JPH0312612A - Connecting element between optical elements - Google Patents

Connecting element between optical elements

Info

Publication number
JPH0312612A
JPH0312612A JP14745789A JP14745789A JPH0312612A JP H0312612 A JPH0312612 A JP H0312612A JP 14745789 A JP14745789 A JP 14745789A JP 14745789 A JP14745789 A JP 14745789A JP H0312612 A JPH0312612 A JP H0312612A
Authority
JP
Japan
Prior art keywords
refractive index
optical
waveguide
connecting element
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14745789A
Other languages
Japanese (ja)
Inventor
Kazunori Miura
和則 三浦
Ippei Sawaki
一平 佐脇
Toshihiro Suzuki
敏弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14745789A priority Critical patent/JPH0312612A/en
Publication of JPH0312612A publication Critical patent/JPH0312612A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain high coupling efficiency by providing a lower clad layer having a specified refractive index and a side part clad layer consisting of the same org. high-polymer material as the org. high polymer material of the lower clad layer. CONSTITUTION:A photopolymerizable org. material is mixed with and applied on the material of the lower clad material 2. The parts to constitute waveguides 4a to 4c are exposed by UV rays. The shapes, sizes, etc., of the optical waveguides 4a to 4c are controlled by changing the shape of an exposing mask and exposing conditions. The optical waveguides 4a to 4c changed in the refractive index distribution are formed as cores by changing the combinations of photopolymerizable org. materials along the optical path. The lower parts and side parts are enclosed by the clad having the low refractive index. Namely, the connecting element 10 which is increased in the refractive index in the part of the small cross section of the waveguide 4a, is decreased in the refractive index in the parts 4b, 4c of the large cross section and has the circumferential refractive index smaller than the refractive index of the waveguide parts 4a to 4c is constituted. The easy connection of various kinds of elements to each other with a low loss is possible in this way and the performance and quality of the connecting element between the optical elements are improved.

Description

【発明の詳細な説明】 〔概要〕 光素子間の接続素子に関し、 たとえば、半導体レーザからの光を、光ファイバへ単一
モードで効率よく簡易に結合することを目的とし、 基板と、前記基板上に形成された一定の屈折率を有する
有機高分子材料からなる下部クラッド層と、前記下部ク
ラッド層の上に、両端の光の人出射口が異なる形状、大
きさを有し、その間の屈折率が前記下部クラッド層の屈
折率よりも大きく、かつ、光路に沿って大きな出射口か
ら小さな出射口に向かって大きくなるように形成された
有機高分子材料からなる先導波路部と、前記光導波路部
の両側面に密接して設けられた前記下部クラッド層と同
一の有機高分子材料からなる側部クラッド層とを少なく
とも備えるように光素子間の接続素子を構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a connecting element between optical elements, for example, for the purpose of efficiently and easily coupling light from a semiconductor laser to an optical fiber in a single mode. A lower cladding layer made of an organic polymer material having a constant refractive index is formed on the lower cladding layer, and on the lower cladding layer, light exit openings at both ends have different shapes and sizes, and the refraction between them is formed. a guide waveguide portion made of an organic polymer material and formed to have a refractive index larger than the refractive index of the lower cladding layer and to increase along the optical path from a large exit port to a small exit port; and the optical waveguide. The connecting element between the optical elements is configured to include at least a side cladding layer made of the same organic polymer material as the lower cladding layer provided closely on both sides of the optical element.

〔産業上の利用分野〕[Industrial application field]

本発明は光素子間の接続素子の改良に関する。 The present invention relates to improvements in connecting elements between optical elements.

近年、光ファイバやレーザ光源の進歩・発達に伴い、光
通信をはじめ光技術を応用した各種のシステム、デバイ
スが実用化され広く利用されるようになった。
In recent years, with the progress and development of optical fibers and laser light sources, various systems and devices that apply optical technology, including optical communication, have been put into practical use and widely used.

とくに、光通信で使用される発光あるいは受光素子(光
素子)と光ファイバとの間の光結合技術の良否は、光損
失の大きさ、すなわち伝送距離を左右する極めて重要な
ものである。
In particular, the quality of the optical coupling technology between the light emitting or light receiving element (optical element) used in optical communication and the optical fiber is extremely important as it influences the amount of optical loss, that is, the transmission distance.

一般的には、光ファイバと光素子の間にマイクロ球レン
ズを挿入したり、光ファイバの先端を凸レンズ状に加工
して結合している。
Generally, a micro sphere lens is inserted between the optical fiber and the optical element, or the tip of the optical fiber is processed into a convex lens shape for coupling.

これら光結合に用いる部品は極めて小さく、加工は勿論
のこと、取扱いも熟練を必要としており、現状は必ずし
も満足できる状況ではなく、位置合わせ精度1作業性、
長期的信頬性などの点で、−体化された固体接続素子の
開発が求められている。
These parts used for optical coupling are extremely small and require skill not only to process but also to handle, and the current situation is not necessarily satisfactory.
In terms of long-term reliability, there is a need for the development of integrated solid-state connection elements.

れも実用化されている代表的な2つの例を示したもので
ある。
Two typical examples are shown in which both have been put into practical use.

一般に半導体レーザから出射される光は円形ではなく、
活性層に平行な方向に広がった、たとえば、長径5μm
、短径1.5μmの楕円をなしている。一方、光ファイ
バの導光部であるコアは、たとえば、10mmφの円形
断面を有しているので、半導体レーザと光ファイバをそ
のま−突き合わせて接続しても、光は光ファイバに効率
よく伝播されることができない。
Generally, the light emitted from a semiconductor laser is not circular;
Spread in a direction parallel to the active layer, for example, a long diameter of 5 μm
, is an ellipse with a minor axis of 1.5 μm. On the other hand, the core, which is the light guiding part of the optical fiber, has a circular cross section of, for example, 10 mm, so even if the semiconductor laser and the optical fiber are connected butt-to-edge, the light propagates efficiently into the optical fiber. can't be done.

同図(イ)は円柱レンズ50で、先ず半導体レーザ6の
出射光を長径を直径とする円形ビームに整形し、次に集
束性ロンドレンズ51により光ファイバ7のコア71に
結合するようにしたもので、現在量も多く用いられてい
る方法である。
In the same figure (A), a cylindrical lens 50 is used to first shape the emitted light from the semiconductor laser 6 into a circular beam whose major axis is the diameter, and then to couple it to the core 71 of the optical fiber 7 by a focusing Rondo lens 51. This method is currently widely used.

この方法はすでに実用化されている光学部品を利用でき
る利点があるが、それぞれの部品を支持するホルダ類を
含め構成部品数が多く、かつ、各光学部品間の光軸合わ
せに熟練と長時間を要する。
This method has the advantage of being able to use optical components that are already in practical use, but it requires a large number of components, including holders that support each component, and requires a lot of skill and time to align the optical axes between each optical component. It takes.

同図(ロ)はテーパ先球ファイバによる光結合方法で、
図中、71は光ファイバ7のコア、72はテーパ部、7
3は光フアイバ先端に形成された凸レンズ部である。
Figure (b) shows an optical coupling method using a tapered spherical fiber.
In the figure, 71 is the core of the optical fiber 7, 72 is the tapered part, 7
3 is a convex lens portion formed at the tip of the optical fiber.

この結合方法は部品点数も少な(、全体の寸法も小さく
なるという利点があるが、半導体レーザ6から出た光が
入射し、それを光ファイバへ集光させるレンズ機能が一
面のみであるので、微小レンズ加工が必要であり、また
、高い光結合効率が得にくい。
This coupling method has the advantage of fewer parts (and smaller overall size), but since the lens function is only on one side, the light emitted from the semiconductor laser 6 enters and focuses it onto the optical fiber. Microlens processing is required, and high optical coupling efficiency is difficult to obtain.

一方、これに対して、より高い効率で結合させ、かつ、
安定した一体型の接続素子の提案がなされている(たと
えば、Appl、Phys、Lett、 、 Vol、
45. No。
On the other hand, on the other hand, it is possible to combine with higher efficiency, and
Proposals for stable integrated connection elements have been made (e.g., Appl, Phys, Lett, Vol.
45. No.

8、pp815〜817.1984参照)。8, pp. 815-817.1984).

すなわち、第6図は従来の光素子間の接続構造を示す図
(その2)で、前記文献に記載された図から引用したも
のである。
That is, FIG. 6 is a diagram (part 2) showing a conventional connection structure between optical elements, and is taken from the diagram described in the above-mentioned document.

同図(イ)は素子構成の概略図で、100はガラス基板
、103は埋込み光導波路である。埋込み光導波路10
3は前記ガラス基板lOOの上に、50μmの巾の導波
路となる部分を露出させて金属マスクで覆い、420〜
4500CのKNO,溶融塩の中で20〜30時間浸漬
しに20を表面に拡散させ、金属マスクを除去したのち
、その上に基板と同一のガラス層をスパッタリング法で
形成している。次に、光路方向に屈折率分布を持たせる
ため、Cog レーザを照射しながら導波路部分に沿っ
て移動させてlhoの再拡散を行なわせている。すなわ
ち、図の出射側■の方がより多くレーザ照射による再拡
散が起こるようにして、K!0の拡散領域を広げ、他方
その領域でのに、0の濃度は低下するようにしている。
FIG. 3A is a schematic diagram of the device configuration, where 100 is a glass substrate and 103 is a buried optical waveguide. Embedded optical waveguide 10
3 exposes a portion that will become a waveguide with a width of 50 μm on the glass substrate lOO and covers it with a metal mask,
After 20 to 30 hours of immersion in 4500 C KNO molten salt to diffuse 20 onto the surface and remove the metal mask, a glass layer identical to that of the substrate was formed on it by sputtering. Next, in order to provide a refractive index distribution in the optical path direction, the lho is re-diffused by moving along the waveguide portion while irradiating the Cog laser. In other words, more re-diffusion due to laser irradiation occurs on the exit side (■) in the figure, and K! The diffusion region of 0 is widened, while the concentration of 0 is decreased in that region.

その結果、光の入射口■の方は導波路断面が小さいかに
、Oの濃度が高い、すなわち、屈折率が高く、一方、光
の出射口■の方に行くに従って、導波路断面が大きくな
るかに、Oの濃度は低い、すなわち、屈折率が小さくな
る。いわゆる、埋込み型の単一モード光導波路からなる
カップラーが構成される。
As a result, the waveguide cross section is smaller at the light entrance (■), and the concentration of O is higher, that is, the refractive index is higher, while the waveguide cross section becomes larger toward the light exit (■). In fact, the concentration of O is low, that is, the refractive index is low. A so-called coupler consisting of a buried single mode optical waveguide is constructed.

同図(ロ)および(ハ)は光の入射側■および出射側■
のに20の濃度分布を示したものである。
In the same figure, (b) and (c) are the light incidence side ■ and the light output side ■
20 concentration distributions are shown.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、最近の長距離光通信に使用されるシングルモー
ドの光ファイバは、外径が100 μm程度で、コア7
1の太さも高々10μmφである。
However, single-mode optical fibers used for recent long-distance optical communications have an outer diameter of about 100 μm and a core of 7
The thickness of 1 is also 10 μmφ at most.

したがって、上記の従来方法における、半導体レーザ、
レンズ、ファイバとの光軸合わせは数μm以下の精度が
要求されるので、部品加工と組立て調整に極めて高精度
と熟練作業を要し、また−方、テーパ先球ファイバの場
合は、高い結合効率を得るためには曲率半径が10〜2
0μmといった掻微小の高精度レンズ加工を要し、何れ
の場合も、品質・歩留りの不安定性や価格が高くな等の
問題がある。
Therefore, in the above conventional method, the semiconductor laser,
Optical axis alignment of lenses and fibers requires precision of several μm or less, so extremely high precision and skill are required for component processing and assembly adjustment. To obtain efficiency, the radius of curvature should be 10 to 2.
High-precision lens processing with microscopic scratches of 0 μm is required, and in either case, there are problems such as instability in quality and yield and high cost.

また、埋込み型の単一モード光導波路からなるカップラ
ーの場合は、導波路形成の条件がデリケートでコントロ
ールが難しく、未だ実用レベルの製品が得られないなど
の問題があり、その解決が必要であった。
In addition, in the case of a coupler consisting of an embedded single-mode optical waveguide, there are problems such as the waveguide formation conditions are delicate and difficult to control, and a practical level product has not yet been obtained, which needs to be resolved. Ta.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、基板lと、前記基板1上に形成された一
定の屈折率を有する有機高分子材料からなる下部クラッ
ド層2と、前記下部クラッド層2の上に、両端の光の人
出射口5a、 5bが異なる形状、大きさを有し、その
間の屈折率が前記下部クラッド層2の屈折率よりも大き
く、かつ、光路に沿って大きな出射口5aから小さな出
射口5aに向かって大きくなるように形成された有機高
分子材料からなる光導波路部4と、前記光導波路部4の
両側面に密接して設けられた、前記下部クラッド層2と
同一の有機高分子材料からなる側部クラッドl13a、
 3bとを少なくとも備えた光素子間の接続素子によっ
て解決することができる。
The above problem consists of a substrate 1, a lower cladding layer 2 formed on the substrate 1 and made of an organic polymer material having a constant refractive index, and a light emitting layer on both ends of the lower cladding layer 2. The openings 5a and 5b have different shapes and sizes, the refractive index between them is greater than the refractive index of the lower cladding layer 2, and the refractive index increases along the optical path from the large exit opening 5a toward the small exit opening 5a. an optical waveguide section 4 made of an organic polymer material formed so as to be formed as shown in FIG. Cladding l13a,
This problem can be solved by a connecting element between optical elements having at least 3b.

〔作用) 有機高分子材料の中に光重合性の有機材料を混合して、
ガラス基板の上にコートし、円形マスクを通して紫外線
で露光すると、光重合の進行に伴って非露光部分から光
重合性の有機材料が拡散してきて、露光部分の膜が盛り
上がり微小な有機高分子材料からなるマイクロレンズ、
あるいは、マイクロレンズアレイが形成できることは、
既に本発明者等によって見出されている(鈴木、外處:
“プラスチックマイクロレンズの新しい製造方法”応用
物理学会1微小光学研究グループ報告、VOL、5゜N
o、2. pp20〜25.1982参照)。
[Function] By mixing a photopolymerizable organic material into an organic polymer material,
When coated on a glass substrate and exposed to ultraviolet light through a circular mask, the photopolymerizable organic material diffuses from the unexposed areas as photopolymerization progresses, and the film in the exposed areas swells, forming a microscopic organic polymer material. A microlens consisting of
Alternatively, a microlens array can be formed by
It has already been discovered by the present inventors (Suzuki, Soto:
“A new manufacturing method for plastic microlenses” Report by the Japan Society of Applied Physics 1 Micro-Optics Research Group, VOL, 5°N
o, 2. (See pp. 20-25.1982).

本発明は、上記のプラスチックマイクロレンズの形成原
理を部分的に応用したもので、すなわち、基板1の上に
、第1層として有機高分子材料からなる下部クラツド材
2をコートし、次いで、第2層として前記下部クラツド
材2の材料に光重合性の有機材料を混合してコートし、
導波路となる部分を紫外線で露光することによって、露
光部分を円筒型に盛り上げ、かつ、露光マスクの形状や
露光条件を変えることによって、光導波路の形状。
The present invention partially applies the above-mentioned principle of forming a plastic microlens. That is, a lower cladding material 2 made of an organic polymer material is coated on a substrate 1 as a first layer, and then a second layer is coated on a substrate 1. A photopolymerizable organic material is mixed and coated with the material of the lower cladding material 2 as two layers,
By exposing the part that will become the waveguide to ultraviolet light, the exposed part is raised into a cylindrical shape, and by changing the shape of the exposure mask and exposure conditions, the shape of the optical waveguide can be changed.

大きさなどの制御ができ、また、光重合性有機材料の組
み合わせを導波路の光路に沿って変えれば、その屈折率
分布が変化した光導波路がコアとして形成され、その下
部と側部をクラッドで囲まれた接続素子が構成される。
It is possible to control the size, etc., and by changing the combination of photopolymerizable organic materials along the optical path of the waveguide, an optical waveguide with a changed refractive index distribution is formed as a core, and the bottom and sides are covered with cladding. A connecting element surrounded by is configured.

すなわち、導波路の断面積の小さい部分では屈折率を大
きくし、断面積の大きい部分では屈折率を小さくし、か
つ、周囲の屈折率を導波路部の屈折率よりも小さく形成
した、いわゆる、単一モード光導波路系の条件を満足す
る光素子間の接続素子が構成できるのである。
That is, the refractive index is increased in the portion of the waveguide with a small cross-sectional area, the refractive index is decreased in the portion with a large cross-sectional area, and the refractive index of the surrounding area is formed to be smaller than the refractive index of the waveguide portion. A connecting element between optical elements that satisfies the conditions of a single mode optical waveguide system can be constructed.

[実施例] 第1図は本発明の実施例示す斜視図である。[Example] FIG. 1 is a perspective view showing an embodiment of the present invention.

図中、1は基板で、たとえば、大きさ5 X20mm、
厚さ0.5mmのSiやガラス板を使用する。2は下部
クラッド層で、たとえば、メタクリル酸メチル(MMA
)とメタクリル酸グリシジル(GMA)の1対1の共重
合体からなる約20μmの膜であり、この場合には屈折
率は1.51である。
In the figure, 1 is a substrate, for example, size 5 x 20 mm,
A Si or glass plate with a thickness of 0.5 mm is used. 2 is the lower cladding layer, for example, methyl methacrylate (MMA
) and glycidyl methacrylate (GMA) in a 1:1 ratio, and the refractive index is 1.51 in this case.

3a、3bは側部クラッド層で、たとえば、同じくメタ
クリル酸メチル(HMA)とメタクリル酸グリシジル(
GMA)の1対1の共重合体からなる厚さ5μmの膜で
あり、したがって、屈折率は1.51である。
3a and 3b are side cladding layers, for example, also made of methyl methacrylate (HMA) and glycidyl methacrylate (
It is a 5 μm thick film made of a 1:1 copolymer of GMA), and therefore has a refractive index of 1.51.

4a、4b、4cは光導波路部で、たとえば、後で詳し
く述べるごとき材料とプロセス形成されるが、下面は下
部クラッド層2と密接し、両側面は側部クラッド層3a
、3bと密接しており、人出射口5a側はたとえば、5
 Xl、5μmの長方形をなして先導波路4aを形成し
、人出射口5b側は、たとえば、凡そ底面が108mで
厚さ5μmの台座の上に半径5μmの半円が載った形を
なして光導波路4bを形成している。両者の中間部では
断面積が徐々に変化している光導波路部4cが形成され
、全体の先導波路4が構成されている。
Reference numerals 4a, 4b, and 4c denote optical waveguide sections, which are formed using materials and processes as will be described in detail later.
, 3b, and the exit port 5a side is, for example, 5
The leading waveguide 4a is formed into a rectangle with a diameter of 5 μm, and the light guide on the side of the exit port 5b is shaped like a semicircle with a radius of 5 μm resting on a pedestal with a bottom surface of approximately 108 m and a thickness of 5 μm, for example. A wave path 4b is formed. An optical waveguide portion 4c whose cross-sectional area gradually changes is formed in the intermediate portion between the two, and constitutes the entire leading waveguide 4.

なお、光導波路4の光路に沿った方向の屈折率分布は、
たとえば、先導波路部4aの部分が1.54゜光導波路
4bの部分が1.52.光導波路部4cの部分では上記
両者の中間の値をとって緩やかに変化するようにしであ
る。
Note that the refractive index distribution in the direction along the optical path of the optical waveguide 4 is as follows:
For example, the portion of the leading waveguide portion 4a is 1.54°, and the portion of the optical waveguide 4b is 1.52°. In the optical waveguide portion 4c, the value is set between the above values and changes gradually.

第2図は本発明の光素子間の接続素子の動作を説明する
図で、図中、6は半導体レーザ、7は光ファイバ、10
は光素子間の接続素子である。
FIG. 2 is a diagram explaining the operation of the connecting element between optical elements of the present invention, in which 6 is a semiconductor laser, 7 is an optical fiber, and 10
is a connecting element between optical elements.

同図(ロ)は接続光学系で光素子として半導体レーザ6
と光ファイバ7の間を、上記本発明実施例の構成の光素
子間の接続素子10により高い効率で接続する場合であ
る。矢印は光の進む方向と光ビームの広がり方を模式的
に示した。
The same figure (b) shows a semiconductor laser 6 as an optical element in the connecting optical system.
This is a case where the optical fiber 7 is connected with high efficiency by using the connecting element 10 between optical elements having the configuration of the embodiment of the present invention described above. The arrows schematically show the direction in which the light travels and how the light beam spreads.

同図(ハ)はそれぞれの光素子における固有の光ビーム
形状を示したもので、半導体レーザ6の出射ビームは小
さな楕円形、光ファイバ7はより大きな円形をなしてい
る。すなわち、実施例の人出射口5a、5bの大きさに
見合った形状なので、高い結合効率が得られるのである
FIG. 3(C) shows the unique shape of the light beam in each optical element; the beam emitted from the semiconductor laser 6 has a small elliptical shape, and the beam emitted from the optical fiber 7 has a larger circular shape. That is, since the shape matches the size of the human exit ports 5a and 5b of the embodiment, high coupling efficiency can be obtained.

同図(イ)は本発明実施例の導波路内の光路に沿った方
向の屈折率分布を示したもので半導体レーザ6の側で屈
折率が大きく、光ファイバ7の側で小さくなっている。
Figure (a) shows the refractive index distribution in the direction along the optical path in the waveguide according to the embodiment of the present invention, where the refractive index is large on the semiconductor laser 6 side and small on the optical fiber 7 side. .

この構成図をみれば明らかなように、導波路の断面積の
小さい部分では屈折率が大きく、断面積の大きい部分で
は屈折率が小さく、かつ、周囲の屈折率が導波路部の屈
折率よりも小さく形成されているので、単一モード光導
波路系の条件を満足し、半導体レーザ6と光ファイバ7
の間を低損失で結合することができる。
As is clear from this diagram, the refractive index is large in the small cross-sectional area of the waveguide, and the refractive index is small in the large cross-sectional area, and the refractive index of the surrounding area is lower than the refractive index of the waveguide. Since it is also formed small, it satisfies the conditions for a single mode optical waveguide system, and the semiconductor laser 6 and optical fiber 7
can be coupled with low loss.

次に、本発明の光素子間の接続素子を形成するための具
体的な製造工程の実施例を工程順に説明する。
Next, an example of a specific manufacturing process for forming a connecting element between optical elements of the present invention will be described in order of process.

第3図(その1)は本発明の接続素子の製造工程の実施
例を示す図(その1)で、同図(イ)は平面図、同図(
ロ)はA−A”断面図、同図(ハ)は側面図で各工程図
とも同様に表示しである。
FIG. 3 (Part 1) is a diagram (Part 1) showing an embodiment of the manufacturing process of the connecting element of the present invention, and FIG.
B) is a sectional view taken along line A-A'', and FIG.

工程(1):たとえば、厚さ0.5mmのSt基板を平
滑に加工し、その上に、たとえば、メタクリル酸メチル
(HMA)とメタクリル酸グリシジル(GMA)の1対
lの共重合体からなる約20μmの膜をスピンコード法
で塗布し、80°Cで45分加熱乾燥する。
Step (1): For example, a St substrate with a thickness of 0.5 mm is smoothed, and a 1:1 copolymer of, for example, methyl methacrylate (HMA) and glycidyl methacrylate (GMA) is applied thereon. A film of approximately 20 μm is applied using a spin code method and dried by heating at 80° C. for 45 minutes.

工程(2):前記処理ずみ基板の上に、メタクリル酸メ
チル(HMA)とメタクリル酸グリシジル(GMA)の
1対1の共重合体に、光重合性の有機材料である、たと
えば、メタクリル酸メチル(HMA)とメタクリル酸ベ
ンジル(BMA)を約20χ、たとえば、アセトンなど
の溶剤とともに混合溶解し、同じくスピンコード法で塗
布し、80°Cで45分加熱乾燥して、厚さ5μmのコ
ア材料層30を形成する。
Step (2): On the treated substrate, a photopolymerizable organic material such as methyl methacrylate is added to a 1:1 copolymer of methyl methacrylate (HMA) and glycidyl methacrylate (GMA). (HMA) and benzyl methacrylate (BMA) are mixed and dissolved together with a solvent such as acetone in an amount of about 20χ, applied using the same spin cord method, and heated and dried at 80°C for 45 minutes to form a core material with a thickness of 5 μm. Form layer 30.

工程(3):前記処理ずみ基板のコア材料層30の片側
に、たとえば、巾10μmで膜の中央部分に向かって巾
が狭くなる形に紫外線露光を行なう。すると紫外線照射
領域で光重合が進行するのにともなって、非露光領域か
ら前記光重合性有機材料が露光領域に拡散してきて、露
光領域が盛り上がり先端円錐形の円筒状の光導波路部4
bが形成される。
Step (3): One side of the core material layer 30 of the treated substrate is exposed to ultraviolet light to a width of 10 μm, for example, and the width becomes narrower toward the center of the film. Then, as photopolymerization progresses in the ultraviolet irradiation region, the photopolymerizable organic material diffuses from the non-exposed region into the exposed region, and the exposed region swells to form a cylindrical optical waveguide portion 4 with a conical tip.
b is formed.

この際、中央部分、すなわち、巾が狭くなる部分の露光
量を減らして厚さ分布や光重合生成物の生成量を少なく
して、屈折率分布をより緩やかに形成するようにしても
よい。
At this time, the exposure amount of the central portion, that is, the portion where the width is narrow may be reduced to reduce the thickness distribution and the amount of photopolymerization products produced, thereby forming a more gradual refractive index distribution.

工程(4);前記処理ずみ基板を70°Cで約30分間
ベーキングする。メタクリル酸メチル(HMA)はメタ
クリル酸ベンジル(BMA)より蒸気圧が高いので、前
記コア材料層の非露光領域のメタクリル酸メチル(HM
A)が除去され、非露光領域には光重合性有機材料とし
てはメタクリル酸ベンジル(BMA)のみが残ったベー
キングコア材料層25が形成される。
Step (4): Baking the treated substrate at 70°C for about 30 minutes. Since methyl methacrylate (HMA) has a higher vapor pressure than benzyl methacrylate (BMA), methyl methacrylate (HMA) in the non-exposed area of the core material layer
A) is removed, and a baking core material layer 25 is formed in which only benzyl methacrylate (BMA) remains as a photopolymerizable organic material in the non-exposed region.

工程(5):前記処理ずみ基板のベーキングコア材料!
25の上に、前記光導波路部4bとは反対の側に中心が
同軸になるようにして、たとえば、5μmの巾で適当な
フォトマスクを用い紫外線露光を行なう。すると紫外線
照射領域でメタクリル酸ベンジル(HMA)の重合が進
行してポリメタクリル酸ベンジル(PBMA)が生成し
、その結果、光導波路部4aが形成され、また、先に形
成した光導波路部4bとの中間部には形状、断面積、屈
折率などの遷移領域である光導波路部4cが形成される
。最後にメチルアルコール中に2分間浸漬して、非露光
領域の未反応のBMAを溶解除去し、80°C145分
間乾燥して側部クラッド層3a、3bを形成する。かく
して、本発明の光素子間の接続素子が構成される。
Step (5): Baking core material for the treated substrate!
25 is exposed to ultraviolet light using a suitable photomask having a width of, for example, 5 μm, with the center coaxially located on the side opposite to the optical waveguide portion 4b. Then, polymerization of benzyl methacrylate (HMA) progresses in the ultraviolet irradiation region to generate polybenzyl methacrylate (PBMA), and as a result, an optical waveguide section 4a is formed, and the optical waveguide section 4b formed earlier and An optical waveguide portion 4c, which is a transition region in shape, cross-sectional area, refractive index, etc., is formed in the middle portion of the optical waveguide portion 4c. Finally, it is immersed in methyl alcohol for 2 minutes to dissolve and remove unreacted BMA in non-exposed areas, and dried at 80° C. for 145 minutes to form side cladding layers 3a and 3b. In this way, the connection element between optical elements of the present invention is constructed.

なお、上記製造工程は一実施例を説明したものであり、
本発明の趣旨に従うものであれば、そのクラッド材料や
コア材料は他の有機材料、他の光重合性有機材料を用い
てもよく、また、先導波路部の形成方法も適宜他の方法
を組み合わせて用いることができることは勿論である。
In addition, the above manufacturing process describes one example,
As long as it follows the spirit of the present invention, other organic materials and other photopolymerizable organic materials may be used for the cladding material and core material, and the method for forming the leading waveguide section may be appropriately combined with other methods. Of course, it can be used as well.

第4図は本発明の接続素子の実施例の屈折率分布図で、
同図(イ)は第3図(その2)の工程(5)に示したA
−A’断面図、°同図(ロ)はB −8’断面図、c 
−c’断面図 である。
FIG. 4 is a refractive index distribution diagram of an embodiment of the connecting element of the present invention.
The figure (A) shows the A shown in step (5) of Figure 3 (Part 2).
- A' sectional view, ° The same figure (b) is B -8' sectional view, c
-c' sectional view.

同図(イ)は光路に沿った方向の屈折率分布であり、光
導波路部4aの部分はメタクリル酸メチル(MMA) 
とメタクリル酸グリシジル(GMA)の重合体。
Figure (a) shows the refractive index distribution in the direction along the optical path, and the optical waveguide section 4a is made of methyl methacrylate (MMA).
and glycidyl methacrylate (GMA) polymer.

すなわち、PMMA + PGMA (屈折率n =1
.51)とポリポリメタクリル酸ベンジル(PBMA)
 (屈折率n=1゜57)の混合物からなり、総合の屈
折率n=1.54であり、光導波路部4bの部分はPM
MA + PGMA (屈折率n=1.51)とPMM
A (屈折率n=1.49)とポリポリメタクリル酸ベ
ンジル(PBMA) (屈折率n=1.57)の混合物
からなり、総合の屈折率n=1.52となる。
That is, PMMA + PGMA (refractive index n = 1
.. 51) and polypolybenzyl methacrylate (PBMA)
(refractive index n=1°57), the total refractive index n=1.54, and the optical waveguide portion 4b is composed of PM
MA + PGMA (refractive index n=1.51) and PMM
It is made of a mixture of A (refractive index n=1.49) and polypolybenzyl methacrylate (PBMA) (refractive index n=1.57), and has an overall refractive index n=1.52.

そして、その中間の光導波路部4cでは図示したごと(
、屈折率n=1.54から1.52に緩やかに減少して
いる。
In the optical waveguide section 4c in the middle, as shown in the figure (
, the refractive index gradually decreases from n=1.54 to 1.52.

同図(ロ)では同様に断面を見ると、側部クラッド層3
a、3bはPMMA + PGMAで構成されているの
で、屈折率n=1.51となり光導波路4よりも屈折率
は小さい。図では屈折率変化を急峻なステップ状に示し
であるが、実際には拡散などによりゃS、緩やかに変化
している。また、こ\には図示してないが、下部クラッ
ド層2もPMMA + PGMAで構成されているので
、同様に屈折率n =1.51となり光導波路4よりも
屈折率は小さい。したがって、レーザ光は光導波路4に
閉じ込められその中を伝播される。
In the same figure (b), when looking at the cross section, the side cladding layer 3
Since a and 3b are composed of PMMA+PGMA, the refractive index n=1.51, which is smaller than that of the optical waveguide 4. In the figure, the refractive index change is shown as a steep step, but in reality it changes slowly due to diffusion and the like. Although not shown, the lower cladding layer 2 is also composed of PMMA+PGMA, and therefore has a refractive index n = 1.51, which is smaller than that of the optical waveguide 4. Therefore, the laser light is confined in the optical waveguide 4 and propagated therein.

また、屈折率が高い光導波路部4aが狭く、屈折率が低
い光導波路部4bが広いので、単一モード光導波路系の
条件を満足し、たとえば、半導体レーザと光ファイバの
間を低損失で結合できることがわかる。
In addition, since the optical waveguide section 4a with a high refractive index is narrow and the optical waveguide section 4b with a low refractive index is wide, the conditions for a single mode optical waveguide system are satisfied, and, for example, the connection between a semiconductor laser and an optical fiber can be made with low loss. It turns out that they can be combined.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば基板1の上に、第
1Nとして有機高分子材料からなる下部クラツド材2を
コートし、次いで、第2層として前記下部クラツド材2
の材料に光重合性の有機材料を混合してコートし、導波
路となる部分を紫外線で露光することによって、露光部
分を円筒型に盛り上げ、かつ、露光マスクの形状や露光
条件を変えることによって、光導波路の形状、大きさな
どの制御ができ、また、光重合性有機材料の組み合わせ
を導波路の光路に沿って変えれば、その屈折率分布が変
化した光導波路がコアとして形成され、その下部と側部
を屈折率の低いクラッドで囲まれた接続素子が構成され
る。
As explained above, according to the present invention, the lower cladding material 2 made of an organic polymer material is coated on the substrate 1 as the first layer, and then the lower cladding material 2 is coated as the second layer.
By coating the material with a photopolymerizable organic material and exposing the part that will become the waveguide to ultraviolet light, the exposed part is raised into a cylindrical shape, and by changing the shape of the exposure mask and the exposure conditions. , it is possible to control the shape and size of the optical waveguide, and by changing the combination of photopolymerizable organic materials along the optical path of the waveguide, an optical waveguide with a changed refractive index distribution is formed as a core. A connecting element is constructed whose lower part and side parts are surrounded by a cladding having a low refractive index.

すなわち、導波路の断面積の小さい部分では屈折率を大
きくし、断面積の大きい部分では屈折率を小さ(し、か
つ、周囲の屈折率を導波路部の屈折率よりも小さく形成
した、いわゆる、単一モード光導波路系の条件を満足す
る光素子間の接続素子が構成できる。したがって、各種
の光素子間を低損失で、かつ、容易に接続することがで
きるので、光素子間接枝素子の性能・品質の向上に寄与
するところが極めて大きい。
In other words, the refractive index is made large in the part of the waveguide with a small cross-sectional area, and the refractive index is made small in the part with a large cross-sectional area. , it is possible to construct a connection element between optical elements that satisfies the conditions of a single mode optical waveguide system.Therefore, various optical elements can be easily connected with low loss, so that a branch element between optical elements can be constructed. This greatly contributes to the improvement of performance and quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す斜視図、第2図は本発明
の光素子間の接続素子の動作を説明する図、 第3図(そのl)は本発明の接続素子の製造工程の実施
例を示す図(その1)、 第3図(その2)は本発明の接続素子の製造工程の実施
例を示す図(その2)、 第4図は本発明の接続素子の実施例の屈折率分布図、 第5図は従来の光素子間の接続構造を示す図(その1)
、 第6図は従来の光素子間の接続構造を示す図(その2)
である。 図において、 ■は基板、2下部クラッド層、 3(3a、3b)は側部クラッド層、 4 (4a、 4b、 4c)は光導波路部、5a、5
bは人出射口、 6は半導体レーザ、7は光ファイバ、 10は光素子間の接続素子である。 第3図 (’tの1) 第2図
Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a diagram explaining the operation of the connecting element between optical elements of the present invention, and Fig. 3 (Part 1) is a manufacturing process of the connecting element of the present invention. Figure 3 (Part 2) is a diagram showing an example of the manufacturing process of the connecting element of the present invention (Part 2), Figure 4 is an example of the connecting element of the present invention Figure 5 is a diagram showing the connection structure between conventional optical elements (Part 1).
, Figure 6 is a diagram showing the connection structure between conventional optical elements (Part 2)
It is. In the figure, ① is the substrate, 2 is the lower cladding layer, 3 (3a, 3b) is the side cladding layer, 4 (4a, 4b, 4c) is the optical waveguide part, 5a, 5
6 is a semiconductor laser, 7 is an optical fiber, and 10 is a connecting element between optical elements. Figure 3 ('t no 1) Figure 2

Claims (1)

【特許請求の範囲】 基板(1)と、 前記基板(1)上に形成された、一定の屈折率を有する
有機高分子材料からなる下部クラッド層(2)と、 前記下部クラッド層(2)の上に、両端の光の入出射口
(5a、5b)が異なる形状、大きさを有し、その間の
屈折率が前記下部クラッド層(2)の屈折率よりも大き
く、かつ、光路に沿って大きな出射口(5a)から小さ
な出射口(5a)に向かって大きくなるように形成され
た有機高分子材料からなる光導波路部(4)と、 前記光導波路部(4)の両側面に密接して設けられた、
前記下部クラッド層(2)と同一の有機高分子材料から
なる側部クラッド層(3a、3b)とを少なくとも備え
たことを特徴とする光素子間の接続素子。
[Claims] A substrate (1); a lower cladding layer (2) formed on the substrate (1) and made of an organic polymer material having a constant refractive index; and the lower cladding layer (2). On the top, the light entrance/exit ports (5a, 5b) at both ends have different shapes and sizes, the refractive index between them is larger than the refractive index of the lower cladding layer (2), and an optical waveguide section (4) made of an organic polymer material formed to increase in size from a large exit port (5a) to a small exit port (5a); established as
A connecting element between optical elements, comprising at least side cladding layers (3a, 3b) made of the same organic polymer material as the lower cladding layer (2).
JP14745789A 1989-06-09 1989-06-09 Connecting element between optical elements Pending JPH0312612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14745789A JPH0312612A (en) 1989-06-09 1989-06-09 Connecting element between optical elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14745789A JPH0312612A (en) 1989-06-09 1989-06-09 Connecting element between optical elements

Publications (1)

Publication Number Publication Date
JPH0312612A true JPH0312612A (en) 1991-01-21

Family

ID=15430797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14745789A Pending JPH0312612A (en) 1989-06-09 1989-06-09 Connecting element between optical elements

Country Status (1)

Country Link
JP (1) JPH0312612A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444805A (en) * 1992-03-07 1995-08-22 Robert Bosch Gmbh Integrated optical component
EP0687925A3 (en) * 1994-06-08 1996-03-27 Hoechst Ag Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
US6202781B1 (en) 1997-11-28 2001-03-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Power steering device for vehicles
JP2007153444A (en) * 2005-11-10 2007-06-21 Nipro Corp Packing box
US7438838B2 (en) 2003-07-25 2008-10-21 Fuji Xerox Co., Ltd. Polymeric optical waveguide-forming master plate, method for producing polymer optical waveguide, and aperture changeable polymeric optical waveguide
EP2116867A2 (en) * 2008-04-15 2009-11-11 Pepperl + Fuchs Gmbh Optical sensor
JP2018141909A (en) * 2017-02-28 2018-09-13 住友ベークライト株式会社 Optical waveguide, optical waveguide connection, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444805A (en) * 1992-03-07 1995-08-22 Robert Bosch Gmbh Integrated optical component
EP0687925A3 (en) * 1994-06-08 1996-03-27 Hoechst Ag Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
US6202781B1 (en) 1997-11-28 2001-03-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Power steering device for vehicles
US7438838B2 (en) 2003-07-25 2008-10-21 Fuji Xerox Co., Ltd. Polymeric optical waveguide-forming master plate, method for producing polymer optical waveguide, and aperture changeable polymeric optical waveguide
JP2007153444A (en) * 2005-11-10 2007-06-21 Nipro Corp Packing box
EP2116867A2 (en) * 2008-04-15 2009-11-11 Pepperl + Fuchs Gmbh Optical sensor
EP2116867A3 (en) * 2008-04-15 2010-03-03 Pepperl + Fuchs Gmbh Optical sensor
JP2018141909A (en) * 2017-02-28 2018-09-13 住友ベークライト株式会社 Optical waveguide, optical waveguide connection, and electronic apparatus

Similar Documents

Publication Publication Date Title
US7050691B2 (en) Optical waveguide and method of manufacturing the same
US4666236A (en) Optical coupling device and method of producing same
US7421159B2 (en) Integral pre-aligned micro-optical systems
US3932184A (en) Fabrication of microlenses
CN1957277B (en) Refractive index distribution type optical member, and production method for refractive index distribution type optical member
JP3066868B2 (en) Optical splitter
JPH03138606A (en) Light branching device
JPH03288102A (en) Manufacture of light beam shape converting element
KR20020039336A (en) Polymer gripping elements for optical fiber splicing
KR100437628B1 (en) Optical guide
JP3032130B2 (en) Optical waveguide and method of manufacturing the same
US7949219B1 (en) Self forming waveguides for optical coupling and methodologies for making same
JPH0312612A (en) Connecting element between optical elements
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
Keyworth et al. Computer-controlled pressure-dispensed multimode polymer waveguides
JPH01316710A (en) Novel optical device
JPH04165311A (en) Manufacture of photo waveguide passage
JPH10221547A (en) Optical fiber with lens and its manufacture
JPS5929210A (en) Production of optical transmission coupler
JPH0262502A (en) New optical device
JPH0434505A (en) Optical waveguide type device and production thereof
KR100621833B1 (en) Optical coupling apparatus and method of manufacture
JPH01134310A (en) Production of light guide
JPH0250106A (en) New optical device