JPH03122202A - Manufacture of sintered metal product and metal powder for sintering - Google Patents

Manufacture of sintered metal product and metal powder for sintering

Info

Publication number
JPH03122202A
JPH03122202A JP1259705A JP25970589A JPH03122202A JP H03122202 A JPH03122202 A JP H03122202A JP 1259705 A JP1259705 A JP 1259705A JP 25970589 A JP25970589 A JP 25970589A JP H03122202 A JPH03122202 A JP H03122202A
Authority
JP
Japan
Prior art keywords
powder
sintering
contained
metal powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1259705A
Other languages
Japanese (ja)
Inventor
Takeo Hisada
建男 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1259705A priority Critical patent/JPH03122202A/en
Publication of JPH03122202A publication Critical patent/JPH03122202A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a finished sintered product containing a specific content of C by compacting the metal powder containing the excess C, by which contained O can be removed with the sintering to the prescribed shape and sintering. CONSTITUTION:At the time of manufacturing the finished sintered product having >=0.03% C content by using the metal powder for sintering, the amt. of C equivalent to or more than the atomic ratio with O contained in this metal powder is added to C content (>=0.03%) made to remain in the finished sintered product and contained as the alloy component. At the time of compacting and sintering the metal powder adjusting the contained C quantity in this way to the prescribed shape, O in the powder and the stoichiometrically equivalent quantity of C are brought into reaction so as to become C+O CO and O is removed in the powder. By this method, the finish sintered product having >=0.03% C content is obtd. and the parts having excellent mechanical strength and appearance after grinding are manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は金属焼結品の製造方法及び焼結用金属粉末に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a sintered metal product and a metal powder for sintering.

(従来の技術及び発明が解決しようとする課題)焼結用
の金属粉末は、主に水アトマイズ法により、特殊なもの
はガスアトマイズ法等にて製造される。而して例えば水
アトマイズ法において粉末製造の際、溶融金属が噴射さ
れて水と接するときに表面が酸化されるため、得られた
粉末中には多量の酸素が含有される。
(Prior Art and Problems to be Solved by the Invention) Metal powder for sintering is mainly produced by a water atomization method, and special powders are produced by a gas atomization method or the like. For example, when producing powder in the water atomization method, the surface of the molten metal is oxidized when it is sprayed and comes into contact with water, so the resulting powder contains a large amount of oxygen.

このようにして粉末に含有された酸素は酸化物として存
在するが、このうちクロムの酸化物に代表されるように
、酸素との親和力の強い酸化物は特に還元し難く、この
ため製造した粉末を用いて焼結を行うと、焼結金属の組
織中に介在物、ピンホールが生じて機械的強度が低くな
ったり、研磨面の光沢が減する等問題があった。
The oxygen contained in the powder exists in the form of oxides, but oxides that have a strong affinity for oxygen, such as chromium oxide, are particularly difficult to reduce. When sintering is performed using a sintered metal, there are problems such as inclusions and pinholes occurring in the structure of the sintered metal, resulting in a decrease in mechanical strength and a decrease in the gloss of the polished surface.

(課題を解決するための手段) 本発明はこのような課題を解決するためになされたもの
であり、その要旨は、最終焼結品において含有するC量
が0.03%以上の金属焼結品の焼結用金属粉末中に、
該粉末中に含有される0と原子比率で等しい量以上のC
を、最終の焼結晶において残留させるべきC量に加えた
量で合金成分として含有させ、該金属粉末を所定形状に
成形した後焼結するとともに該焼結に際して若しくはこ
れに先立つ加熱条件下でCと0とを反応させてガスとし
て除去することにある。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and the gist thereof is to provide a metal sintered product containing 0.03% or more of C in the final sintered product. In the metal powder for sintering of the product,
An amount of C equal to or more than 0 in the atomic ratio contained in the powder
is added as an alloying component to the amount of C that should remain in the final sintered crystal, and the metal powder is molded into a predetermined shape and then sintered, and at the same time, C is The purpose is to react with 0 and remove it as a gas.

(作用及び発明の効果) 本発明においては、金属粉末の成形体を高温に加熱した
とき、一般には焼結したとき、粉末中に含まれる0と化
学量論的に等しい量のCがC+0→COの反応を起こし
、ガスとなって金属粉末中より除去される。即ち粉末中
に含有される0と、同じく粉末中に積極的に含有させた
Cの一部が互いに反応して除去される。
(Operation and Effects of the Invention) In the present invention, when a compact of metal powder is heated to a high temperature, generally when sintered, an amount of C stoichiometrically equal to 0 contained in the powder changes from C+0→ A reaction occurs with CO, which becomes a gas and is removed from the metal powder. That is, 0 contained in the powder and a portion of C, which was also actively included in the powder, react with each other and are removed.

尚本発明において粉末中に含有させるべきCの量は、粉
末を製造した段階で同粉末中に含有されるOの量によっ
て定まることとなるが、この0の量は粉末製造の際の条
件によって定まってくるから、これを分析して予め求め
ておき、その分析値に基づいて必要なC量を計算により
求めて粉末中に含有させれば良い。
In the present invention, the amount of C to be contained in the powder is determined by the amount of O contained in the powder at the stage of manufacturing the powder, but the amount of 0 depends on the conditions at the time of manufacturing the powder. Since this is determined, it is sufficient to analyze and obtain it in advance, calculate the necessary amount of C based on the analysis value, and include it in the powder.

尚このCは合金成分として粉末中に含有させるものであ
る。具体的には、金属の各成分を溶解する際に同時に含
有させる。
Note that this C is contained in the powder as an alloying component. Specifically, each component of the metal is contained at the same time when it is dissolved.

上記のように本発明はC+0→COの反応を利用して粉
末中の酸素を除くべく、最終焼結晶に残存させるべき量
よりも余分量のCを合金成分として粉末に含有させるこ
とを特徴としている。かかる本発明によれば、焼結の際
若しくはこれに先立つ加熱条件下で粉末の表面及び内部
に含まれる酸素が除去されて焼結密度が向上する(粉末
の周りを酸化被膜が覆うことがなくなって拡散が促進さ
れるから)とともに、介在物、ピンホールが著しく少な
くなって組織が良好となり、機械的強度。
As mentioned above, the present invention is characterized in that the powder contains an excess amount of C as an alloying component compared to the amount that should remain in the final fired crystal in order to remove oxygen from the powder by utilizing the C+0→CO reaction. There is. According to the present invention, oxygen contained on the surface and inside of the powder is removed during sintering or under heating conditions prior to sintering, and the sintered density is improved (an oxide film no longer covers the powder). At the same time, inclusions and pinholes are significantly reduced, resulting in a better structure and improved mechanical strength.

研磨外観の優れた焼結部品を得ることができる。A sintered part with an excellent polished appearance can be obtained.

尚CとOとの反応により粉末中の酸化物を除去すること
自体は公知である。
It is known that oxides in powder are removed by reaction between C and O.

しかしながら従来の方法は、金属粉末と炭素粉末とを混
合機、ボールミル等を用いて混合することにより行って
おり、この場合両粉末を均一に混合するために非常に長
時間を要するとともに、混合用の装置を必要とする他、
ある程度Cが偏在した状態となるのを避は得ない。
However, in the conventional method, metal powder and carbon powder are mixed using a mixer, a ball mill, etc. In this case, it takes a very long time to uniformly mix both powders, and the mixing In addition to the equipment required,
It is inevitable that C will be unevenly distributed to some extent.

これに対して、本発明はCを粉末の合金成分として粉末
自体に含有させるようにしたものであるから、こうした
不具合は生じず、粉末中にCを均等に含有させ得、従っ
て最終焼結晶においてCが偏在するのを回避できる。
On the other hand, in the present invention, C is contained in the powder itself as an alloying component of the powder, so this problem does not occur and C can be evenly contained in the powder, so that the final sintered crystal can contain C. Uneven distribution of C can be avoided.

尚本発明は金属粉末を所定形状に成形した後焼結して金
属量を得るものであるが、その成形方法としては射出成
形、プレス成形その他の成形方法を採用することができ
る。
In the present invention, the metal powder is molded into a predetermined shape and then sintered to obtain the metal amount, but injection molding, press molding, and other molding methods can be employed as the molding method.

(実施例) 次に本発明の特徴をより明確にすべく、以下にその実施
例を詳述する。但し本発明は以下の実施例にのみ限定さ
れるものではなく、他の態様において実施することも可
能である。
(Example) Next, in order to clarify the characteristics of the present invention, examples thereof will be described in detail below. However, the present invention is not limited only to the following examples, but can also be implemented in other embodiments.

[実施例1] 水アトマイズ法で5KH51相当の微粉末を製造し1粒
径が301Lm以下に分級した。この際、粉末に含まれ
る酸素の平均値0.3重量%の還元に見合うC量として
0.3重量%分を余分に溶鋼に添加した。即ちCを最終
の製品規格C:0.8〜0.9重量%に対し、1.1〜
1.2重量%で溶解した。得られた粉末を化学分析した
結果、C:1.18%、O:0.27%であった。
[Example 1] A fine powder equivalent to 5KH51 was produced by a water atomization method and classified to have a particle size of 301 Lm or less. At this time, an extra 0.3% by weight of C was added to the molten steel as an amount of C corresponding to the reduction of the average value of 0.3% by weight of oxygen contained in the powder. That is, C is 1.1 to 0.9% by weight of the final product specification C: 0.8 to 0.9% by weight.
It was dissolved at 1.2% by weight. As a result of chemical analysis of the obtained powder, it was found that C: 1.18% and O: 0.27%.

この粉末に重量%で9%のポリエチレンを主体としたバ
インダーを添加して混練し、4X6×40m層の大きさ
に射出成形した。この際、比較のためにC:0.3重量
%を余分に添加することなく粉末を製造してこれより同
形状の成形品を得た0両成形品を1190℃×1時間真
空焼結し、その化学分析、杭打力測定を行った。結果を
第1表に示す。
A binder mainly composed of polyethylene was added to the powder in an amount of 9% by weight, and the mixture was kneaded and injection molded into a layer size of 4×6×40 m. At this time, for comparison, a powder was produced without adding an extra 0.3% by weight of C, and a molded product of the same shape was obtained and vacuum sintered at 1190°C for 1 hour. , its chemical analysis and pile driving force measurements were conducted. The results are shown in Table 1.

(以下余白) 第1表:試験結果 C,[0]:焼結体の分析値 硬さ、杭打カニ焼入れ 1210℃×3分→油冷焼戻し
 560℃×1時間→空冷(3回)比較例A:木本発例
と同一焼結条件 1190℃×1時間(真空度<1O−2)−ル)比較例
B:1190℃×1時間 (真空度200 )−ル、キャリアーガスN2)第1表
より明らかなように、本発明例と同じ条件で焼結を実施
した比較例Aでは脱炭が発生し、焼入れ後の硬さが得ら
れていない、一方脱炭を抑える条件で焼結した比較例B
では硬さは得られているものの酸素量が高く、その結果
抗打力が低くなっている。
(Leaving space below) Table 1: Test results C, [0]: Analytical hardness of sintered body, pile drive crab quenching 1210℃ x 3 minutes → oil cooling tempering 560℃ x 1 hour → air cooling (3 times) comparison Example A: Same sintering conditions as Kimoto's example 1190℃ x 1 hour (degree of vacuum <1O-2) Comparative example B: 1190℃ x 1 hour (degree of vacuum 200) As is clear from Table 1, in Comparative Example A, which was sintered under the same conditions as the present invention example, decarburization occurred and the hardness after quenching was not obtained. Comparative example B
Although hardness is achieved, the amount of oxygen is high, resulting in low impact resistance.

[実施例2] 水アトマイズ法で5US420J2相当の粉末を製造し
、−60メツシユに分級した。この際、粉末に含まれる
酸素の平均値0 、4重量%に相当する量としてC:0
.4重量%を溶鋼中に余分に添加した。即ち最締の製品
規格C:0.26〜0.4重量%に対し、Cを0.66
〜0.8重量%溶解した。得られた粉末を化学分析した
結果、C:0.71%、0二〇、32%であった。
[Example 2] A powder equivalent to 5US420J2 was produced by a water atomization method and classified into -60 mesh. At this time, C: 0 as the amount equivalent to the average value of 0.4% by weight of oxygen contained in the powder.
.. An additional 4% by weight was added to the molten steel. In other words, the tightest product specification C: 0.26 to 0.4% by weight, C is 0.66%.
~0.8% by weight dissolved. Chemical analysis of the obtained powder revealed that C: 0.71%, 0.20%, 32%.

本粉末と比較のために製造したC:0.36%。C produced for comparison with this powder: 0.36%.

0:0.30%の粉末にバインダーとしてPVAを11
i量%添加しプレス成形した。この圧粉体を1200″
CX1時間真空中で焼結した。焼結体のC分析をしたと
ころ、本発明例ではC:0.37重量%と良好であった
が、比較材は0.22と規格外れとなった。比較材では
、焼結時のCO反応によるCの目減りにより、C量が規
格値を下回ったものである。
0:11 PVA as a binder to 0.30% powder
i amount% was added and press molded. This compacted powder is 120″
CX was sintered in vacuum for 1 hour. When the sintered body was analyzed for C, the inventive example had a good C content of 0.37% by weight, but the comparative material had a C content of 0.22, which was out of specification. In the comparative material, the amount of C was less than the standard value due to loss of C due to the CO reaction during sintering.

Claims (1)

【特許請求の範囲】 (1)最終焼結品において含有するC量が 0.03%以上の金属焼結品の焼結用金属粉末中に、該
粉末中に含有されるOと原子比率で等しい量以上のCを
、最終の焼結品において残留させるべきC量に加えた量
で合金成分として含有させ、該金属粉末を所定形状に成
形した後焼結するとともに該焼結に際して若しくはこれ
に先立つ加熱条件下でCとOとを反応させてガスとして
除去することを特徴とする金属焼結品の製造方法。 (2)最終焼結品において含有するC量が 0.03%以上の金属焼結品の焼結用金属粉末であって
、該粉末中に含有されるOと原子比率で等しい量以上の
Cを、最終の焼結品において残留させるべきC量に加え
た量で合金成分として含有することを特徴とする焼結用
金属粉末。
[Scope of Claims] (1) A metal powder for sintering of a metal sintered product containing 0.03% or more of C in the final sintered product, in an atomic ratio with O contained in the powder. An equal amount or more of C is added to the amount of C that should remain in the final sintered product as an alloying component, and the metal powder is molded into a predetermined shape and then sintered. A method for manufacturing a sintered metal product, which comprises reacting C and O under prior heating conditions and removing them as a gas. (2) A metal powder for sintering of a metal sintered product that contains 0.03% or more of C in the final sintered product, which contains at least an amount of C that is equal in atomic ratio to O contained in the powder. A metal powder for sintering, characterized in that it contains as an alloy component in an amount that is in addition to the amount of C that should remain in the final sintered product.
JP1259705A 1989-10-04 1989-10-04 Manufacture of sintered metal product and metal powder for sintering Pending JPH03122202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259705A JPH03122202A (en) 1989-10-04 1989-10-04 Manufacture of sintered metal product and metal powder for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259705A JPH03122202A (en) 1989-10-04 1989-10-04 Manufacture of sintered metal product and metal powder for sintering

Publications (1)

Publication Number Publication Date
JPH03122202A true JPH03122202A (en) 1991-05-24

Family

ID=17337789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259705A Pending JPH03122202A (en) 1989-10-04 1989-10-04 Manufacture of sintered metal product and metal powder for sintering

Country Status (1)

Country Link
JP (1) JPH03122202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035853A1 (en) * 2008-09-24 2010-04-01 Jfeスチール株式会社 Process for production of sintered compact by powder metallurgy
GB2543327A (en) * 2015-10-15 2017-04-19 Rolls Royce Plc Aerofoil tip profiles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035853A1 (en) * 2008-09-24 2010-04-01 Jfeスチール株式会社 Process for production of sintered compact by powder metallurgy
JP2010100932A (en) * 2008-09-24 2010-05-06 Jfe Steel Corp Process for production of sintered compact by powder metallurgy
GB2543327A (en) * 2015-10-15 2017-04-19 Rolls Royce Plc Aerofoil tip profiles

Similar Documents

Publication Publication Date Title
US5108493A (en) Steel powder admixture having distinct prealloyed powder of iron alloys
KR100249006B1 (en) Water spray iron powder for powder plating and its manufacturing method
CA1337468C (en) Alloyed steel powder for powder metallurgy
US4090874A (en) Method for improving the sinterability of cryogenically-produced iron powder
US5217683A (en) Steel powder composition
KR900007785B1 (en) Tin coating ferrous composite powder and method of producing same
KR100258376B1 (en) Manganese containing iron-based powder having high tensile strength
JPH03122202A (en) Manufacture of sintered metal product and metal powder for sintering
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
CN112410658B (en) Preparation method of high-strength and high-hardness water-atomized prealloyed steel powder
EP0409646A2 (en) Compound for an injection molding
JPS61139601A (en) Low-alloy iron powder for sintering and its manufacture
JPS591763B2 (en) stainless steel powder
JPH0751721B2 (en) Low alloy iron powder for sintering
CN110508820B (en) High-permeability copper infiltrated powder and manufacturing method thereof
JPH01290702A (en) Ferrous powder for powder metallurgy and its production
US2903354A (en) Process for improving parts formed by powder metallurgy by addition of spiegeleisen to metal powders
JP2579171B2 (en) Manufacturing method of sintered material
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPS5819722B2 (en) koumitsudoshiyouketsukou no seizouhouhou
JPH0140081B2 (en)
JPS6156283B2 (en)
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH0293002A (en) Manufacture of sintered material having cast iron structure