JPH03124811A - Porous deodorant acrylic synthetic fiber and its production - Google Patents

Porous deodorant acrylic synthetic fiber and its production

Info

Publication number
JPH03124811A
JPH03124811A JP1258931A JP25893189A JPH03124811A JP H03124811 A JPH03124811 A JP H03124811A JP 1258931 A JP1258931 A JP 1258931A JP 25893189 A JP25893189 A JP 25893189A JP H03124811 A JPH03124811 A JP H03124811A
Authority
JP
Japan
Prior art keywords
transition metal
component
fibers
water
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1258931A
Other languages
Japanese (ja)
Inventor
Shunji Tatsumi
俊二 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1258931A priority Critical patent/JPH03124811A/en
Publication of JPH03124811A publication Critical patent/JPH03124811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having excellent deodorant property by adding second component comprising a water-soluble polymer to dissolved raw solution of a specific acrylonitrile-based polymer, making void with washing out the second component after spinning process, subjecting to alkali treatment and bonding with transition metal compound. CONSTITUTION:Second component composed of water-soluble polymer (e.g. polyalkylene glycol or polyalkylene oxide) is added to dissolved raw solution of an acrylonitrile-based polymer containing carboxylic group-containing comonomer [e.g. (meth)acrylic acid] as a copolymerizing component and the second component is washed out after spinning process to make void, then treated with alkali, thus bonded with a transition metal compound (preferably copper compound) to afford the objective fiber containing >=0.8mmol/g transition metal bonded with anionic functional group and having >=4m<2>/g specific surface area measured by BET method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた消臭性能を有する繊維およびその製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fiber having excellent deodorizing performance and a method for producing the same.

〔従来技術〕[Prior art]

近年、居住環境の快適性が求められてきている中で、悪
臭の除去が問題になることが多い。
In recent years, with the increasing demand for more comfortable living environments, the removal of bad odors has often become an issue.

かかる現状に鑑み本発明者はさきに、各種の悪臭に対し
優れた消臭性能を有する高分子を開発した。例えば特開
昭63−214261号公報では、そのような高分子の
1例として、アクリロニトリルをアクリル酸と共重合し
たポリマーに、2価の銅イオンを結合させた消臭性繊維
を提案している。
In view of this current situation, the present inventors have previously developed a polymer that has excellent deodorizing performance against various types of bad odors. For example, Japanese Patent Application Laid-Open No. 63-214261 proposes a deodorizing fiber in which divalent copper ions are bonded to a polymer made by copolymerizing acrylonitrile with acrylic acid, as an example of such a polymer. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記繊維は例えば、フィルターに使用し
た場合、悪臭除去率を高めようとして、単に充填密度を
上げただけでは、圧力損失が大きくなり、フィルターに
適さなくなる。逆に、圧力損失を適性にするために充填
密度を下げると、悪臭除去率が不充分となりフィルター
の要求性能を満たさなくなるという問題が指摘された。
However, when the above-mentioned fibers are used, for example, in a filter, simply increasing the packing density in an attempt to increase the odor removal rate will result in a large pressure loss, making the fibers unsuitable for the filter. On the other hand, it has been pointed out that if the packing density is lowered in order to optimize the pressure loss, the odor removal rate will be insufficient and the required performance of the filter will not be met.

そこでさらに充填密度は一定にしておき単糸デニールを
小さくすることにより、単位体積当たりの表面積を増大
し、悪臭除去率の向上を試みたが、やはり圧力損失が大
きくなってしまうという新たな問題点が見い出された。
Therefore, an attempt was made to increase the surface area per unit volume and improve the odor removal rate by keeping the packing density constant and decreasing the single fiber denier, but this resulted in a new problem of increased pressure loss. was discovered.

本発明は、フィルター分野において単糸デニルが太く、
充填密度が同じでも優れた悪臭除去性能を持つ消臭性繊
維、すなわち、消臭速度の大きな消臭性繊維およびその
製造法を提供することにある。
The present invention is used in the field of filters because the single thread denyl is thick and
It is an object of the present invention to provide deodorizing fibers that have excellent odor removal performance even when the packing density is the same, that is, deodorizing fibers that have a high deodorizing speed, and a method for producing the same.

本発明者は鋭意研究の結果、陰イオン性官能基に結合し
た0、 8 m ma1/g以上の遷移金属を有し、か
つ、B、 E、 T法による比表面積が4%/g以上で
ある多孔質消臭性アクリル系合成繊維は、消臭速度が大
幅に向上することを見い出し本発明に至った。
As a result of intensive research, the present inventor has found that the material has a transition metal of 0.8 mma1/g or more bonded to an anionic functional group, and has a specific surface area of 4%/g or more by B, E, or T method. It was discovered that a certain porous deodorizing acrylic synthetic fiber significantly improves the deodorizing speed, leading to the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本願に係る一つの発明は、陰イオン性官能基
に結合した0、 8 m mol /g以上の遷移金属
を含有しており、かつ、B、 E、 T法による比表面
積が4rr+’/g以上であることを特徴とする多孔質
消臭性アクリル系合成繊維、である。また、もう一つの
発明は、 カルボキシル基含有コモノマーを共重合成分
として有するアクリロニトリル系重合体の溶解原液に、
水溶性高分子からなる第2成分を添加し、これを紡糸工
程以降において洗い出し空孔を作りさらに、アルカリで
処理した後、遷移金属化合物を結合させることを特徴と
する特許請求の範囲第1項記載の多孔質消臭性アクリル
系合成繊維の製造法、である。
That is, one invention according to the present application contains a transition metal of 0.8 mmol/g or more bonded to an anionic functional group, and has a specific surface area of 4rr+'/g by the B, E, T method. The present invention is a porous deodorizing acrylic synthetic fiber characterized by having a weight of at least 100 g. In addition, another invention provides a solution stock solution of an acrylonitrile polymer having a carboxyl group-containing comonomer as a copolymerization component.
Claim 1, characterized in that a second component consisting of a water-soluble polymer is added, this is washed out after the spinning process to create pores, and the transition metal compound is bonded after being treated with an alkali. A method for producing the porous deodorizing acrylic synthetic fiber described above.

以下、本発明の多孔質消臭性アクリル系合成繊維および
その製造法について更に詳細に説明する。
Hereinafter, the porous deodorizing acrylic synthetic fiber of the present invention and the method for producing the same will be explained in more detail.

本発明において、該繊維が有する陰イオン性官能基は、
カルボキシル基、スルホン酸基などであってこれらは単
独または、共存していてもよい。
In the present invention, the anionic functional group possessed by the fiber is
These include carboxyl groups and sulfonic acid groups, and these may be used alone or in combination.

これらの中でも、容易に多量に導入できる点からカルボ
キシル基が推奨される。
Among these, carboxyl groups are recommended because they can be easily introduced in large quantities.

遷移金属は、銅、鉄、ニッケル、コバルト、クロムおよ
び銀などの中から一つもしくは複数を選んで用いること
ができる。これらの中では銅が多く種類の悪臭に対して
有効であり推奨される。
As the transition metal, one or more of copper, iron, nickel, cobalt, chromium, silver, etc. can be selected and used. Among these, copper is effective against many types of bad odors and is recommended.

また上記陰イオン性官能基と遷移金属とを結合させるた
めには、陽イオン性遷移金属化合物を用いることが好ま
しい。例えばCaSO4+ Ca(Now)xなどの銅
化合物、Fe50++ Fe(NOa)zなどの鉄化合
物Nl5O41NICi’ 2などのニッケル化合物、
CrSO4゜Cr(NOs)2などのクロム化合物およ
びCO3O4,Co(OCOCHa )などのコバルト
化合物などを挙げることができる。
Further, in order to bond the anionic functional group and the transition metal, it is preferable to use a cationic transition metal compound. For example, copper compounds such as CaSO4+ Ca(Now)x, iron compounds such as Fe50++ Fe(NOa)z, nickel compounds such as Nl5O41NICi'2,
Examples include chromium compounds such as CrSO4°Cr(NOs)2 and cobalt compounds such as CO3O4, Co(OCOCHa).

陰イオン性官能基を有する繊維と、陽イオン性遷移金属
化合物とを反応させるためには、前もって、苛性ソーダ
またはアンモニアなどのアルカリを用いて中和して、陰
イオン性官能基をナトリウム塩またはアンモニウム塩な
どの形にすることによって、容易に反応させることがで
きる。
In order to react the fibers having anionic functional groups with the cationic transition metal compound, the anionic functional groups are first neutralized with an alkali such as caustic soda or ammonia, and the anionic functional groups are reacted with sodium salt or ammonium salt. The reaction can be easily carried out by converting it into a salt form.

一方、本発明で用いる空孔を有する多孔質アクリル系合
成繊維は、例えばアクリロニトリル系重合体の溶解原液
に数平均分子量10万以上のポリアルキレンオキサイド
を0.5〜15重量%添加し、これを湿式紡糸し、凝固
浴または、水洗浴中で洗い流し空孔を得る方法(特開昭
57−89612号公報)アクリロニトリル系重合体の
溶解原液に特定の発泡剤を添加し、後工程の加熱処理で
発泡させる方法(特開昭51−149922号公報)、
およびアクリロニトリル系重合体の溶解原液に流動パラ
フィンまたは塩化パラフィンを添加し、紡糸工程以降で
洗い出すことにより空孔を得る方法(特公昭54−43
618号公報)、さらに数平均分子量が5000〜50
000のポリアルキレングリコールを、アクリル系重合
体に対して5〜20重量%、該重合体とともに溶解した
後、少くとも4時間熟成した紡糸原液をその凝固媒体中
に紡糸する方法などを採用することにより製造すること
ができる。
On the other hand, the porous acrylic synthetic fiber with pores used in the present invention can be obtained by adding 0.5 to 15% by weight of polyalkylene oxide having a number average molecular weight of 100,000 or more to a stock solution of an acrylonitrile polymer, for example. A method of wet spinning and washing in a coagulation bath or water washing bath to obtain pores (Japanese Patent Application Laid-open No. 57-89612) A specific blowing agent is added to the stock solution of the acrylonitrile polymer, and in the post-process heat treatment. Foaming method (Japanese Unexamined Patent Publication No. 149922/1983),
A method of obtaining pores by adding liquid paraffin or chlorinated paraffin to a stock solution of an acrylonitrile polymer and washing it out after the spinning process (Japanese Patent Publication No. 54-43
No. 618), and further has a number average molecular weight of 5000 to 50.
000 polyalkylene glycol in an amount of 5 to 20% by weight based on the acrylic polymer is dissolved together with the polymer, and then a method is adopted in which a spinning stock solution that has been aged for at least 4 hours is spun into the coagulation medium. It can be manufactured by

これらの中でも、数平均分子量が5000〜50000
のポリアルキレングリコールを用いる方法は、得られた
空孔がストロ−状の連通孔となり、あたかも、ごく微細
な繊維を数10〜数万本も束ねたような形状の繊維を得
ることができ、したがって大きな表面積の多孔質繊維を
得ることができ、悪臭分子の繊維内部への拡散を早くす
ることができ推奨される。
Among these, those with a number average molecular weight of 5,000 to 50,000
In the method using polyalkylene glycol, the resulting pores become straw-shaped communicating pores, making it possible to obtain fibers that look like tens to tens of thousands of very fine fibers bundled together. Therefore, it is possible to obtain porous fibers with a large surface area, and the diffusion of malodorous molecules into the interior of the fibers can be accelerated, which is recommended.

本発明で用いられる多孔質繊維はいずれの方法を用いて
製造するにせよ、B、E、T法による比表面積が4m2
/g以上であることが必要であり、4m/g未満の場合
には、空孔が全くない繊維に比べ大幅な消臭速度の向上
はみられない。
Regardless of which method is used to manufacture the porous fibers used in the present invention, the specific surface area according to the B, E, and T methods is 4 m2.
/g or more, and if it is less than 4 m/g, there will be no significant improvement in deodorizing speed compared to fibers with no pores.

本発明の多孔質消臭性アクリル系合成繊維は、あらかじ
め前記の方法で多孔質アクリル系合成繊維を製造し、つ
いで苛性ソーダ水溶液中で加水分解し、カルボキシル基
を導入した後、Cu5Oa、 AgNO3およびN15
O+などの遷移金属塩を含む水溶液で処理することによ
り遷移金属を導入することができる。ただし、この場合
、苛性ソーダで加水分解する際、繊維自体の膨潤があり
、空孔をつぶすことがあるので注意を要する。
The porous deodorizing acrylic synthetic fiber of the present invention is produced by producing porous acrylic synthetic fiber in advance by the method described above, and then hydrolyzing it in a caustic soda aqueous solution to introduce carboxyl groups, and then using Cu5Oa, AgNO3 and N15.
A transition metal can be introduced by treatment with an aqueous solution containing a transition metal salt such as O+. However, in this case, care must be taken when hydrolyzing with caustic soda, as the fibers themselves may swell and pores may be crushed.

さらに前記の方法に比べ、次の方法によるとより容易に
本発明の多孔質消臭性アクリル系合成繊維を得ることが
できる。まづあらかじめ、アクリロニトルと、アクリル
酸、メタクリル酸およびイタコン酸などのカルボキシル
基含有コモノマーとの共重合体を合成し、これに、水溶
性高分子からなるポリアルキレングリコールおよびポリ
アルキレンオキサイドなどの第2成分を加え、ついで−
般に知られているジメチルホルムアミド、ジメチルスル
ホキシド、硝酸およびロダン塩水溶液などのポリアクリ
ロニトリルの溶剤に溶解して紡糸原液とし、これを上記
溶剤の希薄水溶液中に紡糸し、水洗、乾燥することによ
り任意の多孔質繊維を得ることができる。ついでこの繊
維をNaC1、Na=SO+など1価の陽イオンを対イ
オンとする塩を含むNaOH,LiOHまたはKOHな
どのアルカリ水溶液、もしくは水−アルコール混合溶媒
からなるアルカリ溶液、またはアンモニアガスで処理し
た後、遷移金属塩を含む水溶液中で処理することなどに
より、本発明の多孔質消臭性アクリル系合成繊維を得る
ことができる。なお、このとき導入される遷移金属は少
くとも0.8 m mol /g必要で、0.8 m 
mon /g未満の場合には、いくら比表面積を増大し
ても、消臭速度の速い多孔質消臭性繊維を得ることがで
きない。
Furthermore, compared to the above method, the porous deodorizing acrylic synthetic fiber of the present invention can be obtained more easily by the following method. First, a copolymer of acrylonitrile and a carboxyl group-containing comonomer such as acrylic acid, methacrylic acid, and itaconic acid is synthesized, and then a second copolymer such as polyalkylene glycol and polyalkylene oxide consisting of water-soluble polymers is synthesized. Add the ingredients, then -
Polyacrylonitrile is dissolved in commonly known solvents such as dimethylformamide, dimethyl sulfoxide, nitric acid, and rhodan salt aqueous solution to obtain a spinning stock solution, and this is spun into a dilute aqueous solution of the above solvent, washed with water, and dried to form a spinning solution. porous fibers can be obtained. This fiber was then treated with an alkaline aqueous solution such as NaOH, LiOH or KOH containing a salt having a monovalent cation such as NaCl or Na=SO+ as a counter ion, an alkaline solution consisting of a water-alcohol mixed solvent, or ammonia gas. Thereafter, the porous deodorizing acrylic synthetic fiber of the present invention can be obtained by treatment in an aqueous solution containing a transition metal salt. Note that the transition metal introduced at this time is required to be at least 0.8 m mol /g, and 0.8 m mol /g is required.
If it is less than mon /g, no matter how much the specific surface area is increased, porous deodorizing fibers with a high deodorizing rate cannot be obtained.

〔消臭速度の測定法〕[Method for measuring deodorization speed]

この方法はカラムに充填した消臭繊維に種々の流速で悪
臭を含むガスを流し、悪臭成分の除去率で評価するもの
である。
In this method, a gas containing a bad odor is passed through a column filled with deodorizing fibers at various flow rates, and the removal rate of malodorous components is evaluated.

(条件) カラム:    42MφX60wj7試料充填距離=
      40M 試料充填量、         2g 使用ガス:  NHs−1OOppm H2S−50ppm 温度:25°C 以上の条件下で、使用ガスを流量計で流量を制御しなが
ら、エアポンプを用いカラムに送気し、送気を開始して
から定状状態になった5分後にカラムから出てきたガス
をサンプリングし、ガス検知管(北側式)を用いて濃度
を測定し、次式により、除去率を求める。
(Conditions) Column: 42MφX60wj7 Sample filling distance =
40M Sample filling amount, 2g Gas used: NHs-1OOppm H2S-50ppm Temperature: 25°C Under the conditions above, the gas used was supplied to the column using an air pump while controlling the flow rate with a flow meter. Five minutes after the start of the process, the gas coming out of the column is sampled and the concentration is measured using a gas detection tube (northern type), and the removal rate is calculated using the following formula.

〔圧力損失の測定方法〕[Method of measuring pressure loss]

消臭速度の測定に用いた消臭繊維を充填したカラムを用
いカラムの前後を水中に入れU字管につなぎ、ガス流速
40 cm/minのときのカラムの圧力損失を測定す
る。
Using a column packed with the deodorizing fiber used to measure the deodorizing speed, the front and back of the column are immersed in water, connected to a U-shaped tube, and the pressure drop in the column is measured at a gas flow rate of 40 cm/min.

〔比表面積の測定法〕[Measurement method of specific surface area]

B、 E、 T法による比表面積とは、次式で示される
吸着式によって算出される比表面積の値を指す。
The specific surface area according to the B, E, T method refers to the value of the specific surface area calculated by the adsorption formula shown by the following formula.

ここで、 X= P。here, X= P.

P : 気体の圧力  P。:飽和蒸気圧EAD : 
 吸着熱    EL:気化熱R: 気体定数   T
 :絶対温度 V : 吸着ガス vm:  表面が一分子層でおおわれたときの吸着ガス
量 測定は液体窒素で冷却しながら行ない測定精度を上げる
ために、吸着ガスは主にクリプトンを用いるが、比表面
積がlrn’/gを越える場合には吸着ガスとして窒素
ガスを用いてもよい。
P: Gas pressure P. : Saturated vapor pressure EAD :
Heat of adsorption EL: Heat of vaporization R: Gas constant T
: Absolute temperature V : Adsorbed gas vm: When the surface is covered with a single molecular layer, the amount of adsorbed gas is measured while cooling with liquid nitrogen. In order to improve the measurement accuracy, krypton is mainly used as the adsorbed gas, but the specific surface area If the amount exceeds lrn'/g, nitrogen gas may be used as the adsorption gas.

以下、本発明について、実施例にもとづきさらに詳細に
説明する。
Hereinafter, the present invention will be explained in more detail based on examples.

〔実施例〕〔Example〕

実施例ト アクリロニトリルとアクリル酸とを重量比80対20の
混合割合で共重合した重合体およびエチレンオキサイド
とプロピレンオキサイドとの割合が重量比75:25で
、数平均分子量が50000のランダム共重合型ポリエ
ーテルとを67重量%(以下特に断わらない限り%は重
量%を示す)硝酸水溶液中に溶解して、アクリル系重合
体濃度17%、上記ランダム共重合型ポリエーテル濃度
をアクリル系重合体に対し10%の紡糸原液を調整した
。この紡糸原液を4時間静置した後、0℃に冷却した2
5%の硝酸水溶液中に、紡糸口金を通して押し出し水洗
後80℃の熱水中で8倍延伸し、70℃の熱風で乾燥し
て、多孔質繊維を得た。
Example A polymer obtained by copolymerizing toacrylonitrile and acrylic acid at a mixing ratio of 80:20 by weight, and a random copolymerization type having a ratio of ethylene oxide and propylene oxide at a weight ratio of 75:25 and a number average molecular weight of 50,000. Polyether was dissolved in an aqueous nitric acid solution of 67% by weight (% indicates weight% unless otherwise specified), and the acrylic polymer concentration was 17%, and the above random copolymerization type polyether concentration was added to the acrylic polymer. A 10% spinning stock solution was prepared. This spinning stock solution was allowed to stand for 4 hours and then cooled to 0°C.
The fibers were extruded through a spinneret into a 5% aqueous nitric acid solution, washed with water, stretched 8 times in hot water at 80°C, and dried with hot air at 70°C to obtain porous fibers.

つぎにNa230.8%、NaOH4%の15℃水溶液
中に15秒間浸漬処理した後、プレスロールを用いて脱
水後、直ちに硫酸銅IO%の20℃の水溶液中に浸漬後
、水洗、脱水、乾燥し繊度15デニルの繊維を製造した
。この繊維の比表面積をB、 E、 T法により求めた
測定値は12m’/gであった。
Next, it was immersed for 15 seconds in a 15°C aqueous solution of Na230.8% and NaOH4%, dehydrated using a press roll, immediately immersed in a 20°C aqueous solution of IO% copper sulfate, washed with water, dehydrated, and dried. A fiber with a fineness of 15 denier was produced. The specific surface area of this fiber was determined by the B, E, T method and was 12 m'/g.

また、上記繊維を細か(切断し、蛍光X線を用い、銅の
含有量を測定した値は1.1 m mol 7gであっ
た。さらに硫化水素を用い消臭速度および圧力損失を測
定した。その結果を第1表に示した。この第1表から本
発明の繊維は、圧力損失が小さく、かつ消臭速度が大き
いことがわかる。
Further, the fiber was cut into small pieces, and the copper content was measured using fluorescent X-rays, and the copper content was 1.1 mmol 7 g. Furthermore, the deodorization rate and pressure loss were measured using hydrogen sulfide. The results are shown in Table 1. From Table 1, it can be seen that the fibers of the present invention have a small pressure loss and a high deodorizing speed.

比較例1および2 アクリロニトリルとアクリル酸とを重量比80対20の
混合割合で共重合した重合体を67%硝酸水溶液中に溶
解して、アクリル系重合体濃度17%の紡糸原液を調整
した。この紡糸原液を25%硝酸水溶液中に、紡糸口金
を通して押し出し、水洗後、80℃の熱水中で8倍延伸
し、70°Cの熱風で乾燥して繊維を製造した。
Comparative Examples 1 and 2 A polymer obtained by copolymerizing acrylonitrile and acrylic acid at a mixing ratio of 80:20 by weight was dissolved in a 67% nitric acid aqueous solution to prepare a spinning dope having an acrylic polymer concentration of 17%. This spinning stock solution was extruded into a 25% nitric acid aqueous solution through a spinneret, washed with water, stretched 8 times in hot water at 80°C, and dried with hot air at 70°C to produce fibers.

つぎに、実施例1と全く同様にして、NaOHおよびC
u5Otで処理した後、水洗、脱水、乾燥をして、15
デニールおよび2.5デニールの比較例1. 2の繊維
を得た。これらの繊維の比表面積を測定した値は0.3
 rd/gおよび0.9rrr/gであった。また、こ
れらの繊維の銅含有量を測定した結果、比較例1.2共
に実施例1と同様、1.1 m ma1/gであった。
Next, in exactly the same manner as in Example 1, NaOH and C
After treatment with u5Ot, wash with water, dehydrate, and dry.
Comparative example of denier and 2.5 denier 1. 2 fibers were obtained. The measured specific surface area of these fibers is 0.3
rd/g and 0.9rrr/g. Moreover, as a result of measuring the copper content of these fibers, both Comparative Examples 1 and 2 were found to be 1.1 m ma1/g, similar to Example 1.

さらに実施例1と同様に消臭速度および圧力損失を測定
した。その結果を第1表に示した。
Furthermore, the deodorization rate and pressure loss were measured in the same manner as in Example 1. The results are shown in Table 1.

(以下余白) 実施例2,3.4および比較例3 アクリロニトリルとアクリル酸とを重量比80対20の
混合割合で共重合した重合体およびエチレンオキサイド
とプロピレンオキサイドとの割合が重量比75:25で
数平均分子量が20000のランダム共重合型ポリアル
キレングリコールとを0℃、67%の硝酸水溶液に溶解
して紡糸原液を調整した。
(Left below) Examples 2, 3.4 and Comparative Example 3 A polymer obtained by copolymerizing acrylonitrile and acrylic acid at a mixing ratio of 80:20 by weight, and a ratio of ethylene oxide and propylene oxide at a weight ratio of 75:25. A spinning stock solution was prepared by dissolving a random copolymerized polyalkylene glycol having a number average molecular weight of 20,000 in a 67% aqueous nitric acid solution at 0°C.

こ\で紡糸原液はアクリル系重合体濃度を17%とし、
ポリアルキレングリコールの濃度をアクリル系重合体に
対し5%、3%とした2種類の紡糸原液を5時間静置し
た後、OoC,25%の硝酸水溶液中に紡糸口金を通し
て押し出し、水洗後、80°C熱水中で、8倍の延伸を
行ない、70℃の熱風中で乾燥し、実施例2,3に用い
る多孔質繊維(a)、 (b)を製造した。
Here, the spinning stock solution has an acrylic polymer concentration of 17%,
Two types of spinning stock solutions with polyalkylene glycol concentrations of 5% and 3% relative to the acrylic polymer were allowed to stand for 5 hours, extruded through a spinneret into OoC, 25% nitric acid aqueous solution, washed with water, The fibers were stretched 8 times in °C hot water and dried in 70 °C hot air to produce porous fibers (a) and (b) used in Examples 2 and 3.

また、前記のアクリル系重合体と、塩化パラフィンとを
、0°0167%の硝酸水溶液に溶解して、紡糸原液を
調整した。紡糸原液のアクリル系重合体濃度は17%と
し、塩化パラフィンの濃度を、アクリル系重合体に対し
10%とした。この紡糸原液を0℃、25%の硝酸水溶
液中に紡糸口金を通して押し出し、水洗後、80℃の熱
水中で8倍の延伸を行ない、70℃の熱風中で乾燥し、
実施例4に用いる多孔質繊維(C)を製造した。
Further, the above acrylic polymer and chlorinated paraffin were dissolved in a 0°0167% nitric acid aqueous solution to prepare a spinning stock solution. The concentration of the acrylic polymer in the spinning dope was 17%, and the concentration of chlorinated paraffin was 10% relative to the acrylic polymer. This spinning stock solution was extruded through a spinneret into a 25% nitric acid aqueous solution at 0°C, washed with water, stretched 8 times in hot water at 80°C, and dried in hot air at 70°C.
Porous fibers (C) used in Example 4 were manufactured.

さらにまた、比較例3として前記のアクリル系重合体と
、ヘキサンとを67%硝酸水溶液中に溶解し、アクリル
系重合体濃度17%、ヘキサン濃度がアクリル系重合体
に対し6%の紡糸原液を得た。上記原液を、紡糸口金を
用いて、0℃、25%の硝酸水溶液からなる凝固浴中へ
、押し出し、水洗後、90°C熱水よりなる延伸浴中で
ヘキサンを、蒸発気化させるとともに、7倍の延伸を行
ない70℃の熱風中で乾燥し、比較例3に用いる多孔質
繊維(dlを製造した。
Furthermore, as Comparative Example 3, the above acrylic polymer and hexane were dissolved in a 67% nitric acid aqueous solution, and a spinning stock solution with an acrylic polymer concentration of 17% and a hexane concentration of 6% relative to the acrylic polymer was prepared. Obtained. The above stock solution was extruded using a spinneret into a coagulation bath consisting of a 25% nitric acid aqueous solution at 0°C, and after washing with water, hexane was evaporated in a drawing bath consisting of 90°C hot water. The porous fiber (dl) used in Comparative Example 3 was produced by stretching the fiber twice and drying it in hot air at 70°C.

このようにして得られた4種類の多孔質繊維(a)。Four types of porous fibers (a) obtained in this way.

(b)、 (C)および(d)を2%NaOHを含む、
水とエタノールの容量比が3−7の混合溶液30℃中に
30秒間浸漬した後、直ちにプレス脱水し、ひきつづき
直ちに硫酸銅10%の20℃水溶液中に30秒間浸漬し
、ついで、水洗、脱水、乾燥を行ない、繊度15デニー
ルの銅を含有した実施例2,3.4および比較例3の多
孔質消臭性繊維(A)、 (B)、 (C)および(D
)を得た。
(b), (C) and (d) containing 2% NaOH;
After being immersed for 30 seconds in a mixed solution of water and ethanol at 30°C with a volume ratio of 3-7, it was immediately dehydrated by pressing, and then immediately immersed in an aqueous solution of 10% copper sulfate at 20°C for 30 seconds, then washed with water and dehydrated. The porous deodorant fibers (A), (B), (C) and (D) of Examples 2, 3.4 and Comparative Example 3 containing copper with a fineness of 15 denier were dried.
) was obtained.

これらの繊維はいずれも、1.1 m mol /gの
銅を含有していた。
All of these fibers contained 1.1 mmol/g copper.

これらの多孔質消臭性繊維の比表面積、消臭速度および
圧力損失を測定した。その結果を第2表に示した。
The specific surface area, deodorizing speed, and pressure loss of these porous deodorant fibers were measured. The results are shown in Table 2.

(以下余白) この第2表のように比表面積が4m2/g以上である本
発明の実施例1,2.3および4の場合、特に顕著な消
臭速度の向上が見られる。また、圧力損失は単糸デニー
ルに依存しており、比表面積が大きくなっても圧力は損
失は大きくならないことがわかる。さらに本発明の製造
法は、種々の第2成分を用いることが可能であるが、特
に水溶性のポリアルキルグリコールを用いた場合、比表
面積の増大が容易であり、かつ、消臭速度も大きくなる
ことがわかる。
(Hereinafter, blank spaces) As shown in Table 2, in Examples 1, 2.3, and 4 of the present invention in which the specific surface area is 4 m2/g or more, a particularly remarkable improvement in deodorization speed is observed. It can also be seen that the pressure loss depends on the single yarn denier, and even if the specific surface area increases, the pressure loss does not increase. Furthermore, in the production method of the present invention, it is possible to use various second components, but in particular, when water-soluble polyalkyl glycol is used, the specific surface area can be easily increased and the deodorization rate can also be increased. I know what will happen.

実施例5,6および比較例4 アクリロニトリルと、アクリル酸とを重量比85:15
(F)(実施例5) 、80 : 20(G)(実施例
6)および90:10(旧 (比較例4)の混合割合で
共重合した重合体ならびにエチレンオキサイドとプロピ
レンオキサイドとの割合が重量比の75=25で、数平
均分子量50000のランダム共重合型ポリエーテルと
を67重量%硝酸水溶液中に溶解して、アクリル系重合
体濃度17%、上記ランダム共重合体濃度をアクリル系
重合体に対し10%の実施例5,6および比較例4の3
種類の紡糸原液を調製した。この3種類の紡糸原液を、
実施例1と全く同様に、紡糸、苛性ソーダ処理および硫
酸銅処理を行ない3種類の繊度15デニールの多孔質消
臭性銅含有繊維(F)(実施例5)、(G)(実施例6
)および(旧 (比較例4)を得た。これらの繊維中に
含まれる銅を測定したところ(F)は0.8 m ma
il /g、 (G)は1. I m mol /g、
 (H)はQ、 6 m mol /gであった。また
、これらの繊維の比表面積はいずれも12rrr/gで
あった。
Examples 5, 6 and Comparative Example 4 Acrylonitrile and acrylic acid in a weight ratio of 85:15
(F) (Example 5), 80:20 (G) (Example 6) and 90:10 (old (Comparative Example 4) polymers copolymerized and the ratio of ethylene oxide and propylene oxide At a weight ratio of 75=25, a random copolymer polyether with a number average molecular weight of 50,000 is dissolved in a 67% by weight nitric acid aqueous solution, the acrylic polymer concentration is 17%, and the random copolymer concentration is 17%. 10% of Examples 5 and 6 and Comparative Example 4-3 for coalescence
Various spinning stock solutions were prepared. These three types of spinning dope,
In exactly the same manner as in Example 1, spinning, caustic soda treatment and copper sulfate treatment were carried out to produce three types of porous deodorizing copper-containing fibers (F) (Example 5) and (G) (Example 6) with a fineness of 15 denier.
) and (Old (Comparative Example 4)) were obtained. When the copper contained in these fibers was measured, (F) was 0.8 m ma
il /g, (G) is 1. I mmol/g,
(H) was Q, 6 mmol/g. Further, the specific surface area of each of these fibers was 12rrr/g.

これら3種類の多孔質消臭性アクリル繊維のアンモニア
ガスおよび硫化水素ガスに対する消臭速度の測定結果を
第3表に示した。
Table 3 shows the measurement results of the deodorizing speed of these three types of porous deodorizing acrylic fibers against ammonia gas and hydrogen sulfide gas.

(以下余白) 第3表のように、銅含有量が、Q、8 m mof /
g未満では、ガス流速の遅い条件でもすでに除去率が低
くガス流速の速い条件ではさらにその差が顕著になるこ
とがわかる。したがって、比表面積を増大させるだけで
なく、繊維中に含まれる銅の量を0、8 m mol 
/g以上にすることがすぐれた消臭速度発現のうえで不
可欠の要件であることがわかる。
(Left below) As shown in Table 3, the copper content is Q, 8 m mof /
It can be seen that below g, the removal rate is already low even under conditions where the gas flow rate is low, and the difference becomes even more remarkable under conditions where the gas flow rate is high. Therefore, in addition to increasing the specific surface area, the amount of copper contained in the fibers can be reduced to 0.8 m mol
/g or more is an essential requirement for achieving an excellent deodorizing speed.

〔発明の効果〕〔Effect of the invention〕

このように、本発明の製造法は、フィルター分野におい
て、従来技術ではなし得なかった、低圧力損失で、高性
能の消臭性能を有する消臭材を提供することができる。
As described above, the production method of the present invention can provide a deodorizing material in the field of filters that has low pressure loss and high deodorizing performance, which has not been possible with conventional techniques.

すなわち、本製造法により得られる繊維は単糸デニール
が太(、充填密度が同じでも優れた悪臭除去能を有する
消臭材であって、幅広い分野で利用できるものである。
That is, the fibers obtained by this production method are deodorizing materials that have excellent odor removal ability even when the single yarn denier is thick (and the packing density is the same), and can be used in a wide range of fields.

Claims (1)

【特許請求の範囲】 1、陰イオン性官能基に結合した0.8mmol/g以
上の遷移金属を含有しており、かつ、B.E.T法によ
る比表面積が4m^2/g以上であることを特徴とする
多孔質消臭性アクリル系合成繊維。 2、カルボキシル基含有コモノマーを共重合成分として
有するアクリロニトリル系重合体の溶解原液に、水溶性
高分子からなる第2成分を添加し、これを紡糸工程以降
において洗い出し空孔を作りさらに、アルカリで処理し
た後、遷移金属化合物を結合させることを特徴とする特
許請求の範囲第1項記載の多孔質消臭性アクリル系合成
繊維の製造法。
[Scope of Claims] 1. Contains 0.8 mmol/g or more of a transition metal bonded to an anionic functional group, and B. E. A porous deodorizing acrylic synthetic fiber characterized by having a specific surface area of 4 m^2/g or more according to the T method. 2. A second component consisting of a water-soluble polymer is added to the dissolved stock solution of an acrylonitrile polymer having a carboxyl group-containing comonomer as a copolymerization component, and this is washed out after the spinning process to create pores, and then treated with an alkali. 2. The method for producing porous deodorizing acrylic synthetic fibers according to claim 1, further comprising bonding a transition metal compound thereto.
JP1258931A 1989-10-05 1989-10-05 Porous deodorant acrylic synthetic fiber and its production Pending JPH03124811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258931A JPH03124811A (en) 1989-10-05 1989-10-05 Porous deodorant acrylic synthetic fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258931A JPH03124811A (en) 1989-10-05 1989-10-05 Porous deodorant acrylic synthetic fiber and its production

Publications (1)

Publication Number Publication Date
JPH03124811A true JPH03124811A (en) 1991-05-28

Family

ID=17327033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258931A Pending JPH03124811A (en) 1989-10-05 1989-10-05 Porous deodorant acrylic synthetic fiber and its production

Country Status (1)

Country Link
JP (1) JPH03124811A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272174A (en) * 1993-03-16 1994-09-27 Toray Ind Inc Deodorizing acrylonitrile synthetic fiber and its production
JPH09228241A (en) * 1996-02-20 1997-09-02 Japan Exlan Co Ltd Antibacterial and antifungal fiber and its production
JPH09241970A (en) * 1995-12-29 1997-09-16 Japan Exlan Co Ltd Metal fine particle-containing fiber and its production
JPH09241967A (en) * 1996-03-04 1997-09-16 Japan Exlan Co Ltd Deodorant fiber and its production
WO2018047344A1 (en) * 2016-09-12 2018-03-15 日本エクスラン工業株式会社 Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
WO2019058966A1 (en) * 2017-09-22 2019-03-28 日本エクスラン工業株式会社 Moisture absorbent acrylonitrile-based fiber, method for producing same and fiber structure containing same
JP2019060066A (en) * 2017-09-22 2019-04-18 日本エクスラン工業株式会社 Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber
JP2019157329A (en) * 2018-03-09 2019-09-19 日本エクスラン工業株式会社 Crimpable moisture-absorptive acrylonitrile-based fiber, method of producing the fiber and fiber structure containing the fiber
JP2019157330A (en) * 2018-03-09 2019-09-19 日本エクスラン工業株式会社 Water-repellent moisture-absorptive acrylonitrile-based fiber, method of producing the fiber and fiber structure containing the fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272174A (en) * 1993-03-16 1994-09-27 Toray Ind Inc Deodorizing acrylonitrile synthetic fiber and its production
JPH09241970A (en) * 1995-12-29 1997-09-16 Japan Exlan Co Ltd Metal fine particle-containing fiber and its production
JPH09228241A (en) * 1996-02-20 1997-09-02 Japan Exlan Co Ltd Antibacterial and antifungal fiber and its production
JPH09241967A (en) * 1996-03-04 1997-09-16 Japan Exlan Co Ltd Deodorant fiber and its production
WO2018047344A1 (en) * 2016-09-12 2018-03-15 日本エクスラン工業株式会社 Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
JPWO2018047344A1 (en) * 2016-09-12 2019-06-27 日本エクスラン工業株式会社 Modified acrylonitrile-based fiber, method for producing the fiber, and fiber structure containing the fiber
WO2019058966A1 (en) * 2017-09-22 2019-03-28 日本エクスラン工業株式会社 Moisture absorbent acrylonitrile-based fiber, method for producing same and fiber structure containing same
JP2019060066A (en) * 2017-09-22 2019-04-18 日本エクスラン工業株式会社 Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber
JP2019157329A (en) * 2018-03-09 2019-09-19 日本エクスラン工業株式会社 Crimpable moisture-absorptive acrylonitrile-based fiber, method of producing the fiber and fiber structure containing the fiber
JP2019157330A (en) * 2018-03-09 2019-09-19 日本エクスラン工業株式会社 Water-repellent moisture-absorptive acrylonitrile-based fiber, method of producing the fiber and fiber structure containing the fiber

Similar Documents

Publication Publication Date Title
EP0783048B1 (en) Method for producing fine metallic particles-containing fibers
JP3369380B2 (en) Improved moisture absorption / desorption fiber and method for producing the same
CA1082382A (en) Fluid absorbent cellulose fibers containing alkaline salts of polymers of acrylic acid, methacrylic acid or an acryloamidoalkane sulfonic acid with aliphatic esters of acrylic acid or methacrylic acid
TWI376441B (en) Moisture transferring paper and process for producing the same
JPS5810508B2 (en) Novel water-swellable fiber with high water-swellability and high physical properties and method for producing the same
JPH05132858A (en) Highly moisture absorbing and releasing fiber and its production
JPH03124811A (en) Porous deodorant acrylic synthetic fiber and its production
WO2003008678A1 (en) Acrylic composite fiber and method for production thereof, and fiber composite using the same
CN1076406C (en) Use of linear synthetic polymer to improve properties of cellulose shaped body derived from tertiary amine oxide process
CN113293604B (en) Antibacterial and hydrophilic non-woven fabric and preparation method and application thereof
JP2001507089A (en) Dispersion spinning method for poly (tetrafluoroethylene) and related polymers
Tsukada et al. Characterization of methacrylonitrile‐grafted silk fibers
JPH01282390A (en) Ultra-fine ion-exchange fiber and production thereof
JP3191278B2 (en) pH buffering fiber and method for producing the same
JPH0610222A (en) Acrylic fiber bundle and preparation thereof
JPH0268117A (en) Deodorizing air filter
JP3369508B2 (en) Hygroscopic fiber
JP2013204205A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JPH05214671A (en) Deodorizing plus antifungal fiber
JPS6262174B2 (en)
JPH0284533A (en) Deodorizing fiber
JPH0813905B2 (en) Cellulosic composition having an ion exchange function
JP2003342831A (en) Water-absorbing acrylic fiber and method for producing the same and fiber structure containing the fiber
JP3235092B2 (en) Basic gas absorbing fiber and method for producing the same
JPH0586970B2 (en)