JPH0312134A - Method and instrument for measuring liquid of object or the like - Google Patents

Method and instrument for measuring liquid of object or the like

Info

Publication number
JPH0312134A
JPH0312134A JP1148111A JP14811189A JPH0312134A JP H0312134 A JPH0312134 A JP H0312134A JP 1148111 A JP1148111 A JP 1148111A JP 14811189 A JP14811189 A JP 14811189A JP H0312134 A JPH0312134 A JP H0312134A
Authority
JP
Japan
Prior art keywords
measurement
sensor
component
flow channel
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1148111A
Other languages
Japanese (ja)
Inventor
Hideichiro Yamaguchi
秀一郎 山口
Masaki Esashi
正喜 江刺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP1148111A priority Critical patent/JPH0312134A/en
Publication of JPH0312134A publication Critical patent/JPH0312134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To more speedily and exactly measure object liquid with small filtering quantity as much as possible by collecting a component to be measured, which is filtered and sucked by temporally stopping a flow route, opening a valve again when the measurement of a sensor is started and carrying the component to be measured to a measuring part so as to be pushed-out with carrier liquid. CONSTITUTION:When the operation to suck the component of a measuring object is executed through a filter 3, a flow route 4 is temporally opened in the downstream side of a filter part by an opening/closing valve 6 and the flow of the carrier liquid is stopped. Then, only filtering operation is executed by the sucking operation of a pump 9 and the component of the measuring object is collected in the measuring part side of a sensor 8 in the downstream side of the filter part in the flow roue. In a state that the fixed quantity of the component is integrated, the opening/closing valve is opened and the collected component of the measuring object is carried to the measuring part of the sensor in a concentrated state so as to be pushed-out by the carrier liquid. Then, the measuring part is measured. Accordingly, the time delay of the measurement by the sensor is practically canceled and the concentration of the measuring object component brought into contact with the sensor can be enough secured. Then, speedy and exact measurement can be executed. Further, the loss of the filtering quantity is small and the efficient measurement can be executed by sampling the small quantity of the object liquid.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、血液や体液等を被検液として、そこに含まれ
る各種成分をフィルタを介して吸引ろ過してキャリヤ液
を流したフロー流路中でセンサにより計測して医療分野
等における各種検査や連続的なモニタリングに適用され
る、検体等の被検液の計測方法およびそのための計測装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a flow stream in which blood, body fluid, etc. are used as a test liquid, various components contained therein are suction-filtered through a filter, and a carrier liquid is passed. The present invention relates to a method for measuring a test liquid such as a specimen, which is measured by a sensor on the road and applied to various tests and continuous monitoring in the medical field, etc., and a measuring device therefor.

[従来の技術] 上述のように、フィルタを介して計測対象成分を被検液
より吸引ろ過する方式のものは従来より知られており、
この場合には、計測中キャリヤ液をポンプ給送によって
、フロー流路中を常時流しておいて、該ポンプの吸引動
作によりフィルタを介して吸引ろ過した成分を順次キャ
リヤ液とともにセンサの計測位置まで移送し、ここでセ
ンサにより計測を行なう、いわゆるフローによるろ過方
式が採用されていた。
[Prior Art] As mentioned above, a method of suction-filtering a measurement target component from a test liquid through a filter is conventionally known.
In this case, during measurement, the carrier liquid is constantly kept flowing through the flow channel by pump feeding, and the components suctioned and filtered through the filter by the suction operation of the pump are sequentially brought to the measurement position of the sensor together with the carrier liquid. A so-called flow filtration method was adopted in which the sample was transported and measured using a sensor.

[発明が解決しようとする課題] 上述のようなろ過方式においては、ろ過速度は急激に上
げられず、ろ過される成分量も極めて微量であるため、
フィルタでろ過された成分がセンサの計測位置に達する
までの時間遅れが大きいとともにセンサに触れる成分量
もキャリヤ液と混じって極めて希薄となり、又、計測す
べき成分として例えば、P C02などのように相当に
長い反応時間を要するものなどに特に顕著であるが、セ
ンサに対する成分の接触時間も充分にとれないなどの不
具合があり、このために、迅速かつ正確な計測をなし得
ない問題があった。
[Problem to be solved by the invention] In the above-mentioned filtration method, the filtration speed cannot be increased rapidly and the amount of components to be filtered is extremely small.
There is a large time delay for the components filtered by the filter to reach the measurement position of the sensor, and the amount of components that come into contact with the sensor is extremely dilute as it mixes with the carrier liquid. This is particularly noticeable in products that require a fairly long reaction time, but there are problems such as not allowing enough contact time for the component to contact the sensor, which makes it impossible to perform quick and accurate measurements. .

又、フィルタを介してなされる吸引ろ過は、計測時に継
続して行なわれるため、キャリヤ液や較正液の消費量が
大となるとともに検体量、すなわち、被検液からのろ過
量のロスが多くなり、例えば検体量を多くとれない脳間
液等の計測には特に適しないといった問題があった。
In addition, since suction filtration through a filter is continuously performed during measurement, the amount of carrier liquid and calibration liquid consumed is large, and there is a large loss in the amount of sample, that is, the amount of filtration from the test liquid. Therefore, there was a problem in that it was not particularly suitable for measuring intercerebral fluid, for example, where a large amount of sample cannot be obtained.

従って、本発明は上記従来のフローによるろ過方式の諸
問題に鑑みなされたものであり、その目的はセンサによ
る計測の時間遅れを実質的に解消するとともにセンサに
触れる計測対象成分の濃度を充分に確保し、かつ、極力
わずかのろ過量で、より迅速で正確な計測をなし得る、
検体等の被検液の計測方法およびそのための計測装置を
提供するにある。
Therefore, the present invention was made in view of the problems of the conventional flow filtration method, and its purpose is to substantially eliminate the time delay in measurement by the sensor and to sufficiently reduce the concentration of the component to be measured that comes into contact with the sensor. and achieve faster and more accurate measurements with as little filtration as possible.
An object of the present invention is to provide a method for measuring a test liquid such as a specimen and a measuring device for the same.

[課題を解決するための手段] 上記目的を達成するために、本発明の計測方法としては
基本的にいって、フロー流路を閉成状態として該流路を
キャリヤ液で満たす計測準備工程と、キャリヤ液で満た
されたフロー流路を、フィルタ部の上流側で閉成すると
ともに、フィルタ部を介して被検液中より計測対象成分
をフロー流路内にろ過して取入れるようにフィルタ部の
下流側で吸引動作を行なうサンプリング工程と、フロー
流路を再び開成して集積された計測対象成分をキャリヤ
液によってセンサの計測部位に移送する成分移送工程と
、該計測部位においてセンサにより計測対象成分の計測
を行なう工程とよりなる構成を特徴とする検体等の被検
液の計測方法を提案するものである。
[Means for Solving the Problems] In order to achieve the above object, the measurement method of the present invention basically includes a measurement preparation step of closing the flow channel and filling the flow channel with a carrier liquid. , the flow channel filled with the carrier liquid is closed on the upstream side of the filter part, and the filter is configured to filter and introduce the component to be measured from the test liquid into the flow channel through the filter part. a sampling step in which a suction operation is performed on the downstream side of the section; a component transfer step in which the flow channel is reopened and the accumulated components to be measured are transferred to the measurement site of the sensor using a carrier liquid; The present invention proposes a method for measuring a test liquid such as a specimen, which is characterized by a configuration consisting of a step of measuring a target component.

又、本発明の具体的計測方法として、サンプリング工程
においてフロー流路内に取入れられた計測対象成分の集
積量を検出するとともに該集積量が所定量に達した際に
成分移送工程を開始させる検出工程を更に備える計測方
法も提案される。
Further, as a specific measurement method of the present invention, the accumulation amount of the component to be measured taken into the flow channel in the sampling step is detected, and when the accumulation amount reaches a predetermined amount, the component transfer step is started. A measurement method further comprising a step is also proposed.

更に、フロー流路を開成するとともに成分移送工程の前
および/又は後に該成分移送工程と切換えて、較正液を
センサの計測部位に移送する較正工程を更に備える計測
方法や、計測準備工程において、フロー流路内に、ある
いはフィルタの露出部に直接、ブラッシング液を供給す
る計測方法も提案される。
Furthermore, in the measurement method and the measurement preparation step, the measurement method further includes a calibration step of opening a flow channel and transferring a calibration liquid to the measurement site of the sensor before and/or after the component transfer step and transferring the calibration liquid to the measurement site of the sensor. A measurement method is also proposed in which the brushing liquid is supplied into the flow channel or directly onto the exposed portion of the filter.

又、本発明の計測方法を実施するための計測装置として
は、基本的にいって、フィルタ部を構成するフィルタと
、該フィルタを介在してフロー流路を形成するように該
フィルタの上流側に接続されたキャリヤ液供給配管と下
流側に接続されたサンプリング計測配管と、キャリヤ供
給配管を通してキャリヤ液をフロー流路に供給するキャ
リヤ液供給源と、該キャリヤ液供給源とフィルタとの間
においてキャリヤ液供給配管に配置されフロー流路の開
閉制御をなす開閉弁と、サンプリング計測配管に配置さ
れフロー流路内のキャリヤ液の移送動作ならびにフィル
タによってろ過した計測対象成分の吸引動作をなすポン
プと、該開閉弁の閉成時にポンプによって計測対象成分
の吸引動作を遂行させるとともに、フロー流路内に集積
された計測対象成分を該開閉弁の開成に応じてキャリヤ
液によって、サンプリング計測配管に設けられたセンサ
計測部位に移送させるようにポンプを駆動させるポンプ
駆動手段と、センサ計測部位に配置され移送された計測
対象成分の計測を行なうセンサ手段とよりなる構成を特
徴とする検体等の被検液の計測装置を提案するものであ
る。
Furthermore, a measuring device for carrying out the measuring method of the present invention basically includes a filter constituting a filter section, and a device on the upstream side of the filter that forms a flow channel with the filter interposed therebetween. A carrier liquid supply pipe connected to the carrier liquid supply pipe, a sampling measurement pipe connected to the downstream side, a carrier liquid supply source that supplies the carrier liquid to the flow channel through the carrier supply pipe, and between the carrier liquid supply source and the filter. An on-off valve disposed in the carrier liquid supply piping to control the opening and closing of the flow channel, and a pump disposed in the sampling measurement piping to carry out the operation of transferring the carrier liquid in the flow channel and the suction operation of the component to be measured filtered by the filter. When the on-off valve is closed, the pump performs a suction operation of the component to be measured, and when the on-off valve is opened, the component to be measured accumulated in the flow channel is provided to the sampling measurement piping by means of a carrier liquid. A test object, such as a specimen, characterized by a configuration consisting of a pump driving means for driving a pump so as to transfer it to a sensor measurement site, and a sensor means disposed at the sensor measurement site and measuring the transferred measurement target component. This paper proposes a liquid measuring device.

又、本発明の具体的な構成として、フィルタを介してフ
ロー流路内に取入れられた計測対象成分の集積量を、フ
ロー流路の流量より検出するフローセンサをキャリヤ液
供給配管又はサンプリング計測配管に配設する構成や、
フィルタと、センサ計測部位に配置されたセンサ手段と
の間においてサンプリング計測配管に多方弁を設けると
ともに該多方弁に較正液供給源を接続し、該多方弁の切
換によって較正液をセンサ計測部位に選択的に移送する
構成、更には、サンプリング計測配管に、ポンプを並列
又は直列に一対、配設する構成、又更には、フィルタと
開閉弁との間においてキャリヤ液供給配管に、ブラッシ
ング液を供給する配管を接続する構成や、サンプリング
計測配管の下流側端部に廃液回収部を設け、フロー流路
を閉鎖系とする構成の検体等の被検液の計測装置も提案
される。
Further, as a specific configuration of the present invention, a flow sensor that detects the accumulated amount of the component to be measured introduced into the flow channel through the filter from the flow rate of the flow channel is installed in the carrier liquid supply piping or the sampling measurement piping. The configuration to be installed in
A multi-way valve is provided in the sampling measurement piping between the filter and the sensor means arranged at the sensor measurement site, and a calibration liquid supply source is connected to the multi-way valve, and the calibration liquid is supplied to the sensor measurement site by switching the multi-way valve. A configuration in which the brushing liquid is selectively transferred, a configuration in which a pair of pumps are arranged in parallel or series in the sampling measurement piping, or a configuration in which the brushing liquid is supplied to the carrier liquid supply piping between the filter and the on-off valve. There have also been proposed apparatuses for measuring liquids to be tested, such as specimens, in which a waste liquid collection section is provided at the downstream end of the sampling measurement piping, and the flow channel is a closed system.

[作用] 上記本発明の計測方法およびそのための計測装置におい
ては、フィルタ部をなすフィルタを介して計測対象成分
の吸引動作を行なう際にはフロー流路がフィルタ部の下
流側で一旦、開閉弁により閉成されてキャリヤ液の流れ
が止められ、ポンプの吸引動作によるろ過作用のみが行
なわれて4、フロー流路のフィルタ部の下流側、すなわ
ちセンサの計測部位側に、計測対象成分が集積される。
[Function] In the measurement method of the present invention and the measuring device therefor, when the component to be measured is suctioned through the filter forming the filter section, the flow channel is once closed to the on-off valve on the downstream side of the filter section. is closed and the flow of the carrier liquid is stopped, and only the filtration action is performed by the suction operation of the pump 4, and the component to be measured is accumulated on the downstream side of the filter section of the flow channel, that is, on the measurement site side of the sensor. be done.

そして、一定の量、集積された状態で、開閉弁が開成さ
れることにより、集積された計測対象成分が濃い状態で
センサの計測部位に、キャリヤ液により押出されるよう
にして移送され、そこで計測がなされる。
Then, by opening the on-off valve when a certain amount has been accumulated, the accumulated measurement target component is transferred in a concentrated state to the measurement site of the sensor by being pushed out by the carrier liquid, and there. Measurements are taken.

従って、計測開始時に、該計測部位に、ろ過された計測
対象成分が到達するまでの、いわゆるデッドスペースが
殆んど解消されるために計測の時間遅れがなくなり、迅
速な計測がなされるとともに、センサに触れる計測対象
成分はキャリヤ液を殆んど混合しない程の濃密なものと
なるため、より確実な計測をなし得、しかも、計測に要
する成分のろ過量のロスも大幅に減少し得、少量の被検
液の採取で効率的な計測ができる。
Therefore, at the start of measurement, the so-called dead space until the filtered measurement target component reaches the measurement site is almost eliminated, so there is no time delay in measurement, and rapid measurement is possible. Since the components to be measured that come into contact with the sensor are so concentrated that they hardly mix with the carrier liquid, more reliable measurements can be made, and the loss of the amount of component filtration required for measurement can be significantly reduced. Efficient measurement can be performed by collecting a small amount of test liquid.

又、より望ましい計測にあっては、フロー流路中に配し
たフロルセンサが、ろ過される計測対象成分の所定量を
フロー流路の流量より検出するように構成され、これに
よって、ろ過集積された計測対象成分がセンサの計測部
位に丁度対応する状態への制御やセンサとの反応時間の
制御を自由に行なうことができる。
In addition, for more desirable measurement, a fluor sensor placed in the flow channel is configured to detect a predetermined amount of the target component to be filtered from the flow rate of the flow channel. It is possible to freely control the state in which the component to be measured corresponds exactly to the measurement site of the sensor and control the reaction time with the sensor.

更に、センサの計測部位とフィルタとの間においてフロ
ー流路に多方弁を設けて、この切換動作により、較正液
による較正をサンプリングと交互に行ない、正確な計測
データを容易に得ることができる。
Further, a multi-way valve is provided in the flow path between the measurement site of the sensor and the filter, and by this switching operation, calibration using the calibration liquid is performed alternately with sampling, making it possible to easily obtain accurate measurement data.

更に、フロー流路中におけるキャリヤ液の移送、計測対
象成分のろ過吸引、更にはサンプリングした成分をキャ
リヤ液とともにセンサの計測位置へ移送する等の各動作
を行なうポンプとしては、微量の液移送をなす定量ポン
プが望ましい。
Furthermore, as a pump that performs various operations such as transferring the carrier liquid in the flow channel, filtering and suctioning the components to be measured, and further transferring the sampled components together with the carrier liquid to the measurement position of the sensor, it is necessary to transfer a small amount of liquid. An eggplant metering pump is preferred.

特に、該ポンプとして最近文献等で発表され研究開発が
進められているマイクロ・ポンプと称される圧電素子ア
クチエータを駆動源としてダイヤフラムを作動される一
体構造の小型高性能のポンプが制御性がよく最適である
In particular, a small, high-performance pump with an integrated structure that uses a piezoelectric element actuator as a drive source and operates a diaphragm, which has been recently published in the literature and is currently under research and development, has good controllability. Optimal.

該マイクロ・ポンプにより、開閉弁の開閉動作に従かう
上述したフロー流路中の液の流れ制御を迅速かつ正確に
遂行することができる。
By using the micro pump, it is possible to quickly and accurately control the flow of liquid in the flow channel described above in accordance with the opening and closing operations of the on-off valve.

又、更に、ポンプはフロー流路中に直列又は並列に一対
、配置することにより、ポンプの脈動の影響を相殺し、
センサの計測精度を一層向上させることができるととも
に、フロー流路を閉鎖系とすることにより感染等の危険
を防止できる。
Furthermore, by arranging a pair of pumps in series or in parallel in the flow channel, the influence of pump pulsation can be offset.
The measurement accuracy of the sensor can be further improved, and by making the flow channel a closed system, risks such as infection can be prevented.

[実施例] 以下、図面を参照して、本発明の計測方法およびそのた
めの計測装置を具体的に説明する。
[Example] Hereinafter, a measuring method of the present invention and a measuring device therefor will be specifically described with reference to the drawings.

第1図には本発明の計測装置の一実施例をブロック構成
で略示しである。
FIG. 1 schematically shows a block configuration of an embodiment of the measuring device of the present invention.

図において、1は例えば患音等の検体の血管を示し、そ
の血管1内を矢印で示すように流れる被検液としての血
液を採取し検査する状態を示す。
In the figure, reference numeral 1 indicates a blood vessel of a specimen such as a patient's throat, and a state in which blood as a test liquid flowing within the blood vessel 1 as indicated by an arrow is sampled and tested is shown.

2は血管1に刺し込まれたフィルタ部を構成する留置針
で1、U字形に折曲された接液部に透析膜等で形成され
た多孔質のフィルタ3が設けられている。このフィルタ
3を介して血液中の測定対象成分として、例えば、血漿
成分がろ過され採取される。
Reference numeral 2 denotes an indwelling needle constituting a filter portion inserted into the blood vessel 1. The indwelling needle 1 is bent into a U shape and has a porous filter 3 formed of a dialysis membrane or the like in its wetted portion. For example, plasma components are filtered and collected as components to be measured in blood through this filter 3 .

4は留置針2に接続されフィルタ3に連通したフロー流
路をなすチューブ構成の配管で、4aはフィルタ3の上
流側にあるキャリヤ液供給配管、4bはフィルタ3の下
流側にあるサンプリング計測配管である。
Reference numeral 4 designates a tube-configured pipe connected to the indwelling needle 2 and forming a flow channel communicating with the filter 3, 4a is a carrier liquid supply pipe on the upstream side of the filter 3, and 4b is a sampling measurement pipe on the downstream side of the filter 3. It is.

キャリヤ液供給配管4aには、その上流端に、キャリヤ
液供給源5と、その下流側に、フロー流路の開閉制御を
なす開閉弁6が設けられ、他方、サンプリング計測配管
4bには、上流側より順次、多方弁をなす三方弁7、セ
ンサ8、ポンプ9、フローセンサlOが設けられるとと
もに下流端に廃液回収部11が設けられ、感染等の危険
のない閉鎖系のフロー流路が構成されている。
The carrier liquid supply pipe 4a is provided with a carrier liquid supply source 5 at its upstream end, and an on-off valve 6 for controlling the opening and closing of the flow channel on its downstream side. A three-way valve 7 forming a multi-way valve, a sensor 8, a pump 9, and a flow sensor 1O are provided in this order from the side, and a waste liquid collection section 11 is provided at the downstream end, forming a closed system flow channel free from risks such as infection. has been done.

上記キャリヤ液供給源5及び廃液回収部11は、例えば
、交換可能なカートリッジ式のタンクで構成される。
The carrier liquid supply source 5 and the waste liquid recovery section 11 are constructed of, for example, replaceable cartridge-type tanks.

センサ8はフロー流路中の計測部位におかれ、計測すべ
き対象成分に応じて、化学センサ、バイオセンサ、ガス
センサ等を単一又は並列して複数配置することができ、
これら各センサの検出結果は記録部12により目視可能
に表示される。これらのセンサによりpH値、PCO,
、PO□等のガス成分、ナトリウム、カリウム等の電解
質イオン、あるいはグルコース、尿素等の検出を単独又
は同時的に行なうことができる。
The sensor 8 is placed at a measurement site in the flow channel, and depending on the target component to be measured, a single chemical sensor, a biosensor, a gas sensor, etc. can be arranged, or a plurality of them can be arranged in parallel.
The detection results of each of these sensors are visually displayed by the recording unit 12. These sensors measure pH, PCO,
, PO□, and other gas components, electrolyte ions such as sodium and potassium, or glucose, urea, and the like can be detected individually or simultaneously.

ポンプ9としては微量の液移送を行ない得る制御性の良
い定量ポンプが望ましく、特に、開発研究が進んでいる
小型高性能のマイクロ・ポンプが好適である。この場合
、該ポンプに接続されたポンプ駆動部13は圧電素子ア
クチエータで構成される。
As the pump 9, a metering pump with good controllability that can transfer a small amount of liquid is desirable, and a small, high-performance micro pump, which is currently being developed and researched, is particularly suitable. In this case, the pump drive unit 13 connected to the pump is constituted by a piezoelectric element actuator.

多方弁として、本実施例で用いられる三方弁7には較正
液供給源14が接続され、三方弁7の切換操作に応じ、
較正液をフロー流路に選択的に供給し得るようになって
いる。
A calibration fluid supply source 14 is connected to the three-way valve 7 used in this embodiment as a multi-way valve, and in response to the switching operation of the three-way valve 7,
Calibration fluid can be selectively supplied to the flow channel.

15はブラッシング液供給源で、血液を採取するような
場合に、計測の前段階、すなわち計測準備工程で、留置
針2へ直接ブラッシング液を供給して、フィルタ3の周
辺に付着した血餅を洗い流し目詰まりを防止する役目を
果す。従って、このような問題の生じない被検液の採取
の場合は不要である。
Reference numeral 15 denotes a brushing liquid supply source, which supplies brushing liquid directly to the indwelling needle 2 to remove blood clots attached around the filter 3 in the pre-measurement stage, that is, in the measurement preparation process when blood is collected. It washes away and plays a role in preventing clogging. Therefore, it is not necessary when collecting a test liquid that does not cause such problems.

上記構成の計測装置において計測を行なう場合、まず、
計測準備工程において、開閉弁6を開成し、ポンプ9を
作動させ、キャリヤ液供給源5よりキャリヤ液をフロー
流路全体に満たす。次いで、開閉弁6を閉成し、フィル
タ3の上流側のフロー流路を止めて、サンプリング工程
に移行し、フィルタ3を介して被検液より測定対象成分
をろ過し得るように所定のろ過速度にポンプ吸弓動作を
合わせ、ろ過吸引動作を継続する。
When performing measurement using the measuring device with the above configuration, first,
In the measurement preparation step, the on-off valve 6 is opened, the pump 9 is activated, and the entire flow channel is filled with carrier liquid from the carrier liquid supply source 5. Next, the on-off valve 6 is closed to stop the flow path on the upstream side of the filter 3, and the process moves to the sampling step, where a predetermined filtration process is performed so that the component to be measured can be filtered from the test liquid through the filter 3. Adjust the pump suction bow operation to the speed and continue the filtration suction operation.

これによって、フィルタ3とセンサ8との間のサンプリ
ング計測配管4b内には、ろ過された測定対象成分が集
積する。そして、この集積量がフロー流路の流量よりフ
ローセンサ10が検出し、この検出工程において一定の
集積量に対応した流量の検出時に該フローセンサ10よ
りポンプ駆動源13ならびに開閉弁6に検出信号が伝達
される。この時、集積された成分はセンサ8の計測部位
に達する状態に調整されるのが望ましい。
As a result, the filtered measurement target component accumulates in the sampling measurement pipe 4b between the filter 3 and the sensor 8. Then, the flow sensor 10 detects this accumulated amount from the flow rate of the flow channel, and when a flow rate corresponding to a certain accumulated amount is detected in this detection step, the flow sensor 10 sends a detection signal to the pump drive source 13 and the on-off valve 6. is transmitted. At this time, it is desirable that the accumulated components be adjusted so that they reach the measurement site of the sensor 8.

該検出信号をうけて開閉弁6は再び開成して、フロー流
路中にキャリヤ液を流し、これによって、集積したろ過
成分は、キャリヤ液に押し出されるようにしてフロー流
路中をセンサ8の計測部位に移送する。すなわち成分移
送工程を遂行する。
In response to the detection signal, the on-off valve 6 is opened again to allow the carrier liquid to flow into the flow path, whereby the accumulated filtration components are pushed out by the carrier liquid and flow through the flow path to the sensor 8. Transfer to measurement site. That is, a component transfer process is performed.

次いで、この計測部位において計測対象成分がセンサ8
により計測され、その結果が記録部12により表示され
る。すなわち計測工程が実行される。
Next, at this measurement site, the component to be measured is detected by the sensor 8.
The recording unit 12 displays the results. That is, the measurement process is executed.

較正液によって計測値の較正を行なう場合には、前述の
成分移送工程の前ないしは後に、三方弁7を切換えて、
フィルタ3とセンサ8との間の流路を閉成し、較正液供
給源14からセンサ8への流路を開成し、センサの計測
部位へ較正液を供給する較正工程を、成分移送工程と交
換して行なう。これにより、より正確な計測結果を得る
ことができる。
When calibrating measured values using a calibration liquid, the three-way valve 7 is switched before or after the above-mentioned component transfer step.
A calibration process in which the flow path between the filter 3 and the sensor 8 is closed, a flow path from the calibration liquid supply source 14 to the sensor 8 is opened, and the calibration liquid is supplied to the measurement site of the sensor is referred to as a component transfer process. Do it by exchanging it. This allows more accurate measurement results to be obtained.

計測を完了した後の廃液は、廃液回収部11ヘドレンと
して流し、ここで回収する。この廃液回収部11、較正
液供給源14及びブラッシング液供給源15も交換可能
なカートリッジ式のタンクで構成し得る。
The waste liquid after the measurement is completed flows into the waste liquid recovery section 11 as a hedren, and is recovered there. The waste liquid collection section 11, the calibration liquid supply source 14, and the brushing liquid supply source 15 may also be constructed of replaceable cartridge-type tanks.

上述した構成において、フローセンサlOはキャリヤ液
供給配管4a側に設けることもできるし、又、該フロー
センサ10による検出工程を備えない構成でも本発明の
基本的な計測方法を実施し得る。同様に、三方弁7を介
して較正液供給源14より較正液を選択供給する較正工
程も計測対象成分や計測条件によっては該工程なしでも
十分な計測結果を得ることができるので、本発明の必須
の基本構成には含まれない。又、ブラッシング液供給源
15の設置も被検液に応じ、必要時使用されるもので上
記同様、本発明の必須の基本構成に含まれない。
In the above-described configuration, the flow sensor IO can be provided on the carrier liquid supply pipe 4a side, and the basic measurement method of the present invention can be implemented even in a configuration that does not include the detection step using the flow sensor 10. Similarly, depending on the components to be measured and the measurement conditions, sufficient measurement results can be obtained even without the calibration step of selectively supplying a calibration liquid from the calibration liquid supply source 14 via the three-way valve 7, so that the present invention Not included in the required basic configuration. Also, the installation of the brushing liquid supply source 15 is used when necessary depending on the liquid to be tested, and is not included in the essential basic configuration of the present invention, as described above.

なお、キャリヤ液としては測定対象成分との反応性の低
い、例えば蒸留水や極力薄めた生理食塩水等が用いられ
る。
Note that, as the carrier liquid, a liquid having low reactivity with the component to be measured, such as distilled water or extremely diluted physiological saline, is used.

第2図に示す部分的ブロック構成図は、第1図に示す実
施例においてポンプ9の構成部をP+。
The partial block diagram shown in FIG. 2 shows the components of the pump 9 in the embodiment shown in FIG.

P2で示すように、センサ8とフローセンサlOのフロ
ー流路のサンプリング計測配管4bに対し、並列に一対
、いわゆるデュアルタイプに接続して配設した変形構成
を示すものである。
As shown by P2, a modified configuration is shown in which the sensor 8 and the flow sensor IO are connected in parallel to the sampling measurement pipe 4b of the flow path, in a so-called dual type configuration.

このようなデュアルタイプとすることにより、ポンプ作
動に付随して個々のポンプで発生する脈動を相互に相殺
することができるため、その影響をなくして、センサ8
による計測精度を一層向上させることができる。
By using such a dual type, the pulsations that occur in the individual pumps during pump operation can be canceled out, so the influence of this can be eliminated and the sensor 8
The measurement accuracy can be further improved.

なお、図示の並列形接続に代えて両ポンプPI、P2を
直列に接続してもよい。
Note that both pumps PI and P2 may be connected in series instead of the illustrated parallel connection.

以上、説明したように本発明の計測方法及びそのための
計測装置は、医療分野において患者等の検体から血液や
体液を採取して所要の検査や連続モニタリングを行なう
のに好適であるが、該分野以外に、例えば、酵素反応の
モニタリングや制御、工業用の処理液等の検査、分析、
連続モニタリングにも適用可能であり、実施例に限定さ
れるものではない。
As explained above, the measuring method and measuring device of the present invention are suitable for collecting blood and body fluids from specimens of patients etc. in the medical field and performing necessary tests and continuous monitoring. In addition, for example, monitoring and control of enzyme reactions, inspection and analysis of industrial processing liquids, etc.
It is also applicable to continuous monitoring and is not limited to the examples.

[発明の効果] 以上のように、本発明によれば、サンプリング工程にお
いてフロー流路を開閉弁の閉成により、−旦止めて、フ
ロー流路内にろ過吸引した計測対象成分を集積させ、セ
ンサによる計測開始時に、再び開閉弁を開成して集積し
た計測対象成分をキャリヤ液によって押出すようにセン
サの計測部位に移送するようにしたので、センサによる
計測の時間遅れを実質的に解消するとともにセンサに触
れる計測対象成分の濃度を充分に確保することができ、
迅速かつ正確な計測ができ、しかも、ろ過量のロスも少
なく、効率的な計測もなし得、血液等の計測に限らず、
採取できる量がわずかな脳間液などの計測にも好適な、
検体等の被検液の計測方法及びそのための計測装置を提
供できる。
[Effects of the Invention] As described above, according to the present invention, in the sampling step, the flow channel is temporarily stopped by closing the on-off valve, and the filtered and suctioned measurement target component is accumulated in the flow channel, At the start of measurement by the sensor, the on-off valve is opened again and the accumulated components to be measured are pushed out by the carrier liquid and transferred to the measurement site of the sensor, thereby virtually eliminating the time delay in measurement by the sensor. At the same time, it is possible to ensure a sufficient concentration of the component to be measured that comes into contact with the sensor.
It can perform quick and accurate measurements, has little loss of filtration amount, and can perform efficient measurements, and is not limited to measuring blood, etc.
Suitable for measuring intercerebral fluid, etc., where only a small amount can be collected.
A method for measuring a test liquid such as a specimen and a measuring device for the same can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の計測方法を実施するための計測装置の
実施例を略示するブロック構成図、第2図は第1図のう
ちのポンプ構成部の変形構成図である。 3・・・フィルタ、   4・・・フロー流路(配管)
6・・・開閉弁、  7・・・多方弁(三方弁)8・・
・センサ、  9・・・ポンプ 10・・・フローセンサ
FIG. 1 is a block diagram schematically showing an embodiment of a measuring device for implementing the measuring method of the present invention, and FIG. 2 is a modified configuration diagram of the pump component in FIG. 1. 3... Filter, 4... Flow channel (piping)
6... Open/close valve, 7... Multi-way valve (three-way valve) 8...
・Sensor, 9... Pump 10... Flow sensor

Claims (10)

【特許請求の範囲】[Claims] (1)フロー流路内に、検体等の被検液中に臨ませたフ
ィルタ部を介して計測対象成分をろ過吸引するとともに
フロー流路中をキャリヤ液とともに移送して計測部位に
配したセンサにより計測するものであって、 前記フロー流路を閉成状態として該流路をキャリヤ液で
満たす計測準備工程と、 該キャリヤ液で満たされた前記フロー流路を、前記フィ
ルタ部の上流側で閉成するとともに、前記フィルタ部を
介して被検液中より前記計測対象成分を前記フロー流路
内にろ過して取入れるように前記フィルタ部の下流側で
吸引動作を行なうサンプリング工程と、 前記吸引動作を停止するとともに前記フロー流路を再び
開成して集積された前記計測対象成分をキャリヤ液によ
って前記センサの計測部位に移送する成分移送工程と、 該計測部位において前記センサにより前記計測対象成分
の計測を行なう工程と、 よりなることを特徴とする検体等の被検液の計測方法。
(1) A sensor placed at the measurement site that filters and suctions the component to be measured through a filter part facing into the test liquid such as a specimen in the flow channel, and transports it along with the carrier liquid through the flow channel. A measurement preparation step of closing the flow channel and filling the flow channel with a carrier liquid, and filling the flow channel filled with the carrier liquid on the upstream side of the filter section. and a sampling step of performing a suction operation on the downstream side of the filter section so as to filter and introduce the component to be measured from the test liquid into the flow channel through the filter section; a component transfer step of stopping the suction operation and reopening the flow channel to transfer the accumulated component to be measured to a measurement site of the sensor using a carrier liquid; A method for measuring a test liquid such as a specimen, the method comprising: a step of measuring;
(2)前記サンプリング工程においてフロー流路内に取
入れられた計測対象成分の集積量を検出するとともに該
集積量が所定量に達した際に前記成分移送工程を開始さ
せる検出工程を更に備えてなる請求項1に記載の検体等
の被検液の計測方法。
(2) further comprising a detection step of detecting the accumulated amount of the component to be measured taken into the flow channel in the sampling step and starting the component transfer step when the accumulated amount reaches a predetermined amount. A method for measuring a test liquid such as a specimen according to claim 1.
(3)フロー流路を開成するとともに前記成分移送工程
の前および/又は後に該成分移送工程と切換えて、較正
液を該センサの計測部位に移送する較正工程を更に備え
てなる請求項1又は2に記載の検体等の被検液の計測方
法。
(3) Further comprising a calibration step of opening a flow channel and transferring a calibration liquid to the measurement site of the sensor in switching to the component transfer step before and/or after the component transfer step. 2. A method for measuring a test liquid such as a specimen described in 2.
(4)前記計測準備工程において、該フロー流路内にブ
ラッシング液を供給してなる請求項1ないし3のいずれ
か1に記載の検体等の被検液の計測方法。
(4) The method for measuring a test liquid such as a specimen according to any one of claims 1 to 3, wherein in the measurement preparation step, a brushing liquid is supplied into the flow channel.
(5)請求項1記載の計測方法を実施するための計測装
置であって、 フィルタ部を構成するフィルタと、 該フィルタを介在してフロー流路を形成するように該フ
ィルタの上流側に接続されたキャリヤ液供給配管と下流
側に接続されたサンプリング計測配管と、 前記キャリヤ供給配管を通してキャリヤ液をフロー流路
に供給するキャリヤ液供給源と、該キャリヤ液供給源と
前記フィルタとの間において前記キャリヤ液供給配管に
配置されフロー流路の開閉制御をなす開閉弁と、 前記サンプリング計測配管に配置され前記フロー流路内
の前記キャリヤ液の移送動作ならびに前記フィルタによ
ってろ過した計測対象成分の吸引動作をなすポンプと、 前記開閉弁の閉成時に前記ポンプによって前記計測対象
成分の吸引動作を遂行させるとともに、フロー流路内に
集積された前記計測対象成分を該開閉弁の開成に応じて
前記キャリヤ液によって、前記サンプリング計測配管に
設けられたセンサ計測部位に移送させるように前記ポン
プを駆動させるポンプ駆動手段と、 前記センサ計測部位に配置され移送された計測対象成分
の計測を行なうセンサ手段と、 よりなることを特徴とする検体等の被検液の計測装置。
(5) A measuring device for carrying out the measuring method according to claim 1, comprising: a filter constituting a filter section; and connected to the upstream side of the filter so as to form a flow channel through the filter. a carrier liquid supply pipe connected to the downstream side of the carrier liquid supply pipe, a carrier liquid supply source that supplies the carrier liquid to the flow channel through the carrier supply pipe, and between the carrier liquid supply source and the filter. an on-off valve disposed in the carrier liquid supply piping to control the opening and closing of the flow passage; and an on-off valve disposed in the sampling measurement piping for transporting the carrier liquid in the flow passage and suctioning the component to be measured filtered by the filter. a pump that operates, and when the on-off valve is closed, the pump performs a suction operation of the measurement target component, and the measurement target component accumulated in the flow channel is sucked into the measurement target component in response to the opening and closing of the on-off valve. a pump driving means for driving the pump so as to transfer it to a sensor measurement site provided in the sampling measurement piping by means of a carrier liquid; and a sensor means arranged at the sensor measurement site for measuring the transferred measurement target component. A measuring device for a test liquid such as a specimen, characterized by comprising the following.
(6)フィルタを介してフロー流路内に取入れられた計
測対象成分の集積量を前記フロー流路の流量より検出す
るフローセンサを、キャリヤ液供給配管又はサンプリン
グ計測配管に配設してなる請求項5に記載の検体等の被
検液の計測装置。
(6) A claim in which a flow sensor that detects the accumulated amount of the component to be measured taken into the flow channel through a filter from the flow rate of the flow channel is disposed in the carrier liquid supply pipe or the sampling measurement pipe. A measuring device for a test liquid such as a specimen according to item 5.
(7)フィルタと、センサ計測部位に配置されたセンサ
手段との間においてサンプリング計測配管に多方弁を設
けるとともに該多方弁に較正液供給源を接続し、該多方
弁の切換によって較正液をセンサ計測部位に選択的に移
送してなる請求項5又は6に記載の検体等の被検液の計
測装置。
(7) A multi-way valve is provided in the sampling measurement piping between the filter and the sensor means arranged at the sensor measurement site, and a calibration liquid supply source is connected to the multi-way valve, and the calibration liquid is supplied to the sensor by switching the multi-way valve. 7. The device for measuring a test liquid such as a specimen according to claim 5 or 6, which is selectively transferred to a measurement site.
(8)サンプリング計測配管に、前記ポンプを並列又は
直列に一対、配設してなる請求項5ないし7のいずれか
1に記載の検体等の被検液の計測装置。
(8) The apparatus for measuring a test liquid such as a specimen according to any one of claims 5 to 7, wherein a pair of the pumps are arranged in parallel or in series in a sampling measurement pipe.
(9)フィルタと開閉弁との間においてキャリヤ液供給
配管に、ブラッシング液を供給する配管を接続してなる
請求項5ないし8のいずれか1に記載の検体等の被検液
の計測装置。
(9) The apparatus for measuring a test liquid such as a specimen according to any one of claims 5 to 8, wherein a pipe for supplying brushing liquid is connected to the carrier liquid supply pipe between the filter and the on-off valve.
(10)前記サンプリング計測配管の下流側端部に廃液
回収部を設け、フロー流路を閉鎖系としてなる請求項5
ないし9のいずれか1に記載の検体等の被検液の計測装
置。
(10) A waste liquid recovery section is provided at the downstream end of the sampling measurement piping, and the flow channel is configured as a closed system.
10. A measuring device for a test liquid such as a specimen according to any one of items 1 to 9.
JP1148111A 1989-06-09 1989-06-09 Method and instrument for measuring liquid of object or the like Pending JPH0312134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148111A JPH0312134A (en) 1989-06-09 1989-06-09 Method and instrument for measuring liquid of object or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148111A JPH0312134A (en) 1989-06-09 1989-06-09 Method and instrument for measuring liquid of object or the like

Publications (1)

Publication Number Publication Date
JPH0312134A true JPH0312134A (en) 1991-01-21

Family

ID=15445498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148111A Pending JPH0312134A (en) 1989-06-09 1989-06-09 Method and instrument for measuring liquid of object or the like

Country Status (1)

Country Link
JP (1) JPH0312134A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023033A1 (en) 2003-09-05 2005-03-17 Norikazu Sato Necktie, shirt, button, and napkin
JP2008530562A (en) * 2005-02-14 2008-08-07 オプテイスカン・バイオメデイカル・コーポレーシヨン Method and apparatus for detecting multiple analytes
WO2007129463A3 (en) * 2006-04-26 2008-12-18 Nikkiso Co Ltd Biological component measuring equipment and method of calibration of biological component measuring equipment
US9863837B2 (en) 2013-12-18 2018-01-09 OptiScan Biomedical Coporation Systems and methods for detecting leaks
US9883830B2 (en) 2005-10-06 2018-02-06 Optiscan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
US9883829B2 (en) 2005-02-14 2018-02-06 Optiscan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
US9907504B2 (en) 2001-11-08 2018-03-06 Optiscan Biomedical Corporation Analyte monitoring systems and methods
US10201303B2 (en) 2009-07-20 2019-02-12 Optiscan Biomedical Corporation Fluid analysis system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907504B2 (en) 2001-11-08 2018-03-06 Optiscan Biomedical Corporation Analyte monitoring systems and methods
WO2005023033A1 (en) 2003-09-05 2005-03-17 Norikazu Sato Necktie, shirt, button, and napkin
US9883829B2 (en) 2005-02-14 2018-02-06 Optiscan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
JP2008530562A (en) * 2005-02-14 2008-08-07 オプテイスカン・バイオメデイカル・コーポレーシヨン Method and apparatus for detecting multiple analytes
US10568555B2 (en) 2005-02-14 2020-02-25 Optiscan Biomedical Corporation Fluid handling cassette
US10568556B2 (en) 2005-02-14 2020-02-25 Optiscan Biomedical Corporation Bodily fluid composition analyzer with disposable cassette
US10383561B2 (en) 2005-10-06 2019-08-20 Optiscan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
US9883830B2 (en) 2005-10-06 2018-02-06 Optiscan Biomedical Corporation Fluid handling cassette system for body fluid analyzer
US8663579B2 (en) 2006-04-26 2014-03-04 Nikkiso Co., Ltd. Biological component-measuring device and method for calibrating the same
JP5025639B2 (en) * 2006-04-26 2012-09-12 日機装株式会社 Biological component measuring apparatus and calibration method for biological component measuring apparatus
JP2012150130A (en) * 2006-04-26 2012-08-09 Nikkiso Co Ltd Biological component measuring apparatus and calibration method of biological component measuring apparatus
US8236257B2 (en) 2006-04-26 2012-08-07 Nikkiso Co., Ltd. Biological component-measuring device and method for calibrating the same
WO2007129463A3 (en) * 2006-04-26 2008-12-18 Nikkiso Co Ltd Biological component measuring equipment and method of calibration of biological component measuring equipment
US10201303B2 (en) 2009-07-20 2019-02-12 Optiscan Biomedical Corporation Fluid analysis system
US10660557B2 (en) 2009-07-20 2020-05-26 Optiscan Biomedical Corporation Fluid analysis cuvette with coupled transparent windows
US9863837B2 (en) 2013-12-18 2018-01-09 OptiScan Biomedical Coporation Systems and methods for detecting leaks

Similar Documents

Publication Publication Date Title
JP4212666B2 (en) Body fluid analyzer
JP2684871B2 (en) Body fluid component measuring method and measuring device
US20030121313A1 (en) Micromachined fluid analysis device and method
US9851347B2 (en) Flow conduit system for a biochemical sensor
JPS6226069A (en) Apparatus for injecting and taking out blood and other liquid specimen
JPS5916667B2 (en) automatic blood analyzer
US4955992A (en) Liquid degassing system
JPH0312134A (en) Method and instrument for measuring liquid of object or the like
US4266021A (en) Method and apparatus for the measurement of the concentration of a compound in a liquid medium
US20080241966A1 (en) Apparatuses and methods for detecting an analyte
JP2013514806A (en) Apparatus and method for purification and concentration of biological samples
CN113588739A (en) Continuous arterial blood detection system
JP2784949B2 (en) Measurement device for test liquids such as samples
EP1618206A2 (en) Apparatus and method for detecting live cells with an integrated filter and growth detection device
JPH0222911B2 (en)
JP3422092B2 (en) Liquid sample continuous measuring device and measuring method
JPH10339716A (en) Liquid component measuring instrument
JP4153489B2 (en) Apparatus and method for liquid sample extraction
CN116087542A (en) Sample analyzer and sample detection method
JPH08101212A (en) Continuous measuring apparatus of liquid sample
CN215404286U (en) Online real-time detection system for biological samples
JP3697766B2 (en) Concentration measuring device
JPH01101968A (en) Blood test apparatus
JPS612867A (en) Artificial kidney diagnosis monitor apparatus
EP4273260A1 (en) Sampling method