JPH03120766A - Formation of low magnetic field space using superconductor - Google Patents

Formation of low magnetic field space using superconductor

Info

Publication number
JPH03120766A
JPH03120766A JP1258076A JP25807689A JPH03120766A JP H03120766 A JPH03120766 A JP H03120766A JP 1258076 A JP1258076 A JP 1258076A JP 25807689 A JP25807689 A JP 25807689A JP H03120766 A JPH03120766 A JP H03120766A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic field
space
external
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1258076A
Other languages
Japanese (ja)
Inventor
Hironori Matsuba
松葉 博則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1258076A priority Critical patent/JPH03120766A/en
Publication of JPH03120766A publication Critical patent/JPH03120766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To reduce a trapped magnetic field and form a low magnetic field space by applying a magnetic field exceeding the external magnetic field such as an earth magnetic field to the outer periphery of an external super conductor and by enabling a magnetic flux which is present at the outside space and the inside space of an internal super conductor to flow to the outside of an external superconductor 3 as a flux flow. CONSTITUTION:By cooling an external superconductor 3 to a temperature which is equal to or less than a superconduction transfer temperature for achieving superconduction and retaining an internal superconductor 1 to a temperature which is equal to or higher than the superconduction transfer temperature, the external super conductor 3 is cooled and a magnetic flux is trapped within an outside space 2 or an inside space 4 at the inside of both superconductors 1 and 3 by an external magnetic field which is present when the external superconductor 3 is cooled and reaches superconduction state. When current is allowed to flow at a solenoid coil 5 at the outside of the external superconductor 3, magnetic field is generated at the outside of the coil 5. At time, the magnetic flux within the outside space 2 moves toward the outside as a flux flow due to the difference in magnetic flux density between the inside of the outside space 2 at the inside of the external superconductor 3 and the outside of the external superconductor 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導体でシールドされた低磁場空間の形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a low magnetic field space shielded with a superconductor.

(従来の技術) 低磁場空間は各種分野で必要とされており、例えば科学
技術の分野でのNMR(核磁気共鳴)の測定や、磁場と
物質との相互作用を測定する場合等には欠かすことので
きないものである。
(Conventional technology) Low magnetic field space is required in various fields, such as NMR (nuclear magnetic resonance) measurements in the field of science and technology, and indispensable for measuring the interaction between magnetic fields and materials. It is impossible.

低磁場空間を得るためには地球磁場等の周囲に存在する
磁場(外部磁場)の影響を防上する必要がある。そこで
従来は所定空間の周囲に超電導体を配置して同空間を磁
気シールドしている。
In order to obtain a low magnetic field space, it is necessary to prevent the influence of magnetic fields (external magnetic fields) existing around the earth's magnetic field. Conventionally, superconductors are placed around a predetermined space to magnetically shield the space.

(発明が解決しようとする課題) 超電導体で囲まれた空間を磁気シールドするには、冷却
により超電導体な常電導から超電導に転移させるが、こ
の場合、超電導体の内側空間内に47在していた地球磁
場などの外部磁場が、同空間内にトラップされるので、
低磁場を実現することは困難であった。
(Problem to be Solved by the Invention) In order to magnetically shield a space surrounded by a superconductor, the normal conductivity of the superconductor is transferred to superconductivity by cooling, but in this case, 47 External magnetic fields, such as the earth's magnetic field, that were previously trapped in the earth's magnetic field are trapped within the same space, so
Achieving low magnetic fields has been difficult.

(発明の目的) 本発明の目的は上記のトラップされた磁場を減少させて
、低磁場空間を形成する方法を実現することにある。
(Objective of the Invention) An object of the present invention is to realize a method of reducing the above-mentioned trapped magnetic field and forming a low magnetic field space.

(問題点を解決するための手段) 本発明の超電導体を用いた低磁場空間の形成方法は第1
図、第2図のように、内部超電導体lの外周に外側空間
2を隔てて設けられた外部超電導体3の外周に、地球磁
場等の外部磁場以上の磁場を印加して、前記外側空間2
及び前記内部超電導体lの内側空間4に存在する磁束を
外部にフラックスフローとして流出させて、前記外側空
間2及び内側空間4にトラップされた磁界を減少させた
後、内部超電導体1を冷却して同超電導体1を超電導に
転移させるものである。
(Means for solving the problems) The method for forming a low magnetic field space using a superconductor of the present invention is described in the first method.
As shown in FIG. 2, a magnetic field greater than the external magnetic field such as the earth's magnetic field is applied to the outer periphery of the outer superconductor 3 provided on the outer periphery of the inner superconductor l with an outer space 2 in between. 2
The magnetic flux existing in the inner space 4 of the inner superconductor 1 is discharged to the outside as a flux flow to reduce the magnetic field trapped in the outer space 2 and the inner space 4, and then the inner superconductor 1 is cooled. This transforms the superconductor 1 into superconductivity.

第1図、第2図は本発明の低磁場形成方法の実施例であ
る。
FIG. 1 and FIG. 2 are examples of the low magnetic field forming method of the present invention.

第1図において3は筒状の外部超電導体であり、この長
さは通常は断面差し渡しの2倍から20倍程度であるが
、本発明では必要とする低磁場空間の広さや磁場の均一
性によって適宜選定できる。
In Fig. 1, 3 is a cylindrical external superconductor, and its length is usually about 2 to 20 times the length across the cross section, but in the present invention, the width of the low magnetic field space and the uniformity of the magnetic field are required. It can be selected as appropriate.

lは外部超電導体3の内部に設けられた筒状の内部超電
導体であり、その長さは外部超電導体3とほぼ同じかや
や短い長さにしである。
1 is a cylindrical inner superconductor provided inside the outer superconductor 3, and its length is approximately the same as or slightly shorter than the outer superconductor 3.

2は内部超電導体lと外部超電導体3との間の外側空間
、4は内部超電導体l内の内側の内側空間である。
2 is an outer space between the inner superconductor l and the outer superconductor 3, and 4 is an inner space inside the inner superconductor l.

5は外部超電導体3の外周に巻かれているソレノイドコ
イルであり、このコイルに電流を流すことにより外部電
導体3の外部に磁場が発生するようにしである。
Reference numeral 5 denotes a solenoid coil wound around the outer periphery of the external superconductor 3, and a magnetic field is generated outside the external superconductor 3 by passing a current through this coil.

(作用) 第1図における外部超電導体3を超電導転移温度以下に
冷却して超電導とし、内部超電導体1を超電導転移温度
以上に保持して常電導体にしておくと、外部超電導体3
が冷却されて超電導になる時に存在する外部磁場により
、EB束Φ。が画題電導体1.3の内側の外側空間2及
び内側空間4内にトラップされる。この時の磁束密度B
iは、同空間2.4の断面積をS。とすると、 B、=Φo/So・・・・・ (1) で与えられる。
(Function) When the outer superconductor 3 in FIG. 1 is cooled to below the superconducting transition temperature to become superconducting, and the inner superconductor 1 is kept above the superconducting transition temperature to become a normal conductor, the outer superconductor 3
Due to the external magnetic field present when the is cooled and becomes superconducting, the EB flux Φ. is trapped in the outer space 2 and the inner space 4 inside the image conductor 1.3. At this time, magnetic flux density B
i is the cross-sectional area of the same space 2.4. Then, B, = Φo/So... (1) It is given by.

次に、第1図の外部超電導体3の外部のソレノイドコイ
ル5に電流を流すと、同コイル5の外部に磁場が発生す
る。この磁場の磁束密度をBeとし、このときの外部超
電導体3の内側の外側空間2の磁束密度をBc、とする
と、同空間2内と外部超電導体3の外部の磁束密度の差
(B、=BeBe1)により、外側空間2内の磁束が外
部にフラックスフローとして移動する。この移動量は第
3図に示すようになり、磁束密度の差B、、と時間tと
の間に次の関係がある。
Next, when a current is passed through the solenoid coil 5 outside the external superconductor 3 shown in FIG. 1, a magnetic field is generated outside the coil 5. If the magnetic flux density of this magnetic field is Be, and the magnetic flux density of the outer space 2 inside the outer superconductor 3 at this time is Bc, then the difference in the magnetic flux density inside the same space 2 and outside the outer superconductor 3 (B, =BeBe1), the magnetic flux within the outer space 2 moves to the outside as a flux flow. The amount of movement is as shown in FIG. 3, and the relationship between the magnetic flux density difference B, . . . and time t is as follows.

B a =Bofl  aXj2og  (t + t
 o)・ ・ ・ ・ (2) ここでB。、aは定数で1 .9ogto=  (i −B、/Bnl/ a・ ・
 ・ ・ (3) B、はし=0のときの磁束密度の差B。の値である。
B a = Bofl aXj2og (t + t
o)・ ・ ・ ・ (2) Here B. , a is a constant 1. 9ogto= (i −B, /Bnl/ a・・
・ ・ (3) B is the difference in magnetic flux density when B = 0. is the value of

従って、 B+=Ba+Be =B 、、+Ba(l  aXJ2og (t+ to
l)・ ・ ・ (4) の式に従って内部磁場が変化する。
Therefore, B+=Ba+Be =B ,,+Ba(l aXJ2og (t+ to
l)・・・・The internal magnetic field changes according to the formula (4).

ここでBeとtを適宜選ぶことにより外側空間2内の内
部磁場B1を0にすることができる。
By appropriately selecting Be and t, the internal magnetic field B1 in the outer space 2 can be made zero.

Beの大きさは超電導体のフラックスクリープが実用的
時間内、即ち数時間の間に内部磁場が変化する程度の値
とすることが望ましい。一方、地球磁場など外部磁場に
よるフラックスクリープの大きさは、内部磁場が十分長
時間係てる程度十分小さい必要がある。
It is desirable that the magnitude of Be is such that flux creep of the superconductor changes within a practical time, ie, within several hours, the internal magnetic field changes. On the other hand, the magnitude of flux creep caused by an external magnetic field such as the earth's magnetic field needs to be sufficiently small that the internal magnetic field remains for a sufficiently long period of time.

従って、超電導体の形状は外部磁場では十分フラックス
クリープが小さくなるように設計される1、そのために
は通常は、外部磁場の1.2倍以−トの磁場をかけると
、実用時間内でフラックスクリープが起きる程度にする
6 12倍以下の磁場では外部磁場の磁束が徐々に外部
超電導体3の内側に侵入して長時間磁場を保つことがで
きない。
Therefore, the shape of a superconductor is designed in such a way that the flux creep is sufficiently small in an external magnetic field1.For this purpose, it is usually necessary to apply a magnetic field of 1.2 times or more than the external magnetic field to reduce the flux creep within a practical time. If the magnetic field is set to an extent that causes creep, the magnetic flux of the external magnetic field will gradually penetrate into the inside of the external superconductor 3 and the magnetic field cannot be maintained for a long time if the magnetic field is 6.12 times or less.

外部超電導体3内の外側空間2内の内部磁場はこのよう
にしてほぼ0とすることができるが、内側空間4を細か
く見ると、そこには内部超電導体l内にトラップされて
いる磁場が存在するため、磁場測定点ではOであっても
それより離れた箇所では僅かの磁場が存在し、より広い
空間範囲にわたって0とすることができない。
The internal magnetic field in the outer space 2 inside the outer superconductor 3 can be made almost zero in this way, but if we look closely at the inner space 4, we can see that there is a magnetic field trapped inside the inner superconductor l. Therefore, even if the magnetic field is O at the magnetic field measurement point, a slight magnetic field exists at locations further away, and it cannot be set to zero over a wider spatial range.

この時点で内部超電導体lを冷却して超電導に転移させ
ると、同超電導体lの周囲には非常に微弱な磁場しか存
在しないため、その大きさは内部超電導体1の第一臨界
磁場Hcl以下であり、同超電導体1内にトラップされ
る磁場はなく、また、この内部超電導体1で遮断される
内部空間4内にトラップされる磁場は、内部超電導体1
が超電導転移する以前に同内部空間4に存在していた磁
場の積分値、即ち、全磁束量となる。
At this point, if the inner superconductor l is cooled and transformed into superconductor, only a very weak magnetic field exists around the superconductor l, so its magnitude is less than the first critical magnetic field Hcl of the inner superconductor 1. There is no magnetic field trapped within the superconductor 1, and the magnetic field trapped within the internal space 4 blocked by the internal superconductor 1 is
This is the integral value of the magnetic field that existed in the internal space 4 before the superconducting transition occurred, that is, the total amount of magnetic flux.

そこで外部超電導体3内の磁場を0にするmI記操作時
に、磁場測定点をこの内部磁場の平均を示すような点に
設定しておくか、複数の測定点を設けて各測定点の平均
値が0となるように制御すれば、内部超電導体lを超電
導転移させることにより内側空間4内の全磁束量をOと
することができる。
Therefore, when the magnetic field inside the external superconductor 3 is set to 0, the magnetic field measurement point should be set at a point that indicates the average of this internal magnetic field, or multiple measurement points should be set and the average of each measurement point should be set. If the value is controlled to be 0, the total amount of magnetic flux in the inner space 4 can be set to O by causing the inner superconductor l to undergo superconducting transition.

しかも、内部超電導体1が超電導転移した時点では同超
電導体1内には磁束がトラップされておらず、内側空間
4にも前記のように磁束がトラップされないので、その
内側空間4の磁界を広い範囲にわたって0とすることが
できる。
Moreover, at the time when the internal superconductor 1 undergoes a superconducting transition, no magnetic flux is trapped within the superconductor 1, and no magnetic flux is trapped in the inner space 4 as described above, so the magnetic field of the inner space 4 is widened. Can be zero over a range.

(実施例) 第1図に示す断面円筒形で且つ円形断面部分の内径30
cm、肉厚4mm、長さ1.5mの外部超電導体3の内
・外画面に熱絶縁層を設け、同超電導体3を液体窒素に
より冷却した。同超電導体3の周囲に設けられたソレノ
イドコイル5に電源7から電流を流して、円筒状の外部
超電導体3の周囲に磁場を発生させた。
(Example) The inner diameter of the cylindrical cross section shown in Fig. 1 and the circular cross section is 30 mm.
A heat insulating layer was provided on the inner and outer surfaces of an external superconductor 3 with a thickness of 4 mm and a length of 1.5 m, and the superconductor 3 was cooled with liquid nitrogen. A current was applied from a power source 7 to a solenoid coil 5 provided around the superconductor 3 to generate a magnetic field around the cylindrical external superconductor 3.

また、同外部超電導体の内部に第1図に示す断面円筒形
で且つ円形断面部分の内径20cm、肉厚4mm、長さ
1.5mの円筒状の内部超電導体Iの内・外画面に熱絶
縁層を設けた。この内部超電導体1は液体窒素により冷
却可能としであるが、外部超電導体が冷却されている前
記時点では冷却せず常電導体とした。
In addition, inside the same external superconductor, heat was applied to the inner and outer screens of the cylindrical inner superconductor I, which had a cylindrical cross section as shown in Figure 1, and had an inner diameter of 20 cm, a wall thickness of 4 mm, and a length of 1.5 m at the circular cross section. An insulating layer was provided. Although this internal superconductor 1 can be cooled with liquid nitrogen, it is not cooled at the time when the external superconductor is being cooled and is made into a normal conductor.

この状態で第1図のように、内部超電導体lの内側空間
4の長さ方向中央部に設けである磁束密度測定センサー
6により、同箇所の初期の磁束密度を測定したところ磁
束密度は0゜4ガウスであった。
In this state, as shown in FIG. 1, the initial magnetic flux density at the same location was measured by the magnetic flux density measurement sensor 6 installed at the longitudinal center of the inner space 4 of the internal superconductor l, and the magnetic flux density was 0. It was 4 Gauss.

この状態でソレノイドコイル5に電源7がら電流をIO
A、5分間流し、前記センサー6により前回と同じ箇所
の磁束密度を測定したところ2.0X10−2ガウスま
で減少した。
In this state, current is applied to the solenoid coil 5 from the power supply 7.
A. After running for 5 minutes, the magnetic flux density was measured at the same location as the previous time using the sensor 6, and it decreased to 2.0×10 −2 Gauss.

次に、電流を7A、5分間流したところ磁束密度は−3
゜0XIO−3ガウスとなった。ここで同コイル5に逆
方向に電流を6A、3分間流したところ、同じ箇所の磁
束密度は1.0xlO−3ガウスとなった。
Next, when a current of 7A was applied for 5 minutes, the magnetic flux density was -3
It became ゜0XIO-3 Gauss. When a current of 6 A was applied in the opposite direction to the same coil 5 for 3 minutes, the magnetic flux density at the same location became 1.0xlO-3 Gauss.

このように、電流を流す方向と電流値及び電流を流す時
間を調整しつつ磁場を減少させていったところ、磁束密
度を4.Ox1.O−’ガウスまで減少させることがで
きた。
In this way, by reducing the magnetic field while adjusting the direction of current flow, current value, and time of current flow, the magnetic flux density was reduced to 4. Ox1. It was possible to reduce it to O-' Gauss.

この状態で前記センサー6の位置を5cmだけ内部超電
導体1の内壁面に近づけたところ、磁束密度は7X10
−’ガウスとなり、反対方向の内壁面に近づけたところ
磁束密度は一8XIO”ガウスとなった。
In this state, when the sensor 6 was moved 5 cm closer to the inner wall surface of the internal superconductor 1, the magnetic flux density was 7×10
-' Gauss, and when brought close to the inner wall surface in the opposite direction, the magnetic flux density became -8XIO'' Gauss.

この状態で内部超電導体1を冷却して超電導に転移させ
たところ、前記3点の磁場はいずれも]、5X10−’
ガウスとなり、広い空間にわたり低磁場が形成されてい
ることが判明した。
When the internal superconductor 1 was cooled in this state to transition to superconductivity, the magnetic fields at the three points were:], 5X10-'
Gaussian, and it was found that a low magnetic field was formed over a wide space.

(発明の効果) 本発明の低磁場形成方法によれば内部超電導体l及び外
部超電導体3により二重に磁気シールドされるので、比
較的容易に、しかも低コストで低磁場空間を実現でき、
この空間において微小な磁気現象を観測することができ
るので、科学技術上及び医療−ト極めて有用な用途が多
(、工業的価値も大である。
(Effects of the Invention) According to the low magnetic field forming method of the present invention, double magnetic shielding is achieved by the inner superconductor 1 and the outer superconductor 3, so a low magnetic field space can be realized relatively easily and at low cost.
Since minute magnetic phenomena can be observed in this space, it has many extremely useful scientific, technological and medical uses (and has great industrial value as well).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の低磁場形成方法を実施化する装置の正
面図、第2図は同装置における磁場形成lj法の説明図
、第3図は円筒状超電導内から外部にフラックスフロー
として移動する磁束の説明図である。 1は内部超電導体 2は外側空間 3は外部超電導体 4は内側空間
Figure 1 is a front view of an apparatus that implements the low magnetic field generation method of the present invention, Figure 2 is an explanatory diagram of the magnetic field generation lj method in the same apparatus, and Figure 3 is a flux flow from inside the cylindrical superconductor to the outside. It is an explanatory view of magnetic flux. 1 is an inner superconductor 2 is an outer space 3 is an outer superconductor 4 is an inner space

Claims (1)

【特許請求の範囲】[Claims]  内部超電導体1の外周に外側空間2を隔てて設けられ
た外部超電導体3の外周に、地球磁場等の外部磁場以上
の磁場を印加して、前記外側空間2及び前記内部超電導
体1の内側空間4に存在する磁束を外部超電導体3の外
部にフラックスフローとして流出させて、前記外側空間
2及び内側空間4にトラップされた磁界を減少させた後
、内部超電導体1を冷却して同超電導体1を超電導に転
移することを特徴とする超電導体を用いた低磁場空間の
形成方法。
A magnetic field greater than an external magnetic field such as the earth's magnetic field is applied to the outer periphery of the outer superconductor 3 provided on the outer periphery of the inner superconductor 1 with an outer space 2 in between, and the inner side of the outer space 2 and the inner superconductor 1 is After the magnetic flux existing in the space 4 flows out of the outer superconductor 3 as a flux flow to reduce the magnetic fields trapped in the outer space 2 and the inner space 4, the inner superconductor 1 is cooled and the superconductor 3 is cooled. A method for forming a low magnetic field space using a superconductor, characterized in that a body 1 is transformed into a superconductor.
JP1258076A 1989-10-03 1989-10-03 Formation of low magnetic field space using superconductor Pending JPH03120766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258076A JPH03120766A (en) 1989-10-03 1989-10-03 Formation of low magnetic field space using superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258076A JPH03120766A (en) 1989-10-03 1989-10-03 Formation of low magnetic field space using superconductor

Publications (1)

Publication Number Publication Date
JPH03120766A true JPH03120766A (en) 1991-05-22

Family

ID=17315191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258076A Pending JPH03120766A (en) 1989-10-03 1989-10-03 Formation of low magnetic field space using superconductor

Country Status (1)

Country Link
JP (1) JPH03120766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038413A (en) * 2006-08-03 2008-02-21 Opnus:Kk Door guard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038413A (en) * 2006-08-03 2008-02-21 Opnus:Kk Door guard

Similar Documents

Publication Publication Date Title
Xing et al. Magnetic flux mapping, magnetization, and current distributions of YBa2Cu3O7 thin films by scanning Hall probe measurements
Müller et al. A model for the hysteretic critical current density in polycrystalline high-temperature superconductors
Kemmler et al. Magnetic interference patterns in 0-π superconductor/insulator/ferromagnet/superconductor Josephson junctions: Effects of asymmetry between 0 and π regions
Rabinowitz et al. Dependence of maximum trappable field on superconducting Nb3Sn cylinder wall thickness
JPH03120766A (en) Formation of low magnetic field space using superconductor
Bussiere Evidence for the surface barrier in a high-κ superconductor
JP2000037366A (en) Superconductive magnet device
Sesé et al. Calculation of effective inductances of superconducting devices. Application to the cryogenic current comparator
Itoh Influence of wall thickness on magnetic shielding effects of BPSCCO cylinders
JP3670708B2 (en) Magnetization method of cylindrical superconducting magnet
Komori et al. Preparation of a high-T c superconducting magnetic flux transformer with a 100 mm bore coil and static magnetic field transfer at 77 K
JPH03255981A (en) Magnetic shield device using superconductive material
Serpuchenko et al. Fluxon chain commensurability effect in inhomogeneity lattice
JPH05308199A (en) Formation method of low magnetic field using superconductor
Albrecht et al. Hysteretic behavior of critical currents in heterostructures of high-temperature superconductors and ferromagnets
Lu et al. Spin-density relaxation in superfluid A 1 3
Reményi et al. Specific heat at the spin-peierls transition in CuGeO 3 under magnetic fields up to 22 tesla
KR20050007498A (en) Superconducting magnet for generating horizontal magnetic field using bended circle or ellipse-shaped coils
JP2691058B2 (en) Ultra low magnetic field formation method
Imagawa et al. Residual magnetic field induced by superconducting magnets of Large Helical Device
Tseng et al. Measurements and analysis of Hall effect of a two dimensional electron gas in the close proximity of a superconducting YBa2Cu3O7− x film
Aleksashin et al. Studying nanocrystalline superconducting Nb 3 Sn layers in Nb/Cu-Sn composites of various design using NMR and magnetic susceptibility methods
JPH0378674A (en) Squid element
JPH0832273A (en) Magnetic shield
Soibel Visualization of vortex-lattice melting transition and transport current flow in Bi2Sr2CaCu2O8 with differential magneto-optical technique