crystal light valves for projection display devices, liquid crystal light shutter arrays for electrophotographic processes, etc. Related to optical elements.

[従来の技術1 従来液晶の表示モードには液晶分子の動的散乱状態を利
用したDSMモード、液晶分子の複屈折性を利用した電
圧制御複屈折モード(ECBモード)、ねじれネマチッ
クモード(TNモード、STNモード)2色性色素添加
によるゲストホストモード(Gl(モード)スメクチッ
ク相やコレステノック相の散乱を利用した相転移モード
などが考えられていた。
[Conventional technology 1 Conventional liquid crystal display modes include DSM mode that utilizes the dynamic scattering state of liquid crystal molecules, voltage-controlled birefringence mode (ECB mode) that utilizes the birefringence of liquid crystal molecules, and twisted nematic mode (TN mode). , STN mode) Guest-host mode by dichroic dye addition (Gl mode) Phase transition mode utilizing scattering of smectic phase or cholestenok phase, etc. have been considered.

[発明が解決しようとする課題] 前記各液晶表示モードは大別して散乱モード、(DSM
、相転移など)、複屈折モード(ECB、TN、STN
など)とゲストホストモードに分類出来るが、散乱モー
ドでは透明と散乱状態を利用する為、散乱状態の光モレ
の影響でコントラスト比が取りにくい点や駆動電圧が高
い点(相転移モード)添加イオンの影響で信頼性や動作
安定性がない(DSMモード)などの欠点を有しており
、また複屈折モードの場合偏光板を用いなければならな
い為、透過率が半分以下となり光の利用効率が悪い。ま
たゲストホストモードにおいては色素の2色比がコント
ラスト比を支配しており偏光膜を用いない場合はコント
ラスト比が高くならないという問題点を有している。
[Problems to be Solved by the Invention] The above liquid crystal display modes can be roughly divided into scattering mode, (DSM
, phase transition, etc.), birefringence modes (ECB, TN, STN
etc.) and guest-host mode, but since the scattering mode uses transparent and scattering states, it is difficult to obtain a contrast ratio due to the influence of light leakage in the scattering state, and the driving voltage is high (phase transition mode) Doped ions It has drawbacks such as lack of reliability and operational stability due to the influence of the DSM mode (DSM mode), and in the case of birefringence mode, a polarizing plate must be used, so the transmittance is less than half and the efficiency of light use is reduced. bad. Furthermore, in the guest-host mode, the contrast ratio is dominated by the dichroic ratio of the dye, and there is a problem in that the contrast ratio cannot be increased unless a polarizing film is used.

そこで1本発明ではかかる従来の液晶表示モードの問題
点を解決し偏光板を用いなくともコントラストと透過率
が共に高<1憂れた液晶電気光学素子を提供することを
目的とする [課題を解決するための手段J 本発明の液晶電気光学素子は、対向する2枚の透明電極
基板のうちの入射光側の基板上の画素部を透明電極で形
成し出射光側の基板上の非画素部を遮光性のある金属電
極で形成、さらに出射光(g11基板の外側を画素部の
ほぼ中心に位置し面積が画素部のl/10以下になるス
ポット部を残して遮光膜でおおわれており、液晶層に電
界印加する事で液晶分子の配列を制御しレンズ効果を発
現させ入射光をスポット部に集光させることにより画素
部に入射した光の多くを透過させ、電界無印加時には液
晶を均一にホモジエニアス配向させ画素部に入射した光
のうちのスポット部に対応する光のみが透過される事で
画素のオン・オフ状態を電界により制御する事を特徴と
する。
Therefore, one object of the present invention is to solve the problems of the conventional liquid crystal display mode and to provide a liquid crystal electro-optical element in which contrast and transmittance are both high <1 even without using a polarizing plate. Means for Solving J In the liquid crystal electro-optical device of the present invention, of two opposing transparent electrode substrates, the pixel portion on the substrate on the incident light side is formed with a transparent electrode, and the non-pixel portion on the substrate on the output light side is formed with a transparent electrode. The part is formed of a metal electrode with light-shielding properties, and the outgoing light (the outside of the G11 substrate is covered with a light-shielding film, leaving a spot part located approximately at the center of the pixel part and having an area of less than 1/10 of the pixel part. By applying an electric field to the liquid crystal layer, the alignment of the liquid crystal molecules is controlled, creating a lens effect and concentrating the incident light on a spot, allowing much of the light incident on the pixel area to pass through.When no electric field is applied, the liquid crystal It is characterized by controlling the on/off state of the pixel by an electric field by uniformly aligning the pixel in a homogeneous manner and transmitting only the light corresponding to the spot portion of the light incident on the pixel portion.

また充分な透過率のオン・オフ比を得る為に入射光側の
基板上の画素部以外のエリアに薄膜トランジスターを設
け各画素ごとトランジスターのオン・オフにより動作さ
せた事を特徴とする。
In addition, in order to obtain a sufficient on/off ratio of transmittance, a thin film transistor is provided in an area other than the pixel portion on the substrate on the incident light side, and each pixel is operated by turning on and off the transistor.

またプロセスを簡略化し低コスト化する為に出射光側の
基板上の遮光膜を電極に用いた金属膜と同一な材料を用
いた事を特徴とする。
In addition, in order to simplify the process and reduce costs, the light-shielding film on the substrate on the outgoing light side is made of the same material as the metal film used as the electrode.

さらに視角特性を改善する為に出射光側の基板上の外面
のスポット部を散乱する乳白色の樹脂でおおった事を特
徴とする。
Furthermore, in order to improve the viewing angle characteristics, the spot portion on the outer surface of the substrate on the outgoing light side is covered with a scattering milky white resin.

[実 施 例 11 第1図に本発明の実施例に用いた液晶電気光学素子の断
面図を示す。ここで101は透明基板であり本発明では
石英基板を使用した。この透明基板はパイレックスガラ
スやソーダガラスでも可能である。102は金属電極で
あり本実施例ではアルミニウムのスパッタ膜をフォトエ
ツチングプロセスによりパターン形成した。この金属膜
はニッケル、クロム、金、チタンなどの導電性のある金
属であれば同様な効果があり成膜もスパッタや蒸着、メ
ツキ法も使用出来る。この金属電極は共通電極として一
定電圧レベルに保たれており、対向する透明電極103
への電圧印加により液晶層106に電界を加える事を目
的としている。また金属電極は光を透過させる画素部と
して200umΦの穴が300μmピッチで千鳥状に配
列されている。また104は薄膜トランジスターであり
本実施例ではチャンネル部にポリシリコンを用いゲート
線にクロム、ソース線にアルミニウムそして画素部10
3及びドレイン部にITOを用いた。105は液晶分子
を配向させる為の配向膜を表わしており本実施例ではポ
リイミド膜を用い液晶分子長軸を基板と平行に配向させ
ラビング処理は施さない、この配向膜にはポリエステル
やポリアミドなどの高分子膜の使シランカップリング剤
などの表面処理剤なども有効である。108は入射光を
、また109は出射光を示している。また107は出射
光側の基板の外側に設けられた遮光膜を表わしており、
本実施例ではアルミニウムをスパッタ法により成膜した
。110は遮光膜な)オドエツチング法により取除いた
スポット部であり20μmφの円のパターンを用いた。
[Example 11] FIG. 1 shows a cross-sectional view of a liquid crystal electro-optical element used in an example of the present invention. Here, 101 is a transparent substrate, and in the present invention, a quartz substrate is used. This transparent substrate can also be made of Pyrex glass or soda glass. Reference numeral 102 denotes a metal electrode, and in this example, a sputtered aluminum film was patterned by a photo-etching process. This metal film can have the same effect if it is a conductive metal such as nickel, chromium, gold, or titanium, and can be formed by sputtering, vapor deposition, or plating. This metal electrode is kept at a constant voltage level as a common electrode, and the opposite transparent electrode 103
The purpose is to apply an electric field to the liquid crystal layer 106 by applying a voltage to the liquid crystal layer 106. Further, the metal electrode has holes of 200 umΦ arranged in a staggered manner at a pitch of 300 um as a pixel portion that transmits light. Further, 104 is a thin film transistor, and in this embodiment, the channel part is made of polysilicon, the gate line is made of chromium, the source line is made of aluminum, and the pixel part 10 is made of polysilicon.
3 and the drain portion were made of ITO. Reference numeral 105 represents an alignment film for aligning liquid crystal molecules. In this example, a polyimide film is used to orient the long axes of the liquid crystal molecules parallel to the substrate, and no rubbing treatment is applied. This alignment film is made of polyester, polyamide, etc. Surface treatment agents such as silane coupling agents for polymer membranes are also effective. Reference numeral 108 indicates incident light, and reference numeral 109 indicates outgoing light. Further, 107 represents a light shielding film provided on the outside of the substrate on the output light side.
In this example, aluminum was formed into a film by sputtering. Reference numeral 110 indicates a spot portion removed by the odo-etching method (a light-shielding film), and a circular pattern of 20 μmφ was used.

第2図は出射光側基板の平面図を表わしており、110
の外面のスポット部は102の内面の金属T!:L挿中
の穴部のほぼ中央部に設けである。第3図は電1萌10
2と103との間に電界を印加しオン状態に選定した液
晶電気光学素子の断面図を模式的に表わしており、30
1は電界により液晶分子長軸が電界方向に向いて立ち上
がった様子を示しており302は液晶分子がホモジニア
ス配列を残した状態を示している。このように液晶分子
が立った状態と寝たままの状態の間で屈折率の差がある
為、光を屈折させレンズ効果により110のスポット部
を多くの光が透過する。液晶層厚12μmで、誘電率異
方性+5.屈折率異方性0.20の液晶材↑4を用い1
03の電極に±5.0V102の電極にOvの電圧を印
加した際に入射光の12%の光が透過した。第4図はi
極102と103を同電位とし電界をな(した場合で液
晶層106は均一にホモジニアス配向しているため入射
光は直進し110のスポットを通(光はほとんどなくな
った状態となり実際の透過率は033%となった。
FIG. 2 shows a plan view of the output light side substrate, and 110
The spot on the outer surface of is the metal T on the inner surface of 102! : Provided almost in the center of the hole where L is inserted. Figure 3 is Den 1 Moe 10
2 and 103 schematically shows a cross-sectional view of a liquid crystal electro-optical element selected to be in an on state by applying an electric field between 30 and 103.
1 shows a state in which the long axes of liquid crystal molecules stand up in the direction of the electric field due to the electric field, and 302 shows a state in which the liquid crystal molecules remain homogeneously aligned. Since there is a difference in refractive index between the upright state and the lying state of the liquid crystal molecules, the light is refracted and a large amount of light passes through the spot portion 110 due to the lens effect. The liquid crystal layer thickness is 12 μm, and the dielectric anisotropy is +5. 1 using a liquid crystal material with refractive index anisotropy ↑4 of 0.20
When a voltage of Ov was applied to the electrode 03 of ±5.0V102, 12% of the incident light was transmitted. Figure 4 shows i
When the poles 102 and 103 are set to the same potential and an electric field is applied, the liquid crystal layer 106 is homogeneously aligned, so the incident light travels straight through the spot 110 (the light almost disappears and the actual transmittance is It became 033%.

このように高透過率状態と低透過率状態で361以上の
高いコントラスト比を得た。
In this way, a high contrast ratio of 361 or more was obtained in the high transmittance state and the low transmittance state.

[実施例21 第5図は本発明における2つ目の実施例に用いた液晶電
気光学素子の断面図を示している。ここで110のスポ
ット部を乳白色の光散乱151脂50Iでおおうことに
より出射光を散乱させ広い視角範囲で視認可能とする事
が出来た。本実施例においではシリカ微粒子を混入した
シリコーン系接着剤を用いたところ全方向から均一に視
認可能となった。
Example 21 FIG. 5 shows a cross-sectional view of a liquid crystal electro-optical element used in a second example of the present invention. Here, by covering the spot portion 110 with milky white light scattering 151 resin 50I, the emitted light was scattered and made visible in a wide viewing angle range. In this example, when a silicone adhesive mixed with silica particles was used, it became uniformly visible from all directions.

〔発明の効果1 本発明によれば偏光膜や散乱モードを用いる事なく高い
性能の光学特性を有する液晶電気光学素子を得る事が出
来た。
[Effect of the Invention 1] According to the present invention, it was possible to obtain a liquid crystal electro-optical element having high performance optical characteristics without using a polarizing film or a scattering mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶電気光学素子の断面図。 第2図はその平面図であり金属電極と遮光部のパターン
の位置関係を示す図、第3図は液晶層に電界が加わった
状態で液晶の分子配列によりスボント部に光が集まった
様子を示す図。第4図は液晶層に電界が加わらず光が直
進し微小光のみが透過した様子を示す図、第5図は本発
明における実施例2に用いた液晶電気光学素子の断面図
である。 501・・・散乱部 以上
FIG. 1 is a sectional view of a liquid crystal electro-optical element of the present invention. Figure 2 is a plan view showing the positional relationship between the metal electrode and the pattern of the light-shielding part, and Figure 3 shows how light is concentrated on the bont part due to the molecular arrangement of the liquid crystal when an electric field is applied to the liquid crystal layer. Figure shown. FIG. 4 is a diagram showing a state in which no electric field is applied to the liquid crystal layer and light travels straight and only small amounts of light are transmitted. FIG. 5 is a cross-sectional view of a liquid crystal electro-optical element used in Example 2 of the present invention. 501...more than the scattering part

Claims (4)

【特許請求の範囲】[Claims] (1)対向する2枚の透明電極基板のうちの入射光側の
基板上の画素部を透明電極で形成し出射光側の基板上の
非画素部を遮光性のある金属電極で形成、さらに出射光
側基板の外側を画素部のほぼ中心に位置し面積が画素部
の1/10以下になるスポット部を残して遮光膜でおお
われており、液晶層に電界印加する事で液晶分子の配列
を制御しレンズ効果を発現させ入射光をスポット部に集
光させることにより画素部に入射した光の多くを透過さ
せ、電界無印加時には液晶を均一にホモジェニアス配向
させ、画素部に入射した光のうちのスポット部に対応す
る光のみが透過される事で画素のオン・オフ状態を電界
により制御する事を特徴とする液晶電気光学素子。
(1) Of the two opposing transparent electrode substrates, the pixel part on the substrate on the incident light side is formed with a transparent electrode, and the non-pixel part on the substrate on the outgoing light side is formed with a metal electrode with a light-shielding property, and The outside of the substrate on the light emitting side is covered with a light-shielding film leaving a spot area located almost at the center of the pixel area and having an area of less than 1/10 of the pixel area, and by applying an electric field to the liquid crystal layer, the liquid crystal molecules are aligned. By controlling the lens effect and focusing the incident light on the spot part, much of the light incident on the pixel area is transmitted, and when no electric field is applied, the liquid crystal is aligned homogeneously, and the light incident on the pixel area is focused. A liquid crystal electro-optical device characterized by controlling the on/off state of a pixel by an electric field by transmitting only the light corresponding to the spot portion.
(2)入射光側の基板上の画素部以外のエリアに薄膜ト
ランジスターを設け各画素ごとトランジスターのオン・
オフにより動作させた事を特徴とする請求項1記載の液
晶電気光学素子。
(2) A thin film transistor is installed in an area other than the pixel part on the substrate on the incident light side, and the transistor is turned on and off for each pixel.
2. The liquid crystal electro-optical device according to claim 1, wherein the liquid crystal electro-optical device is operated in an off state.
(3)出射光側の基板上の遮光膜を電極に用いた金属膜
と同一な材料を用いた事を特徴とする請求項1記載の液
晶電気光学素子。
(3) The liquid crystal electro-optical element according to claim 1, wherein the light-shielding film on the substrate on the output light side is made of the same material as the metal film used as the electrode.
(4)出射光側の基板上の外面のスポット部を散乱する
乳白色の樹脂でおおったことを特徴とする請求項1記載
の液晶電気光学素子。
(4) The liquid crystal electro-optical element according to claim 1, wherein the spot portion on the outer surface of the substrate on the output light side is covered with a scattering milky white resin.
JP1147708A 1989-06-09 1989-06-09 Liquid crystal electrooptic element Pending JPH0312631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147708A JPH0312631A (en) 1989-06-09 1989-06-09 Liquid crystal electrooptic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147708A JPH0312631A (en) 1989-06-09 1989-06-09 Liquid crystal electrooptic element

Publications (1)

Publication Number Publication Date
JPH0312631A true JPH0312631A (en) 1991-01-21

Family

ID=15436429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147708A Pending JPH0312631A (en) 1989-06-09 1989-06-09 Liquid crystal electrooptic element

Country Status (1)

Country Link
JP (1) JPH0312631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186036A (en) * 2001-12-20 2003-07-03 Ricoh Co Ltd Optical path deflecting element and image display device
WO2007007242A3 (en) * 2005-07-08 2007-03-29 Koninkl Philips Electronics Nv Device for controlling the shape and direction of light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186036A (en) * 2001-12-20 2003-07-03 Ricoh Co Ltd Optical path deflecting element and image display device
WO2007007242A3 (en) * 2005-07-08 2007-03-29 Koninkl Philips Electronics Nv Device for controlling the shape and direction of light

Similar Documents

Publication Publication Date Title
US5877829A (en) Liquid crystal display apparatus having adjustable viewing angle characteristics
US7295265B2 (en) Liquid crystal display device having variable viewing angle
US6862065B2 (en) Transflective display device with different pretilt angles and fabrication method for thereof
CN100562790C (en) Liquid crystal indicator and information terminal apparatus with this liquid crystal indicator
JPH09197405A (en) Visual angle characteristic control type liquid crystal display device
KR0177049B1 (en) Liquid crystal display device
US5706066A (en) Deflecting device and projection-type display unit using same
KR20020019185A (en) Multi domain liquid crystal display device and method for fabricating the same
JP3158016B2 (en) Variable focus lens element
JP2002214613A (en) Liquid crystal display
US4721366A (en) Illumination of a liquid crystal display
JPH08328007A (en) Production of liquid crystal display device
US7106406B2 (en) Liquid crystal displays with multi-domain effect formed by surface undulations
JPH0312631A (en) Liquid crystal electrooptic element
JP4104374B2 (en) Color liquid crystal display
JP3046730B2 (en) Reflective diffuser and reflective liquid crystal display
US8253902B2 (en) Liquid crystal display device and method for manufacturing the same
US7362399B2 (en) In-plane switching mode liquid crystal display device
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
KR100213979B1 (en) Liquid crystal device
JP3849399B2 (en) Liquid crystal display
KR100769178B1 (en) Liquid crystal display device and method for fabricating the same
KR100290920B1 (en) Liquid crystal display device having scattering layer and method of manufacturing the same
US6714272B2 (en) Color liquid crystal display device without color filter
JP2000208410A (en) Aligner, diffuse reflection plate and reflection display