JPH03120763A - Photo-electric transducer - Google Patents

Photo-electric transducer

Info

Publication number
JPH03120763A
JPH03120763A JP1257657A JP25765789A JPH03120763A JP H03120763 A JPH03120763 A JP H03120763A JP 1257657 A JP1257657 A JP 1257657A JP 25765789 A JP25765789 A JP 25765789A JP H03120763 A JPH03120763 A JP H03120763A
Authority
JP
Japan
Prior art keywords
layer
light
resin
polysilane
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1257657A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
哲郎 鈴木
Masao Yoshikawa
吉川 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1257657A priority Critical patent/JPH03120763A/en
Publication of JPH03120763A publication Critical patent/JPH03120763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To achieve a large photo current and a photo-electric transducer which is inexpensive and has a large area by enabling a photo-activation layer to contain at least an organic semiconductor and a polysilane resin. CONSTITUTION:A photo-activation layer including at least a photoconductive organic semiconductor and a polysilane resin consists of a configuration which is sandwiched by a front electrode 1 and a rear surface electrode 4. In this photo-activation layer 2, the polysilane acts as a substance with the mobility of a carrier which is generated by a binder agent of the photoconductive semiconductor and a photoconductive organic semiconductor. Since light enters from the side of the front electrode 1, the front electrode 1 enables light to be transmitted. The light-activation layer needs not be a single layer and a light-activation layer 3 may be a layer which generates electric charge by light as in the light-activation layer 2 or a layer which enables electric charge which is generated by the light-activation layer 2 to be traveled efficiently. It is desirable that the film thickness of the light-activation layer should be 0.05-3mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機光導電体を用いた光電変換素子(有機太陽
電池)に関するものであり、光センサ−、イメージセン
サ−等に応用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoelectric conversion element (organic solar cell) using an organic photoconductor, and is applied to optical sensors, image sensors, etc.

[従来の技術] 無機半導体を用いた光電変換素子を作製する試みは多く
なされてきている。その目標はa)変換率が高く、b)
安値な光電変換素子である。
[Prior Art] Many attempts have been made to produce photoelectric conversion elements using inorganic semiconductors. The goal is a) high conversion rate and b)
It is a low-priced photoelectric conversion element.

単結晶Si、多結晶S i、casSCdTe。Single crystal Si, polycrystalline Si, casSCdTe.

GaAs、アモルファスSi等の実用化が試みられてい
るが、これらは全てb)の目標を満足しているとは言い
難い。
Attempts have been made to put GaAs, amorphous Si, etc. into practical use, but it is difficult to say that all of these satisfy the goal b).

この欠点を改善するために有機半導体を用いて光電変換
素子を作製する試みが近年なされている。使用された有
機半導体層としては以下の例がある。
In order to improve this drawback, attempts have been made in recent years to fabricate photoelectric conversion elements using organic semiconductors. Examples of the organic semiconductor layers used are as follows.

(イ)スピナー塗布されたメロシアニン染料層(特開昭
51−122389 、特開昭53−131782及び
ニー、ケー、ゴウシュ(Δ、に、Ghosh)著の[ジ
ャーナル、オン。アプライド、フィジックス(J、Ap
pl、Phys、)J 49.5982.1978)(
ロ)フタロシアニン蒸着層またはオバレン等の電子供与
体層とピリリウム系染料等の電子受容体層を積層したも
の(特開昭54−27787特開昭60−201137
2及びアール9オー、ラウ) −y イ(R,0,Lo
utfy)著の「ジャーナル、オフ9アプライド、フィ
ジックス J、ApplPhys、) J 52.52
18.19111)(ハ)ピリリウム系染料とポリカー
ボネートから生成する共晶錯体層(特開昭54−273
87)(ニ)無金属フタロシアニンをバインダーに分散
させた層(特開昭55−9497) (ホ)n型シリコンとp型ドープされたポリアセチレン
薄膜を積層したもの (特開昭55−130182、特
開昭55−138879及びビー、アール、ワインバー
ガー(B、R,Wcinnbcrgcr)著のアプライ
ド、フィジックス、レター (Apl)1.Phys、Lctt、)38.555.
1981)(へ)真空蒸着されたメロシアニン染料層(
特開昭58−35477) これらは、これらの有機半導体を媒体中に溶解または分
散した溶液を基板上に塗布したり、あるいは低温度で真
空蒸着し、更にその上に別の導電層を設けることで安価
に大面積のものが得られるが、変換効率が低すぎ、実用
には供されない。
(a) Merocyanine dye layer coated with a spinner (JP-A-51-122389, JP-A-53-131782 and Ni, K., Ghosh (Δ, Ni, Ghosh) [Journal, On. Applied Physics (J. Ap
pl, Phys, ) J 49.5982.1978) (
b) A laminated layer of an electron donor layer such as a phthalocyanine vapor-deposited layer or obalene and an electron acceptor layer such as pyrylium dye (JP-A-54-27787, JP-A-60-201137)
2 and R 9 O, Lau) -y I (R, 0, Lo
utfy) “Journal, Off9 Applied, Physics J, ApplPhys,) J 52.52
18.19111) (c) Eutectic complex layer produced from pyrylium dye and polycarbonate (JP-A-54-273
87) (d) Layer in which metal-free phthalocyanine is dispersed in a binder (JP-A-55-9497) (E) Laminated layer of n-type silicon and p-doped polyacetylene thin film (JP-A-55-130182, JP-A-55-130182, Applied Physics, Letters (Apl) 1. Phys, Lctt, ) 38.555.
1981) (to) Vacuum-deposited merocyanine dye layer (
(Japanese Unexamined Patent Publication No. 58-35477) These methods include applying a solution in which these organic semiconductors are dissolved or dispersed in a medium onto a substrate, or vacuum-depositing them at low temperatures, and then providing another conductive layer thereon. Although a large-area product can be obtained at low cost, the conversion efficiency is too low to be of practical use.

上記(イ)〜(へ)では有機半導体層は有機半導体単独
または適当なバインダーとともに用いられているが変換
効率は低いものであった。
In the above (a) to (f), the organic semiconductor layer is used alone or with an appropriate binder, but the conversion efficiency is low.

[発明が解決しようとする課題] 本発明は従来技術の上記欠点を解決するために、安価で
大面積のものが容易に作製でき、可撓性もあって、有機
祠料を用いたものとしては高い変換効率を有する光電変
換素子を提供しようとするものである。
[Problems to be Solved by the Invention] In order to solve the above-mentioned drawbacks of the prior art, the present invention provides an inexpensive, large-area abrasive that can be easily produced, is flexible, and uses an organic abrasive. aims to provide a photoelectric conversion element with high conversion efficiency.

[課題を解決するための手段] 本発明は以上の様な欠点、特に、可視光領域で光キヤリ
ア生成能力のある有機半導体かそれ単独または適当なバ
インダーとともに用いられた場合[前記(イ)〜(へ)
]の欠点を改良すべく鋭意研究した結果、透光性フロン
ト電極、光活性層及び背面電極を有する光電変換素子に
おいて、前記光活性層に有機色素(有機半導体)の結着
剤としてポリシラン樹脂を使用すると大幅に光電流が上
昇し、それにより光電変換効率の上昇がもたらされるこ
とが発見されたことにより本発明はなされた。
[Means for Solving the Problems] The present invention solves the above-mentioned drawbacks, especially when used with an organic semiconductor capable of generating optical carriers in the visible light region, alone or with a suitable binder [(a) to (fart)
] As a result of intensive research to improve the drawbacks, we found that in a photoelectric conversion element having a translucent front electrode, a photoactive layer, and a back electrode, a polysilane resin was added to the photoactive layer as a binder for an organic dye (organic semiconductor). The present invention was based on the discovery that the use of such a material significantly increases the photocurrent, thereby leading to an increase in photoelectric conversion efficiency.

すなわち、本発明の構成は、透光性フロント電極、光活
性層及び背面電極を有する光電変換素子において、前記
光活性層が少なくとも有機半導体及びポリシラン樹脂を
含有する光電変換素子である。
That is, the structure of the present invention is a photoelectric conversion element having a light-transmitting front electrode, a photoactive layer, and a back electrode, in which the photoactive layer contains at least an organic semiconductor and a polysilane resin.

本発明の光電変換素子は少なくとも、光導電性有機半導
体とポリシラン樹脂を含む光活性層(I)か2つの電極
(フロント電極、背面電極)にサンドイッチされた構成
から成る。この光活性層(T)においてポリシランは光
導電性有機半導体の結着剤および光導電性有機半導体で
発生したキャリアの移動能を有する物質として働く。フ
ロント電極側から光が入射するため、フロント電極は光
透過性となっている。
The photoelectric conversion element of the present invention has a structure in which at least a photoactive layer (I) containing a photoconductive organic semiconductor and a polysilane resin is sandwiched between two electrodes (a front electrode and a back electrode). In this photoactive layer (T), polysilane acts as a binder for the photoconductive organic semiconductor and as a substance having the ability to move carriers generated in the photoconductive organic semiconductor. Since light enters from the front electrode side, the front electrode is transparent.

フロント、背面電極とも単独で使用されてもよいし、支
持体あるいは保護層が設けられていでもよい。第1図〜
第3図すにはこれらの例が示されている。
Both the front and back electrodes may be used alone, or may be provided with a support or a protective layer. Figure 1~
Examples of these are shown in FIG.

フロント電極、背面電極からはリード線等により、外部
回路と接続され、実際の使用に供される。
The front electrode and the back electrode are connected to an external circuit through lead wires, etc., and used for actual use.

光活性層は単層である必要はなく、2層の例が第1図〜
第3図のb図にそれぞれ示されている。この光活性層(
n)は光活性層(1)と同様に光により電荷を発生させ
る層でもよいし、光活性層(1)で発生した電荷を効率
よく移動させる層でもよい。第1図すの例では光活性層
(I)がフロント電極側に描かれているが、光活性層(
II)がフロント電極側にあっても勿論良い。また、光
活性層(I)は異なる光導電性有機材料から成る複層で
あってもよい。
The photoactive layer does not have to be a single layer; examples of two layers are shown in Figure 1~
They are shown in FIG. 3b, respectively. This photoactive layer (
n) may be a layer that generates charges by light like the photoactive layer (1), or may be a layer that efficiently transfers the charges generated in the photoactive layer (1). In the example in Figure 1, the photoactive layer (I) is drawn on the front electrode side, but the photoactive layer (I) is drawn on the front electrode side.
Of course, II) may be located on the front electrode side. The photoactive layer (I) may also be a multilayer consisting of different photoconductive organic materials.

本発明は上記光活性層(I)にかかわるものとして以下
に説明するが、光活性層(n)の材料としても使用でき
る。
Although the present invention will be explained below as relating to the photoactive layer (I), it can also be used as a material for the photoactive layer (n).

光活性層(I)は光照射で正孔と電子を発生させる層で
ある。このためには、層内に電界が存在することが必要
で、これはフロント電極と背面電極の間に外部から電圧
を印加するか、または異なる仕事関数を有する金属をフ
ロント電極と背面電極に使用するか、または光活性層(
I)がフロントまたは背面電極もしくは光活性層(II
)と接合した時に、お互いのフェルミレベル(または仕
事関数)の違いにより、熱キャリアが移動し、接合障壁
が形成されることで外部電圧なしでも達成される。
The photoactive layer (I) is a layer that generates holes and electrons when irradiated with light. This requires the presence of an electric field within the layer, either by applying an external voltage between the front and back electrodes or by using metals with different work functions for the front and back electrodes. or a photoactive layer (
I) is the front or back electrode or photoactive layer (II
), thermal carriers move due to the difference in their Fermi levels (or work functions), and a junction barrier is formed, which can be achieved without an external voltage.

光活性層(I)は層中にポリシラン樹脂を含む層である
。この層には他の必須成分として、可視光に吸収を有す
る光導電性有機半導体を含んでいる。また必要ならば適
当なバインダー電子供与性低分子化合物を含んでいても
よい。
The photoactive layer (I) is a layer containing a polysilane resin. This layer contains, as another essential component, a photoconductive organic semiconductor that absorbs visible light. Further, if necessary, a suitable binder, an electron-donating low-molecular compound, may be included.

我々はかかるポリラン樹脂が存在すると、存在しない場
合に比較して、光活性層(I)で光照射時に生成する光
電流量が飛躍的に増大し、それにより変換効率が増大す
ることを見出した。
We have found that the presence of such a polylane resin dramatically increases the amount of photocurrent generated in the photoactive layer (I) upon irradiation with light, thereby increasing the conversion efficiency, compared to the case where it is not present.

ここで光変換素子とは、第1図のフロントおよび背面電
極間に外部電圧を印加しないで光照射した場合に起電力
または電流もくしはその両方を生じ、また外部電圧の印
加の状態では大きな光電流がとり出せる素子のことであ
る。
Here, a photoconversion element is one that generates an electromotive force or current, or both, when light is irradiated without applying an external voltage between the front and back electrodes in Figure 1, and that generates a large amount of electromotive force or current when an external voltage is applied. This is an element from which photocurrent can be extracted.

光活性層(1)は前述のごとく、ポリシラン樹脂と可視
光に吸収を有する光導電性有機半導体を必須成分として
含む層である。
As described above, the photoactive layer (1) is a layer containing as essential components a polysilane resin and a photoconductive organic semiconductor that absorbs visible light.

ポリシラン樹脂は層中で他の有機半導体やバインダーと
分離せずに均一に相溶する能力が高く、また、高分子化
合物の中ではキャリア移動能が著しく高<  500n
i+以上の長波長側に強い吸収を有しない樹脂である。
Polysilane resin has a high ability to uniformly mix with other organic semiconductors and binders in the layer without separating, and also has extremely high carrier mobility among polymer compounds < 500n
This is a resin that does not have strong absorption on the long wavelength side of i+ or more.

ここで光活性層(I)での各成分の組成は、ポリシラン
樹脂       3〜70wt%可視光に吸収を有す
る光導電性 有機半導体         30〜90vt%バイン
ダーや低分子化合物 0〜50wt%であり、好ましく
はそれぞれ10〜50wt%、40〜70vt%、0〜
40νt%である。
Here, the composition of each component in the photoactive layer (I) is preferably 3 to 70 wt% polysilane resin, 30 to 90 wt% photoconductive organic semiconductor that absorbs visible light, and 0 to 50 wt% binder or low molecular compound. are 10-50wt%, 40-70vt%, and 0-50wt%, respectively.
It is 40vt%.

ポリシラン樹脂の組成が低くなると、同高分子の添加の
効果が弱くなり、また、ポリシラン樹脂の組成が高くな
ると相対的に光吸収光導電性有機半導体の濃度が低くな
り、それにより光吸収量が小さくなる。
As the composition of the polysilane resin becomes lower, the effect of adding the same polymer becomes weaker, and as the composition of the polysilane resin becomes higher, the concentration of the light-absorbing photoconductive organic semiconductor becomes relatively lower, thereby decreasing the amount of light absorption. becomes smaller.

光導電性有機半導体の割合が低くなると光吸収量が小さ
くなり、また、該割合が高くなると、ポリシラン樹脂の
濃度が相対的に低くなり、添加効果が弱くなる。
When the proportion of the photoconductive organic semiconductor becomes low, the amount of light absorbed becomes small, and when the proportion becomes high, the concentration of the polysilane resin becomes relatively low, and the effect of addition becomes weak.

バインダーの量が低いとポリシラン樹脂に強い結着能が
要求され、また、高いと光電荷の発生、移動にかかわる
部分の量が少くなり、効率が低下する。
If the amount of binder is low, the polysilane resin is required to have strong binding ability, and if the amount is high, the amount of the part involved in the generation and movement of photocharges will be small, resulting in a decrease in efficiency.

電子供与性低分子化合物の添加はより電荷移動能を向上
するため、および層のIP値を調節するために行われる
The electron-donating low-molecular-weight compound is added to further improve the charge transfer ability and to adjust the IP value of the layer.

光活性層の膜厚は0.01−10μ■で適当である。The thickness of the photoactive layer is suitably 0.01-10 μm.

最適膜厚は用いる光導電性有機半導体の種類によっても
異なるが0.05〜3μmが好ましい。薄いと光吸収量
が小さくなり、またフロント/背面電極間でピンホール
の確率が高くなる。厚くなると発生した正孔および電子
の一方が電極に到達するまでの距離が長くなり、途中で
失活する確率が高まり、効率が低下する。
The optimum film thickness varies depending on the type of photoconductive organic semiconductor used, but is preferably 0.05 to 3 μm. If it is thin, the amount of light absorbed will be small, and the probability of pinholes occurring between the front and back electrodes will increase. When the thickness becomes thicker, the distance for one of the generated holes and electrons to reach the electrode becomes longer, increasing the probability that they will be deactivated on the way, and reducing efficiency.

尚、水層は上記有機半導体とポリシラン樹脂を必要なら
ばバインダーとともに適当な溶媒中に混合し、ボールミ
ル等の装置で顔料を粉砕し、均一なスラリーを作製する
か、有機アミン等の溶剤中に顔料を溶解するかして、こ
れらを背面電極あるいは支持体上の背面電極あるいは支
持体上のフロント電極上に塗布して形成される。
The aqueous layer can be prepared by mixing the above organic semiconductor and polysilane resin together with a binder if necessary in a suitable solvent, and grinding the pigment using a device such as a ball mill to create a uniform slurry, or by mixing it in a solvent such as an organic amine. It is formed by dissolving pigments and coating them on a back electrode or a back electrode on a support, or a front electrode on a support.

なお、ポリシラン樹脂は顔料粉砕後に添加してもよい。Note that the polysilane resin may be added after the pigment is pulverized.

この様に形成された光活性層はポリシラン樹脂がない場
合とくらべ、短絡光電流(Jsc)が大幅に上昇する。
The photoactive layer formed in this manner has a significantly increased short-circuit photocurrent (Jsc) compared to the case where there is no polysilane resin.

変換効率(η)は次式、1n (P i n :入射光エネルギー ff:フィルファ
クター)で決定される。
The conversion efficiency (η) is determined by the following formula, 1n (P i n : incident light energy, ff : fill factor).

本発明の素子はポリシラン樹脂を添加していないものと
くらべ、高い変換効率をもたらす。
The device of the present invention provides higher conversion efficiency than that without the addition of polysilane resin.

この理由としてポリシラン樹脂は有機物としては低いイ
オン化ポテンシャルを有するため、光吸収により光導電
性有機半導体中に生成した光電荷のうち、正孔が容易に
ポリシラン樹脂中に注入される。また、該化合物は正孔
移動度も高い。このため、未添加の系とくらべ、正孔と
電子の再結合の確率の低下がもたらされ、また正0 孔の移動効率の上昇も図られたことが考えられる。
The reason for this is that since polysilane resin has a low ionization potential as an organic substance, holes among the photocharges generated in the photoconductive organic semiconductor due to light absorption are easily injected into the polysilane resin. Furthermore, the compound also has high hole mobility. For this reason, it is considered that the probability of recombination of holes and electrons is lowered compared to the system without addition, and the efficiency of transfer of holes is also increased.

また、勿論、外部から電圧を印加した場合にも、大きな
光電流が取り出せ、従って感度に優れた光電変換素子と
して用いられる。
Moreover, of course, even when a voltage is applied from the outside, a large photocurrent can be extracted, and therefore it is used as a photoelectric conversion element with excellent sensitivity.

本発明で用いられるポリシラン樹脂は主鎖がS i−8
i結合からなる高分子であり、1種以上のジクロロシラ
ン又はトリクロロシラン、クロロジシラン類、クロロト
リシラン類などを原料として金属ナトリウムのディスバ
ージョンと反応させ重合させる。このポリシランの重合
については以下の文献など詳細に記されている。
The main chain of the polysilane resin used in the present invention is S i-8
It is a polymer consisting of i-bonds, and is polymerized by reacting one or more types of dichlorosilane, trichlorosilane, chlorodisilanes, chlorotrisilanes, etc. with dispersion of metallic sodium as a raw material. The polymerization of polysilane is described in detail in the following literature.

1) Robert West、Journal of
 OrganonletalllcChemistry
、300.827(198B)2) R,D、Mill
er and R,Sooriyakumaran。
1) Robert West, Journal of
OrganonletalllcChemistry
, 300.827 (198B) 2) R, D, Mill
er and R, Sooriyakumaran.

Journal  ofPolymer 5cienc
e:PolymerLetters、25.321(1
987)3) Xing−11ua Zhang an
d Robertwest、JournalofPol
ymer 5cjenee:Polymer Chem
istryEdjtjon、22,159(1984)
、 22.225(1984)1 本発明に使用されるポリシラン樹脂の分子量は2000
以上であることが好ましく、分子量が2000以下であ
ると、正孔移動の能力及び結着力が低下する。また、こ
の樹脂のガラス転移点も40°付近まで下がり、外気の
温度の影響をうけやすくなる。
Journal of Polymer 5cienc
e: Polymer Letters, 25.321 (1
987)3) Xing-11ua Zhang an
d Robertwest, JournalofPol
ymer 5cjenee: Polymer Chem
istryEdjtjon, 22, 159 (1984)
, 22.225 (1984) 1 The molecular weight of the polysilane resin used in the present invention is 2000.
It is preferable that it is above, and if the molecular weight is less than 2,000, the hole transfer ability and binding force will decrease. Furthermore, the glass transition point of this resin also drops to around 40°, making it susceptible to the influence of outside air temperature.

本発明で用いられるポリシラン樹脂は直鎖状、分枝状、
架橋状、ラダー状などの様々な構造形態があるが、その
例として下記の一般式で表わされる。
The polysilane resin used in the present invention is linear, branched,
There are various structural forms such as cross-linked and ladder-like, examples of which are represented by the following general formula.

1) 1種類のジクロロシラン(RI %R25iC1
2)より重合した直鎖状ポリマ(R1、R2は置換又は
無置換のアルキル基、置換シリル基、置換又は無置換の
炭素族式縮合環、置換又は無置換のへテロ環を表わし、
同一であっても異なっていてもよい。nは繰り返しを表
わす整数。) 2 2)2種類以上のジクロロシランより重合した直鎖状ブ
ロック共重合体 く2種類のジクロロシランの場合の一般式〉のアルキル
基、置換シリル基、置換又は無置換の炭素族式縮合環、
置換又は無置換のへテロ環を表わし、同一であっても異
なっていてもよい。nは繰り返しを表わす整数。)分枝
状 (RI  R2、R3、R4は置換又は無置換のアルキ
ル基、置換シリル基、置換又は無置換の炭素族式縮合環
、置換又は無置換のへテロ環を表わし、同一であっても
異なっていてもよい。n、m、Uは繰り返しを表わす整
数。) 3)ジシラン以上のジクロロシランより重合した直鎖状
又は分枝状ポリマー 〈ジクロロジシランを使用した場合の一般式〉直枝状 (RI、R2、R3、R4は置換又は無置換のアルキル
基、置換シリル基、置換又は無置換の炭素族式縮合環、
置換又は無置換のへテロ環を表わし、同一であっても異
なっていてもよい。nは繰り返しを表わす整数。)4)
トリクロロシラン、テトラクロロシランをジクロロシラ
ンと共重合させた分枝状、架橋状ポリマー (R1、R2、R3、R4は置換又は無置換3 4 (R1、R2、R3は置換又は無置換のアルキル基、置
換シリル基、置換又は無置換の炭素族式縮合環、置換又
は無置換のへテロ環を表わし、同一であっても異なって
いてもよい。
1) One type of dichlorosilane (RI %R25iC1
2) a linear polymer polymerized from (R1 and R2 represent a substituted or unsubstituted alkyl group, a substituted silyl group, a substituted or unsubstituted carbonaceous condensed ring, a substituted or unsubstituted heterocycle,
They may be the same or different. n is an integer representing repetition. ) 2 2) Linear block copolymer polymerized from two or more types of dichlorosilanes (In the case of two types of dichlorosilanes, an alkyl group, a substituted silyl group, a substituted or unsubstituted carbon group condensed ring of the general formula) ,
It represents a substituted or unsubstituted heterocycle, and may be the same or different. n is an integer representing repetition. ) Branched (RI R2, R3, R4 represent a substituted or unsubstituted alkyl group, a substituted silyl group, a substituted or unsubstituted carbonaceous condensed ring, a substituted or unsubstituted heterocycle, and are the same) (n, m, U are integers representing repetition.) 3) Linear or branched polymer polymerized from dichlorosilane or more than disilane (General formula when dichlorodisilane is used) Straight branched (RI, R2, R3, R4 are substituted or unsubstituted alkyl groups, substituted silyl groups, substituted or unsubstituted carbonaceous condensed rings,
It represents a substituted or unsubstituted heterocycle, and may be the same or different. n is an integer representing repetition. )4)
Trichlorosilane, a branched, crosslinked polymer obtained by copolymerizing tetrachlorosilane with dichlorosilane (R1, R2, R3, R4 are substituted or unsubstituted 3 4 (R1, R2, R3 are substituted or unsubstituted alkyl groups, It represents a substituted silyl group, a substituted or unsubstituted carbonaceous condensed ring, or a substituted or unsubstituted heterocycle, and may be the same or different.

n s m551 s n−lm−交′ hは繰り返し
を表わす整数。) 5)トリクロロシランより重合したラダー状ポリマー (Rは置換又は無置換のアルキル基、置換シ5 リル基、置換又は無置換の炭素族式縮合環、置換又は無
置換のへテロ環を表わし、同一であっても異なっていて
もよい。nは繰り返しを表わす整数。) なお本発明のポリシラン樹脂は上記一般式に限定される
ものではなく主鎖に5L−St結合を有する高分子化合
物をさす。
n s m551 s n-lm-cross' h is an integer representing repetition. ) 5) Ladder polymer polymerized from trichlorosilane (R represents a substituted or unsubstituted alkyl group, a substituted silyl group, a substituted or unsubstituted carbonaceous condensed ring, a substituted or unsubstituted heterocycle, (They may be the same or different. n is an integer representing repetition.) The polysilane resin of the present invention is not limited to the above general formula, but refers to a polymer compound having a 5L-St bond in the main chain. .

フロント電極層及びその支持体について;アルミニウム
、鉛、亜鉛、タンタル、ニッケル、チタン、コバルト、
ニオブ、銅、ハステロイC1金、白金、銀、パラジウム
等の半透明の金属や酸化スズ、ITO等の金属酸化物等
がフロント電極として使用でき、支持体としては、ガラ
ス、透明プラスチックフィルムが用いられる。
Regarding the front electrode layer and its support; aluminum, lead, zinc, tantalum, nickel, titanium, cobalt,
Translucent metals such as niobium, copper, Hastelloy C1 gold, platinum, silver, and palladium, and metal oxides such as tin oxide and ITO can be used as the front electrode, and glass and transparent plastic films can be used as the support. .

背面電極及びその支持体について: はとんどの金属が背面電極として使用できる。Regarding the back electrode and its support: Most metals can be used as the back electrode.

支持体としてはガラス、透明プラスチックフィルムが用
いられる。
Glass or transparent plastic film is used as the support.

光活性層(II)について: この層はa)光活性層(I)に使用の顔料の6 感光波長の低い領域をおぎなうために、他の電荷発生有
機半導体を含むか、b)光活性層CI)との間で接合障
壁を形成する層か、C)光活性層(1)で発生した正孔
と電子のどちらかを有効に移動させる層である。
Regarding the photoactive layer (II): This layer may a) contain other charge-generating organic semiconductors to cover the lower photosensitive wavelength range of the pigments used in the photoactive layer (I), or b) contain other charge-generating organic semiconductors. C) a layer that forms a junction barrier between C) and a layer that effectively moves holes and electrons generated in the photoactive layer (1).

このうちa)の層は後述の光活性層(1)の例示化合物
のうち(I)と補正の色調を有する化合物が効果が高く
、これは光活性層(1)と同様に塗布して形成される。
Among these, for layer a), a compound having a color tone correcting that of (I) among the exemplified compounds for photoactive layer (1) described later is highly effective, and this is formed by coating in the same manner as photoactive layer (1). be done.

b)の層は酸化亜鉛、酸化チタン、硫化カドミウム、セ
レン結晶、酸化鉛等の微粒子を接着剤樹脂に分散して形
成される。
The layer b) is formed by dispersing fine particles of zinc oxide, titanium oxide, cadmium sulfide, selenium crystals, lead oxide, etc. in an adhesive resin.

C)の層として光活性層(I)のポリシラン樹脂か、そ
れより更にIp値の低い他のポリシラン樹脂又は低分子
電子供与体を適当な樹脂に混合したものを塗布して形成
される。
The layer C) is formed by coating the polysilane resin of the photoactive layer (I), another polysilane resin with an even lower Ip value, or a mixture of a low molecular weight electron donor and a suitable resin.

本発明の必須成分として用いられる光吸収性有機半導体
はジスアゾ顔料、トリスアゾ顔料等のアゾ顔料、フタロ
シアニン系顔料、キナクリドン系顔料、ペリレン系顔料
、芳香族多環キノ7 ン系顔料、インジゴ系顔料、チオインジゴ系顔料等の顔
料やトリフェニルメタン染料、シアニン染料、メロシア
ニン染料等の染料が挙げられる。
The light-absorbing organic semiconductors used as essential components of the present invention include azo pigments such as disazo pigments and trisazo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, aromatic polycyclic quinone pigments, indigo pigments, Examples include pigments such as thioindigo pigments and dyes such as triphenylmethane dyes, cyanine dyes, and merocyanine dyes.

本発明においてはポリシラン樹脂を単独で結着剤として
使用してもよいが他に結着力を上げるためにバインダを
添加してもよい。
In the present invention, polysilane resin may be used alone as a binder, but a binder may also be added to increase binding strength.

バインダとして用いられる樹脂の例としては、ポリエス
テル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポ
リウレタン樹脂、エポキシ樹脂、アルキッド樹脂、フェ
ノール樹脂、メラミン樹脂、アクリル樹脂、セルロース
樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリデ
ン樹脂、フッ化ビニリデン樹脂、ブチラール樹脂、ポリ
ビニルカルバゾール樹脂、ポリスチレン樹脂、ポリイミ
ド樹脂、ポリアクリロニトリル樹脂、塩ビー酢ビ共重合
体、塩化ビニリデン−アクリロニトリル共重合体、スチ
レン−無水マレイン酸共重合体、スチレン−ブタジェン
共重合体、エチルセルロース等が挙げられる。
Examples of resins used as binders include polyester resins, polycarbonate resins, polyamide resins, polyurethane resins, epoxy resins, alkyd resins, phenolic resins, melamine resins, acrylic resins, cellulose resins, vinyl acetate resins, vinyl chloride resins, and vinylidene chloride. Resin, vinylidene fluoride resin, butyral resin, polyvinylcarbazole resin, polystyrene resin, polyimide resin, polyacrylonitrile resin, vinyl chloride-vinyl acetate copolymer, vinylidene chloride-acrylonitrile copolymer, styrene-maleic anhydride copolymer, styrene -butadiene copolymer, ethyl cellulose, etc.

8 電子供与性低分子化合物として用いられる物質はヒドラ
ゾン化合物、ピラゾリン化合物、トリフェニルメタン誘
導体、カルバゾール誘導体、トリフェニルアミン誘導体
、スチルベン誘導体、ベンジジン誘導体などがある。
8 Substances used as electron-donating low-molecular compounds include hydrazone compounds, pyrazoline compounds, triphenylmethane derivatives, carbazole derivatives, triphenylamine derivatives, stilbene derivatives, and benzidine derivatives.

次に本発明の光電変換素子の構造例を第1図a〜第3図
すに示した概略図で説明する。b図はa図で示した光活
性層を補足するために第2の光活性層を追加した例を示
す。
Next, structural examples of the photoelectric conversion element of the present invention will be explained with reference to the schematic diagrams shown in FIGS. 1A to 3D. Figure b shows an example in which a second photoactive layer is added to supplement the photoactive layer shown in figure a.

図中、■は透光性フロント電極、2は光活性層(1)、
3は光活性層(If)、4は背面電極、5はフロント電
極支持体、6は背面電極支持体を示す。なお、これらの
構造は用途に応じているいろと応用変化させることがで
きることを理解すべきである。
In the figure, ■ is a translucent front electrode, 2 is a photoactive layer (1),
3 indicates a photoactive layer (If), 4 indicates a back electrode, 5 indicates a front electrode support, and 6 indicates a back electrode support. It should be understood that these structures can be varied in various ways depending on the application.

[実施例] 本発明をさらに具体的に説明するために以下に実施例を
示すが、本発明はこれに限定されるものではない。
[Examples] Examples are shown below to further specifically explain the present invention, but the present invention is not limited thereto.

実施例1 9 (合成) 蒸留精製したトルエン300m1に金属ナトリウム(メ
ルク製) 33.8gを入れアルゴン気流中で加熱し還
流状態にて高速撹拌し金属ナトリウムのディスバージョ
ンを得た。これに蒸留精製したメチルフエニルジクロロ
シラン1131 と蒸留精製したトルエン1051の混
合溶液を1時間かけて滴下した。滴下終了後100℃で
6時間反応させた。反応終了後室温まで冷却し、析出物
のN a Cl s未反応金属ナフリトムウを濾過した
Example 1 9 (Synthesis) 33.8 g of sodium metal (manufactured by Merck) was added to 300 ml of distilled and purified toluene, heated in an argon stream, and stirred at high speed under reflux to obtain dispersion of sodium metal. A mixed solution of methylphenyldichlorosilane 1131 purified by distillation and toluene 1051 purified by distillation was added dropwise to this over 1 hour. After the dropwise addition was completed, the reaction was carried out at 100° C. for 6 hours. After the reaction was completed, the mixture was cooled to room temperature, and the precipitated NaCl s unreacted metal Naphriteum was filtered.

得られた無色のトルエン溶液を数回水洗し、4交のメタ
ノール中に滴下し、白色粉末のポリ(メチルフェニルシ
ラン)を得た。
The obtained colorless toluene solution was washed with water several times and added dropwise to four-merged methanol to obtain white powder poly(methylphenylsilane).

このポリシランを十分減圧加熱乾燥したところ収量は4
1.5g 、収量49%であった。
When this polysilane was sufficiently dried by heating under reduced pressure, the yield was 4.
1.5 g, yield 49%.

このポリシランをテトラヒドロフラン/イソプロピルア
ルコール(1/3〜1)で数回再沈精製した。この精製
されたポリ(メチルフェニルシラン)は重量平均分子量
(M w −110000)であった。
This polysilane was purified by reprecipitation several times with tetrahydrofuran/isopropyl alcohol (1/3 to 1). This purified poly(methylphenylsilane) had a weight average molecular weight (M w -110,000).

0 (成膜) 下記の構造のアゾ顔料1.8g上記ポリ(メチルフェニ
ルシラン)樹脂の5%テトラヒドロフラン溶液18gと
を3日間ボールミリングした後にテトラヒドロフランで
更に希釈し、固形分濃度5wt%の塗布液を作製した。
0 (Film formation) 1.8 g of azo pigment with the following structure and 18 g of a 5% tetrahydrofuran solution of the above poly(methylphenylsilane) resin were ball-milled for 3 days, and then further diluted with tetrahydrofuran to form a coating solution with a solid content concentration of 5 wt%. was created.

この塗布液に、インジウムをドープした酸化スズ膜(以
下ITOと称する)を設けたガラス基板を浸漬し、51
+1111/秒の速度で基板をひきあげ、ITO基板上
に塗膜を設けた。
A glass substrate provided with an indium-doped tin oxide film (hereinafter referred to as ITO) was immersed in this coating solution.
The substrate was pulled up at a speed of +1111/sec to form a coating film on the ITO substrate.

この上に、波長5BOnmの光に対する透過率が約5,
7%になる様に半透明のアルミニウムを真1 空蒸着した後、ITOとアルミニウムに銀ペーストにて
銅の細線を接続した。
In addition, the transmittance for light with a wavelength of 5BOnm is approximately 5,
After vacuum-evaporating translucent aluminum to a concentration of 7%, thin copper wires were connected to the ITO and aluminum using silver paste.

この試料に対し、AI電極側から5TiOnmの単色光
を照射(顔料分散膜に到達した光量Pin’を1.6μ
シ/C−に設定)しながら、画電極に8mv/秒で掃引
されるランプ波を印加して電流−電圧特性を測定した。
This sample was irradiated with 5 TiOnm monochromatic light from the AI electrode side (the amount of light Pin' that reached the pigment dispersion film was 1.6μ
The current-voltage characteristics were measured by applying a ramp wave swept at 8 mv/sec to the picture electrode while setting the current-voltage characteristics to C/C-.

その結果 Voc−0,89V Jsc−75,8nA/ ci ff−0,28 であった。the result Voc-0,89V Jsc-75,8nA/ci ff-0,28 Met.

電極の透過率を補正した560nmにおける光電変換特
性(η′)は1.18%であった。
The photoelectric conversion characteristic (η') at 560 nm after correcting the transmittance of the electrode was 1.18%.

実施・例2 実施例1のポリ(メチルフェニルシラン)樹脂を同様に
合成したポリ(n−ブチルメチルシラン)樹脂に変えた
以外は実施例1と同様に試料を作製した。
Implementation/Example 2 A sample was prepared in the same manner as in Example 1, except that the poly(methylphenylsilane) resin in Example 1 was replaced with a similarly synthesized poly(n-butylmethylsilane) resin.

この試料に5BOnmの単色光をAI電極側から入射(
Pin’ −1,6μv/cn12) L、実施例1と
同2 様に光電変換効率を測定したところ下記のような結果が
得られた。
Monochromatic light of 5BOnm is incident on this sample from the AI electrode side (
Pin' -1,6 μv/cn12) L, the photoelectric conversion efficiency was measured in the same manner as in Example 1 and 2, and the following results were obtained.

Voc−0,93V Jsc−87,3nA/ at ff= 0.27 η −1,37% 実施例3 実施例1のポリ(メチルフェニル)樹脂を同様に合成し
たポリシランスチレンに変えた以外は実施例1と同様に
試料を作製した。
Voc-0,93V Jsc-87,3nA/at ff=0.27 η -1,37% Example 3 Example except that the poly(methylphenyl) resin in Example 1 was changed to polysilane styrene synthesized in the same manner. A sample was prepared in the same manner as in Example 1.

この試料に580nmの単色光をAI電極から入射(P
in’ −1,6u v/c4) L、、、実施例1と
同様に光電変換特性を測定したところ下記の様な結果が
得られた。
Monochromatic light of 580 nm is incident on this sample from the AI electrode (P
in' -1,6u v/c4) L... When the photoelectric conversion characteristics were measured in the same manner as in Example 1, the following results were obtained.

VocJ、95 V JsC−71,7nA/ cJ ff−0,27 η −1,15% 比較例1 ポリシラン樹脂のかわりにブチラール樹脂 3 (UCC社XY、HL)を使用した以外は実施例1と同
様に試料を作製し5BOnmの単色光をAI電極から入
射(Pin°= 1 、6μw/cm’ ) L テ、
同様に光電変換効率を測定したところ下記の様な結果が
得られた。
VocJ, 95 V JsC-71,7nA/cJ ff-0,27 η -1,15% Comparative Example 1 Same as Example 1 except that butyral resin 3 (UCC XY, HL) was used instead of polysilane resin. A sample was prepared at
When the photoelectric conversion efficiency was similarly measured, the following results were obtained.

Voc−0,91V Jsc−48,5nA/ cJ f’f’= 0.21 η −0,58% 実施例4 実施例1のアゾ顔料を下記の構造のアゾ顔料に変えた以
外は実施例1と同様に試料を作製した。
Voc-0,91V Jsc-48,5nA/cJ f'f'=0.21 η -0,58% Example 4 Example 1 except that the azo pigment in Example 1 was changed to an azo pigment with the following structure. A sample was prepared in the same manner.

この試料に580nmの単色光をAl電極側から入射(
Pin’ −1,6u w/cJ) L、実施例1と同
様に光電変換効率を測定したところ下記の様な結果が得
られた。
Monochromatic light of 580 nm is incident on this sample from the Al electrode side (
Pin' -1,6u w/cJ) L. When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voc−0,87V Jsc−52,1nA/ c/ ff= 0.24 4 η −= 0.68% 比較例2 ポリシラン樹脂のかわりにブチラール樹脂(UCC社X
YHL)を使用した以外は実施例4と同様に試料を作製
し、560nmの単色光をITo電極から入射(Pin
’−1,6μw/ca2) して同様に光電変換効率を
測定したところ下記の様な結果が得られた。
Voc-0,87V Jsc-52,1nA/c/ff=0.244 η-=0.68% Comparative Example 2 Butyral resin (UCC Company X) was used instead of polysilane resin.
A sample was prepared in the same manner as in Example 4 except that 560 nm monochromatic light was incident from the ITo electrode (Pin
'-1.6 μw/ca2) and similarly measured the photoelectric conversion efficiency, and the following results were obtained.

Voc−0,82V Jse−2,B4nA/ cJ rr= 0.26 η”−(1,03B% 5 実施例5 実施例1のアゾ顔料を下記の構造のアゾ顔料に変えた以
外は実施例1と同様に試料を作製した。
Voc-0,82V Jse-2,B4nA/cJ rr=0.26 η”-(1,03B% 5 Example 5 Example 1 except that the azo pigment in Example 1 was changed to an azo pigment with the following structure. A sample was prepared in the same manner.

この試料に580nmの単色光をAxrB極側がら入射
(Pin’−1,6μw/cJ) L、実施例1と同様
に光電変換効率を測定したところ下記の様な結果が得ら
れた。
Monochromatic light of 580 nm was incident on this sample from the AxrB pole side (Pin'-1, 6 μw/cJ), and the photoelectric conversion efficiency was measured in the same manner as in Example 1, and the following results were obtained.

Voc−0,84V Jsc−40,4nA/ cuY rf’= 0.25 η = 0.53%  6 比較例3 ポリシラン樹脂のかわりにブチラール樹脂(UCC社X
YHL)を使用した以外は実施例5と同様に試料を作製
し、580nmの単色光を!To電極から入射(Pin
’=1.54μw/cm2) シて同様に光電変換効率
を測定したところ下記の様な結果が得られた。
Voc-0,84V Jsc-40,4nA/cuY rf' = 0.25 η = 0.53% 6 Comparative Example 3 Butyral resin (UCC Co., Ltd.
A sample was prepared in the same manner as in Example 5 except that YHL) was used, and monochromatic light of 580 nm was applied! Incident from the To electrode (Pin
' = 1.54 μw/cm2) When the photoelectric conversion efficiency was similarly measured, the following results were obtained.

Voc−0,74V Jsc−2,4BnA/ c+1f ff−0,22 η −0,02[f% 実施例6 実施例1のアゾ顔料を下記の構造のアゾ顔料に変えた以
外は実施例1と同様に試料を作製した。
Voc-0,74V Jsc-2,4BnA/ c+1f ff-0,22 η -0,02 [f% Example 6 Same as Example 1 except that the azo pigment in Example 1 was changed to an azo pigment with the following structure. A sample was prepared in the same manner.

この試料にHOrvの単色光をAI電極側から入射(P
jn’ −1,[i u v/cd) シ、実施例1と
同様に光電変換効率を測定したところ下記の様な結果が
得られた。
HOrv monochromatic light is incident on this sample from the AI electrode side (P
jn' -1, [i uv/cd) When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voc−0,82V 7 Jsc−41,2nA/cJ ff−0,27 比較例4 ポリシラン樹脂のかわりにブチラール樹脂(UCC社X
YHL)を使用した以外は実施例6と同様に試料を作製
し、13Hnmの単色光をAI電極から入射(n’= 
1 、6μw/cm’ ) L、、て同様に光電変換効
率を測定したところ下記の様な結果が得られた。
Voc-0,82V 7 Jsc-41,2nA/cJ ff-0,27 Comparative Example 4 Butyral resin (UCC X
A sample was prepared in the same manner as in Example 6 except that 13Hnm monochromatic light was incident from the AI electrode (n'=
1,6 μw/cm') L,... When the photoelectric conversion efficiency was similarly measured, the following results were obtained.

VocJ、74 V Jsc−8,78nA/ cJ ff−0,32 η = 0.13% 実施例7 8 実施例1のアゾ顔料をβ型銅フタロシアニンに変えた以
外は実施例1と同様に試料を作製した≧ この試料に620nmの単色光をA1電極側がら入射(
IJn’= 1 、8μw/d) L、実施例1と同様
に光電変換効率を測定したところ下記の様な結果が得ら
れた。
VocJ, 74 V Jsc-8,78nA/cJ ff-0,32 η = 0.13% Example 7 8 A sample was prepared in the same manner as in Example 1 except that the azo pigment in Example 1 was changed to β-type copper phthalocyanine. Monochromatic light of 620 nm was incident on this sample from the A1 electrode side (
IJn'=1, 8 μw/d) L. When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voc−0,85V J s c −64、7n A / cd1’f’−0
,23 η −0,79% 比較例5 ポリシラン樹脂のかわりにブチラール樹脂(UCC社X
YHL)を使用した以外は実施例7と同様に試料を作製
し、B2Onmの単色光をAI電極から入射(Pin’
 −1、5μv/cm’ ) シて同様に光電変換効率
を測定したところ下記の様な結果が得られた。
Voc-0,85V J sc -64,7n A/cd1'f'-0
,23 η -0,79% Comparative Example 5 Butyral resin (UCC X
A sample was prepared in the same manner as in Example 7 except that B2Onm monochromatic light was incident from the AI electrode (Pin'
-1,5 μv/cm') When the photoelectric conversion efficiency was similarly measured, the following results were obtained.

Voc−0,72V Jsc−10,4nA/ cJ 9 fT−0,26 η  = O,ta% [発明の効果] 以上述べた様に、本発明によれば、ポリシラン樹脂と可
視光領域に光吸収を有する光導電性有機半導体を含む光
活性層により、高い光電流を示し、かつ安価で大面積の
光電変換素子が達成できる。
Voc-0,72V Jsc-10,4nA/cJ 9 fT-0,26 η = O,ta% [Effects of the Invention] As described above, according to the present invention, the polysilane resin absorbs light in the visible light region. By using a photoactive layer containing a photoconductive organic semiconductor having a photoconductive organic semiconductor, a photoelectric conversion element that exhibits a high photocurrent, is inexpensive, and has a large area can be achieved.

このため、従来、単独またはバインダーとの混合系で、
低い光電流のため使用不可であった光導電性有機半導体
も有効に利用できる様になり、材料の選択範囲を広げる
ことができる。
For this reason, conventionally, alone or in combination with a binder,
Photoconductive organic semiconductors, which were previously unusable due to their low photocurrent, can now be used effectively, expanding the range of materials to choose from.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜第3図すは本発明の光電変換素子の断面を示
す概略図である。 ■・・・透光性フロント電極、2・・・光活性層(I)
、3・・・光活性層(■)4・・・背面電極、5・・・
フロント電極支持体、 6・・・背面電極支持体。  0 第 1 図す 才 図b
FIGS. 1a to 3 are schematic diagrams showing cross sections of the photoelectric conversion element of the present invention. ■...Transparent front electrode, 2...Photoactive layer (I)
, 3... Photoactive layer (■) 4... Back electrode, 5...
Front electrode support, 6... Back electrode support. 0 1st diagram b

Claims (1)

【特許請求の範囲】[Claims] 透光性フロント電極、光活性層及び背面電極を有する光
電変換素子において、前記光活性層が少なくとも有機半
導体及びポリシラン樹脂を含有することを特徴とする光
電変換素子。
A photoelectric conversion element having a translucent front electrode, a photoactive layer, and a back electrode, wherein the photoactive layer contains at least an organic semiconductor and a polysilane resin.
JP1257657A 1989-10-04 1989-10-04 Photo-electric transducer Pending JPH03120763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1257657A JPH03120763A (en) 1989-10-04 1989-10-04 Photo-electric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1257657A JPH03120763A (en) 1989-10-04 1989-10-04 Photo-electric transducer

Publications (1)

Publication Number Publication Date
JPH03120763A true JPH03120763A (en) 1991-05-22

Family

ID=17309297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1257657A Pending JPH03120763A (en) 1989-10-04 1989-10-04 Photo-electric transducer

Country Status (1)

Country Link
JP (1) JPH03120763A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508547A (en) * 2002-11-19 2006-03-09 ダニエルズ、ジョン Organic and inorganic photoactive device and method for producing the same
JP2010028138A (en) * 2009-10-30 2010-02-04 U-Tec Corp Method of manufacturing photovoltaic element
JP2010073831A (en) * 2008-09-17 2010-04-02 Ricoh Co Ltd Organic thin film transistor
JP2012516573A (en) * 2009-01-29 2012-07-19 ファースト ソーラー インコーポレイテッド Photovoltaic power generation device having improved crystal orientation
JP2019068018A (en) * 2017-10-05 2019-04-25 大阪ガスケミカル株式会社 Photoelectric conversion element and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508547A (en) * 2002-11-19 2006-03-09 ダニエルズ、ジョン Organic and inorganic photoactive device and method for producing the same
JP2010073831A (en) * 2008-09-17 2010-04-02 Ricoh Co Ltd Organic thin film transistor
JP2012516573A (en) * 2009-01-29 2012-07-19 ファースト ソーラー インコーポレイテッド Photovoltaic power generation device having improved crystal orientation
JP2010028138A (en) * 2009-10-30 2010-02-04 U-Tec Corp Method of manufacturing photovoltaic element
JP2019068018A (en) * 2017-10-05 2019-04-25 大阪ガスケミカル株式会社 Photoelectric conversion element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Tsuzuki et al. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment
EP1526159B1 (en) Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
US4175982A (en) Photovoltaic cell
US20070085051A1 (en) Novel hole transporting material and solid electrolyte and photovoltaic device using same
JPH11265738A (en) Photo semiconductor electrode and photocell using it
KR102571879B1 (en) Sensitizing dye, sensitizing dye composition for photoelectric conversion, photoelectric conversion device using the same, and dye-sensitized solar cell
US4992109A (en) Photoelectric conversion element
JPH03120763A (en) Photo-electric transducer
JPH01154571A (en) Photoelectric converter
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JPH01208873A (en) Photoelectric converter
JP2002222970A (en) Photoelectric converter and its manufacturing method
JP4977358B2 (en) Photovoltaic element and manufacturing method thereof
JP3870424B2 (en) Organic photoconductor and device
JP3288472B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH01165177A (en) Photoelectric converter
JP2756711B2 (en) Photoelectric conversion power generation element
JPH01168070A (en) Photoelectric conversion device
JPH01154572A (en) Photoelectric converter
CN110167911A (en) Hole transport organic molecules for the group containing enamine of photoelectron and photoelectrochemicalcell cell
JPH01154573A (en) Photoelectric converter
JPH01215069A (en) Photoelectric conversion element
JPH01166575A (en) Photoelectric converter
JP2516750B2 (en) Photoelectric conversion element
JPH0198266A (en) Photoelectric converter element