JPH03120410A - Automatic driving type comparative measuring instrument - Google Patents

Automatic driving type comparative measuring instrument

Info

Publication number
JPH03120410A
JPH03120410A JP25751089A JP25751089A JPH03120410A JP H03120410 A JPH03120410 A JP H03120410A JP 25751089 A JP25751089 A JP 25751089A JP 25751089 A JP25751089 A JP 25751089A JP H03120410 A JPH03120410 A JP H03120410A
Authority
JP
Japan
Prior art keywords
axis
measured
probe
slider
axis slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25751089A
Other languages
Japanese (ja)
Inventor
Munehiro Sensei
宗弘 先生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENJIYOU SEIKI KK
Original Assignee
SENJIYOU SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENJIYOU SEIKI KK filed Critical SENJIYOU SEIKI KK
Priority to JP25751089A priority Critical patent/JPH03120410A/en
Publication of JPH03120410A publication Critical patent/JPH03120410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure small quantities/comprising many kinds of products efficiently by detecting measurement data on the object to be measured at a desired measurement point, and comparing the data with the measured value of a model measured body which has been measured and stored previously and calculating and displaying the deviation quantity. CONSTITUTION:A mount rack 1 for the body 5 to be measured which is freely slidable in an X-axis direction is provided on 1st rails 3 and 3' provided on a base 2 and a Y-axial slider 9 provided on 2nd rails 8 and 8' perpendicular to the X axis is racked slidably on a corresponding fixation base 6. A Z-axial slider 11 which moves vertically is engaged with the front of the slider 9 and a probe 13 is mounted at its lower end. The mount rack 1 and sliders 9 and 11 are driven by synchronous driving devices and the probe 13 is enabled to move efficiently in the composite direction of three axes X, Y, and Z. Further, the probe 13 is put in operation for tracking the specific measurement point of the model measured body and then the quantities of relative displacement from the model measured body measurement data are measured by movement quantity readers provided at respective parts and compared with the signal from a probe measuring element 14 to display and record the results.

Description

【発明の詳細な説明】 〔産業上の利用分野とその目的〕 本発明は、直交座標系の案内をもつ三次元測定法に係り
、特に予めプログラミングされた所望の計測点に於ける
測定対象物の計測データを能動的に検出すると共に、こ
れを予め計測記憶したモデル測定物の計測値と比較して
、その偏差量を演算表示する自動駆動型比較測定機に関
し、多種少量生産品の能率的な計測を可能とする生産ラ
イン用の安価な計測機を提供するところにある。
[Detailed description of the invention] [Industrial field of application and its purpose] The present invention relates to a three-dimensional measurement method with guidance in an orthogonal coordinate system, and in particular, to a three-dimensional measurement method with guidance in a Cartesian coordinate system, and in particular to a three-dimensional measurement method with guidance in a Cartesian coordinate system, and in particular, to The automatic drive comparison measuring machine actively detects the measured data of the model object, compares it with the measured value of the model measurement object stored in advance, and calculates and displays the amount of deviation. Our goal is to provide an inexpensive measuring machine for production lines that enables accurate measurements.

〔従来の技術とその問題点〕[Conventional technology and its problems]

石定盤などの超精密加工された測定台上に載置する測定
対象物に対して、測定機本体に支持されたプロー4′を
、気体式スライドや永久磁石などを組合せた精密移動機
構によって三次元的に相対移動させ、前記測定対象物の
測定面とプローブ測定子との相対移動量を検出して、こ
の検出信号をデータ処理装置で処理することにより、測
定対象物の形状或いは寸法等を計測するようにした三次
元測定機が公知であり、測定対象物の所定の測定点毎に
プローブの測定子を接触などさせるため、前記移動機構
を測定作業者が手作*iA動する手動型と、移動機構に
モータなどを利用して移動させる自動駆動型とがある。
For measuring objects placed on ultra-precision machined measuring tables such as stone surface plates, the probe 4' supported by the measuring machine body is moved by a precision movement mechanism that combines a gas slide and permanent magnets. By moving the object three-dimensionally, detecting the amount of relative movement between the measurement surface of the object and the probe head, and processing this detection signal with a data processing device, the shape, dimensions, etc. of the object can be determined. A three-dimensional measuring machine is known which is designed to measure the movement of the measuring object. There are two types: a type and an automatic drive type that uses a motor or the like as a moving mechanism.

しかしこの両方式を問わず三次元測定機は、プローブの
測定子と測定対象物とを測定機の構造上、定められたX
−Y−Z三直交軸の合成方向へ相対移動させるため、夫
々の測定点毎に測定機原点からの座標値を求め、これら
のデータを所定処理するようにしている。
However, regardless of the type of coordinate measuring machine, the measuring point of the probe and the object to be measured are
In order to relatively move in the composite direction of the three orthogonal axes -Y-Z, coordinate values from the origin of the measuring machine are determined for each measurement point, and these data are processed in a prescribed manner.

このため従来の三次元測定機では、精度が高く且つ円滑
な測定子の移動を可能とするためには。
For this reason, in conventional three-dimensional measuring machines, it is necessary to achieve high precision and smooth movement of the measuring stylus.

夫々に剛性度が高く、且つ精密なスライダ機構を集積し
た構成でなければならないため、移動機構部の質量は大
きく、その慣性量も増大するので。
Since each slider mechanism must have a high degree of rigidity and an integrated structure, the mass of the moving mechanism is large and its inertia also increases.

スピーデイな移動と、計測点への定圧追従性とには相反
するものがあった。
There was a conflict between speedy movement and constant pressure follow-up to the measurement point.

〔問題を解決するための手段および作用〕このため本発
明に係る自動駆動型比較計測機は。
[Means and effects for solving the problem] Therefore, the automatic drive type comparison measuring machine according to the present invention is.

充分な間隔を保ってベース上に条設した第一レール上に
、X軸方向の摺動を自在とした測定対象物の載架台を設
け、これと対応するベースの固定台上部に、X軸と直交
し且つ充分な間隔を保って第二レールを条設したY軸ス
ライダを摺動自在に架設し、このY軸スライダの前側に
垂直方向に移動する2軸スライダを係合して、その下端
にプローブを装着した三次元移動装置に於て、x、y、
z軸方向に移動する載架台及びY、Z軸各スライダの駆
動を、モータやねじ軸などによって構成し、且つ学修機
能を有する多軸コントローラと連結構成された夫々の同
期駆動装置により行なうことによって、x−y−z三軸
合成方向へのプローブの能動的な移動を、安価な装置に
より可能とすると共に、モデル測定物の所定の計測点を
追従軌動する動作をプローブに与えることにより、ベー
スと載架台、固定台とY軸スライダ及び、Y軸スライダ
上の保持体と2軸スライダとの間に設けた夫々の移動量
読み取り装置により、モデル測定物計測データとの相対
変位量を計測し、これをプローブ測定子からの信号と共
に比較演算して表示、または記録することができるよう
にしたものである。
A mounting stand for the measurement target that can freely slide in the X-axis direction is installed on the first rail provided on the base at sufficient intervals. A Y-axis slider with a second rail provided perpendicularly to the line and at a sufficient interval is slidably installed, and a two-axis slider that moves vertically is engaged with the front side of this Y-axis slider. In a three-dimensional movement device with a probe attached to the bottom end, x, y,
By driving the mounting frame that moves in the Z-axis direction and the sliders on the Y and Z axes using motors, screw shafts, etc., and using respective synchronous drive devices connected to a multi-axis controller with a learning function. , by making it possible to actively move the probe in the x-y-z three-axis composite direction using an inexpensive device, and by giving the probe the motion of following a predetermined measurement point of the model measurement object. The displacement amount relative to the model measured object measurement data is measured by the respective movement amount reading devices installed between the base and the mounting frame, the fixed table and the Y-axis slider, and the holding body on the Y-axis slider and the two-axis slider. However, this can be compared with the signal from the probe measuring head and displayed or recorded.

【実施例〕【Example〕

本発明の実施例を図面について説明すると、図中1はベ
ース2上に充分な間隔を保って条設した第一レール3.
3′と直動ブロック4,4mにより係合し、充分な精度
を保持しつhzz軸方向摺動自在とした測定対象物5の
載架台で、これに対設する固定台6をベース2の中央部
後側に立設する。固定台6の上部には直動ブロック7.
7′と係合し、且つ充分な間隔を保って条設した第二レ
ール8,8′により前記X軸と直交するY軸方向に摺動
自在としたY軸スライダ9を架設し、その前側に支持台
10などを介して垂直方向の昇降を自在とした2軸スラ
イダ11の保持体12を装着する。2軸スライダ11の
延長下端にはプローブ13を設けて、その測定子14を
前記載架台1上の測定対象物5に対応させ、測定対象物
5の計測面に当接するプローブ測定子14の三次元的な
移動を可能としている。
An embodiment of the present invention will be described with reference to the drawings. In the drawings, 1 indicates a first rail 3.
3' and the linear motion blocks 4, 4m, and is a stand for the measuring object 5 that can freely slide in the hzz axis direction while maintaining sufficient accuracy. Installed at the rear of the center. A linear motion block 7 is mounted on the top of the fixed base 6.
A Y-axis slider 9 that is slidable in the Y-axis direction perpendicular to the X-axis is constructed by means of second rails 8, 8' that engage with the slider 7' and are provided at a sufficient interval. A holder 12 for a two-axis slider 11, which can freely move up and down in the vertical direction, is attached via a support stand 10 or the like. A probe 13 is provided at the lower end of the extension of the two-axis slider 11, and its measuring point 14 is made to correspond to the measuring object 5 on the pedestal 1, and the tertiary probe measuring point 14 is in contact with the measuring surface of the measuring object 5. It allows for original movement.

またベース2に対する載架台1のX軸方向への移動や、
VA定置台6対するスライダ9のY軸方向への移動及び
支持台10に設けた保持体12に対するスライダ11の
2軸方向への移動は、モータやねじ軸などによって構成
され、且つ学修機能を有する多軸コントローラ15と連
結構成された夫々の同期駆動装置116,17.18に
より行われる。
Also, the movement of the mounting table 1 in the X-axis direction with respect to the base 2,
The movement of the slider 9 in the Y-axis direction with respect to the VA stationary table 6 and the movement of the slider 11 in the two-axis direction with respect to the holder 12 provided on the support table 10 are configured by a motor, a screw shaft, etc., and have a learning function. This is performed by respective synchronous drive devices 116, 17, and 18 connected to the multi-axis controller 15.

プローブ13の測定対象物5に対するX軸方向への相対
移動量は、ベース2と載架台1との間に設けたX軸移動
量読み取り装置!19により検出され、またプローブ1
3の測定対象物5に対するY軸方向及びz軸方向の各相
対移動量は、ベース2上の固定台6と、スライダ9との
間に設けたY軸移動量読み取り装ff20.及び保持体
12とスライダ11との間に設けた2軸移動量読み取り
装置21によって検出される。
The amount of relative movement of the probe 13 to the object to be measured 5 in the X-axis direction is determined by an X-axis movement amount reading device provided between the base 2 and the mounting table 1! 19 and probe 1
The relative movement amounts in the Y-axis direction and the Z-axis direction with respect to the measurement target 5 in No. 3 are determined using a Y-axis movement amount reading device ff20.3 provided between the fixed table 6 on the base 2 and the slider 9. and is detected by a two-axis movement amount reading device 21 provided between the holder 12 and the slider 11.

x、y、z軸の各移動量読み取り装置I!19.20.
21からの信号は、各別の検出回路22.23゜24及
びカウンタ25.26.27を経てデータ処理袋れ28
に取り込まれる一方、x−y−z軸の各同期駆動装M1
6.17.18と接続された多軸コントローラ15は、
所定の動作指令を出力する学修機能器(ティーチング・
ボックス)29と接続されると共に前記データ処理装置
f!28と接続されており、更にプローブ13からの三
軸方向の信号が各別のカウンタ25.26.27に伝送
されるので、これ等の信号を受けたデータ処理装置!2
8は、所定の比較演算処理を行ない、必要データを表示
装置130或いは記録装置!31に出力するようになっ
ている。
Movement amount reading device I for x, y, and z axes! 19.20.
The signal from 21 passes through separate detection circuits 22, 23, 24 and counters 25, 26, 27 to data processing block 28.
On the other hand, each synchronous drive unit M1 of the x-y-z axes
The multi-axis controller 15 connected to 6.17.18 is
A learning function device (teaching/
box) 29 and the data processing device f! 28, and the three-axis signals from the probe 13 are transmitted to the respective counters 25, 26, and 27, so the data processing device that receives these signals! 2
8 performs predetermined comparison calculation processing and displays necessary data on a display device 130 or a recording device! 31.

本発明は上記の様に構成されているので、先ずモデル測
定物(マスター)を載架台1上に固定し、この計測面に
於ける所望の測定点に測定子14が接触軌動する様な動
作をプローブ13に付与させるため、各多軸駆動装w1
5.16.17にX−Y−Z座標値量の相関的な信号を
多軸コントローラ15から発信させる。
Since the present invention is constructed as described above, first, the model measurement object (master) is fixed on the mounting table 1, and the measurement head 14 is moved in such a way that it comes into contact with a desired measurement point on the measurement surface. In order to impart motion to the probe 13, each multi-axis drive device w1
5.16.17, the multi-axis controller 15 transmits a signal correlating the amount of X-Y-Z coordinate values.

この初期のマスター測定点軌動制御に必要な指令は、学
修機能器29がLCDデイスプレィとの対話式オペレー
ションにより、ポイント自ツー・ポイント測定法や、そ
の他の測定法に準処した所望の測定点に対応する指令を
、多軸コントローラー5に付与することにより行なわれ
ると同時に、再度の同一軌跡制御を得るためのメモリー
・カー\ ドへの記録も行なわれる。
The commands necessary for this initial master measurement point trajectory control are provided by the learning function device 29 through interactive operation with the LCD display to determine the desired measurement point conforming to the point-to-point measurement method or other measurement methods. This is done by giving a corresponding command to the multi-axis controller 5, and at the same time, recording to the memory card is also done in order to obtain the same trajectory control again.

プローブ13の前記モデル測定物への追跡軌動は、X−
Y−Z軸の相対移動量を検出する夫々の読み取り装fi
19,20.21により読み取られ、各別の検出回路2
2.23.24及びカウンタ25゜26.27に伝送さ
れると共に、プローブ先端の測定子14からの信号は、
プローブ13の追跡軌動と測定子140当接測定点との
誤差値を夫々のカウンタ25.26.27に与え、プロ
ーブ13の軌動測定点の誤差補正がなされたモデル測定
物の正確な測定値が、デー処理袋W28に記憶される。
The tracking trajectory of the probe 13 to the model measurement object is X-
Each reading device fi detects the amount of relative movement of the Y-Z axes.
19, 20, 21, each separate detection circuit 2
2.23.24 and the counter 25°26.27, and the signal from the probe tip 14 is
The error values between the tracking trajectory of the probe 13 and the contact measurement point of the probe 140 are given to the respective counters 25, 26, and 27, and the error of the trajectory measurement point of the probe 13 is corrected for accurate measurement of the model measurement object. The value is stored in the data processing bag W28.

上述の様な準備操作の後、載架台1上の所定位置に測定
対象物5を固定し、多軸コントローラ15から所定の動
作信号を発信させれば、2軸スライダ11の下端に装着
したプローブ13は、前記マスターの所定測定点軌動に
応じたX−Y−Z軸法向の合成運動を行ない、その変位
置をX、Y、Z軸夫々の移動量読み取り装置i!19,
20,21が読み取り、各別の検出回路22.23,2
4を通して夫々のカウンタ25.26,27に伝送する
と同時に、プローブ測定子14が測定対象物5と当接す
る変位量も、カウンタ25,26.27に伝送されるの
で、これ等の数値の演算結果がデータ処理袋!!28に
付与される。この計測データを送り込まれたデータ処理
装置!28は、X−Y−Z軸夫々の数値を、前記の記憶
済マスター計測データと比較演算して、その増減値を表
示装fi30に送り、また必要に応じて記録装置!31
によりその数値をプリントアウトすることができる。
After the preparation operations described above, the object to be measured 5 is fixed at a predetermined position on the mounting table 1 and a predetermined operation signal is sent from the multi-axis controller 15, and the probe attached to the lower end of the two-axis slider 11 13 performs a composite movement in the direction of the X-Y-Z axes according to the trajectory of the predetermined measurement point of the master, and detects the position change using a device i! that reads the amount of movement of each of the X, Y, and Z axes. 19,
20, 21 read, each separate detection circuit 22, 23, 2
4 to the respective counters 25, 26, 27, and at the same time, the amount of displacement of the probe contact point 14 in contact with the object to be measured 5 is also transmitted to the counters 25, 26, 27, so the calculation results of these numerical values are is a data processing bag! ! Granted to 28. The data processing device into which this measurement data was sent! 28 compares and calculates the numerical values of each of the X-Y-Z axes with the stored master measurement data, and sends the increase/decrease value to the display device fi30, and if necessary, to the recording device! 31
You can print out the numbers.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した様に構成、動作するもので、測定
対象物の計測動作は、三次元的な絶対値を測定するもの
ではなく、量産工程中是認されたモデル測定物との比較
測定値を読み取り、これが製作品の希望公差値内にある
かを短時間に判別することができるものである。このた
めプローブの三次元的な動作は、製品のモデル測定物に
台わせて予め学修記憶されたデータに基づき行なわれ。
The present invention is configured and operates as described above, and the measurement operation of the object to be measured does not measure the three-dimensional absolute value, but rather compares measured values with a model measurement object approved during the mass production process. It is possible to read this and determine in a short time whether it is within the desired tolerance value for the manufactured product. For this reason, the three-dimensional movement of the probe is performed based on data that has been learned and stored in advance by mounting it on a product model to be measured.

且つその誤差値をプローブ測定子の検出値と、データ処
理装置内の記憶数値と比較演算した後出力するものであ
り、製品公差との比較に於て、良品不良品の判別が正確
且つ容易に行なわれる。
In addition, the error value is output after comparing and calculating the detected value of the probe measuring head and the numerical value stored in the data processing device, making it possible to accurately and easily distinguish between good and defective products when comparing product tolerances. It is done.

またこの様な比較演算処理計測方式を採るためX、Y、
Z軸方向の動きは、従来の気体スライドや石定盤軌条を
使用した精密な移動機構を有する測定機と比較して、数
段安価に製作することができるし、多品種生産品の計測
に際しても、予め夫々のモデル動作用メモリー・カード
を準備して置けば、測定物の変更にも容易に対処するこ
とができる。
In addition, in order to adopt such a comparison calculation processing measurement method, X, Y,
The movement in the Z-axis direction can be produced much cheaper than measuring machines with precision movement mechanisms using conventional gas slides or stone surface plate rails, and it is useful when measuring a wide variety of manufactured products. However, if a memory card for operating each model is prepared in advance, changes in the object to be measured can be easily handled.

更にプローブのマスター測定点軌跡追従運動を行なわせ
るためのx、y、z軸夫々の駆動装置は。
Furthermore, there are drive devices for each of the x, y, and z axes for causing the probe to move to follow the trajectory of the master measurement point.

プローブ測定子の軌跡偏位量検出機能の補正作用によっ
て、測定点への正確な追従動作を必要としないため、比
較的安価な駆動部材で構成することができるなど、この
種計測機の表示精度の向上及び製作コストの低減に効果
を奏するものである。
Due to the correction effect of the trajectory deviation detection function of the probe measuring point, there is no need for accurate tracking of the measurement point, so it can be configured with relatively inexpensive drive members, and the display accuracy of this type of measuring instrument is improved. This is effective in improving performance and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る計測機の正面図、第2図は同側面
図、第3図は計測機の電気的構成を示すブロック図であ
る。 1・・・載架台。 2・・・ベース。 5・・・測定対象物。 6・・・固定台。 9・・・Y軸スライダ。 11・・・2軸スライダ。 13・・・プローブ。 16・・・X軸方向の同期駆動装置。 17・・・Y軸方向の同期駆動装置。 18・・・Z軸方向の同期駆動装置。 19 ・ 20 ・ 21 ・ 28 ・ 30 ・ 31 ・ X軸の移動量読み取り装置。 Y軸の移動量読み取り装置。 Z軸の移動量読み取り装置。 データ処理装置。 表示装置。 記録装置。
FIG. 1 is a front view of a measuring device according to the present invention, FIG. 2 is a side view of the same, and FIG. 3 is a block diagram showing the electrical configuration of the measuring device. 1... Mounting stand. 2...Base. 5...Measurement object. 6...Fixed stand. 9...Y-axis slider. 11...2-axis slider. 13... Probe. 16... Synchronous drive device in the X-axis direction. 17...Y-axis direction synchronous drive device. 18... Synchronous drive device in the Z-axis direction. 19 ・ 20 ・ 21 ・ 28 ・ 30 ・ 31 ・ X-axis movement amount reading device. Y-axis movement amount reading device. Z-axis movement reading device. Data processing equipment. Display device. Recording device.

Claims (1)

【特許請求の範囲】[Claims] (1)充分な間隔を保ってベース上に条設した第一レー
ル上に、X軸方向の摺動を自在とした測定対象物の載架
台を設け、これと対応する前記ベースの固定台上に、X
軸と直交し且つ充分な間隔を保って第二レールを条設し
たY軸スライダを摺動自在に架設し、このY軸スライダ
の前側に垂直方向に移動するZ軸スライダを係合して、
その下端にプローブを装着した三次元移動装置に於て、
X、Y、Z軸方向に移動する載架台及びY、Z軸各スラ
イダの駆動を、モータやねじ軸などによって構成し、且
つ学修機能を有する多軸コントローラと連結構成された
夫々の同期駆動装置により行ない、またベースと載架台
、前記固定台とY軸スライダ及び、Y軸スライダに設け
た保持体とZ軸スライダとの間に夫々の移動量読み取り
装置を設け、前記Z軸スライダ下端のプローブ測定子が
測定対象物と当接する位置の相対変位置を、同期駆動装
置が軌跡制御するモデル測定物の計測値と比較演算表示
することを特徴とする自動駆動型比較計測機。
(1) A mounting stand for the measurement target that can freely slide in the X-axis direction is provided on the first rail provided on the base at sufficient intervals, and a mounting stand for the object to be measured is provided on the corresponding fixed stand of the base. , X
A Y-axis slider on which a second rail is provided perpendicularly to the axis and at a sufficient interval is slidably installed, and a Z-axis slider that moves vertically is engaged with the front side of this Y-axis slider,
In a three-dimensional movement device with a probe attached to its lower end,
A synchronous drive device configured to drive a mounting frame that moves in the X, Y, and Z axis directions and each slider in the Y and Z axes using a motor, screw shaft, etc., and that is connected to a multi-axis controller that has a learning function. Furthermore, a movement amount reading device is provided between the base and the mounting table, the fixed table and the Y-axis slider, and a holder provided on the Y-axis slider and the Z-axis slider, and a probe at the lower end of the Z-axis slider is provided. An automatic drive type comparison measuring machine characterized by calculating and displaying the relative displacement of the position where the measuring head contacts the measuring object with the measured value of the model measuring object whose trajectory is controlled by the synchronous drive device.
JP25751089A 1989-10-02 1989-10-02 Automatic driving type comparative measuring instrument Pending JPH03120410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25751089A JPH03120410A (en) 1989-10-02 1989-10-02 Automatic driving type comparative measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25751089A JPH03120410A (en) 1989-10-02 1989-10-02 Automatic driving type comparative measuring instrument

Publications (1)

Publication Number Publication Date
JPH03120410A true JPH03120410A (en) 1991-05-22

Family

ID=17307302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25751089A Pending JPH03120410A (en) 1989-10-02 1989-10-02 Automatic driving type comparative measuring instrument

Country Status (1)

Country Link
JP (1) JPH03120410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536332A (en) * 2006-05-08 2009-10-08 テイラー・ホブソン・リミテッド Measuring instrument for measuring surface properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224005A (en) * 1984-04-20 1985-11-08 Mitsutoyo Mfg Co Ltd Three-dimensional automatic measuring machine
JPS62276405A (en) * 1986-03-04 1987-12-01 ランク・テイラ−・ホブソン・リミテツド Measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224005A (en) * 1984-04-20 1985-11-08 Mitsutoyo Mfg Co Ltd Three-dimensional automatic measuring machine
JPS62276405A (en) * 1986-03-04 1987-12-01 ランク・テイラ−・ホブソン・リミテツド Measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009536332A (en) * 2006-05-08 2009-10-08 テイラー・ホブソン・リミテッド Measuring instrument for measuring surface properties

Similar Documents

Publication Publication Date Title
JP4504818B2 (en) Workpiece inspection method
US6568242B2 (en) System for reducing effects of acceleration induced deflections on measurement made by a machine using a probe
EP1792139B1 (en) The use of surface measurement probes
JP3634275B2 (en) Position measuring device
CA2082790A1 (en) Automated maintenance system for computer numerically controlled machines
JP3827549B2 (en) Probe calibration method and calibration program
EP2085739B1 (en) Probe straightness measuring method
JPS6232302A (en) Three-dimensional measuring method and device
CN110411347B (en) Device and method for detecting instantaneous rotation center of numerical control machine tool workbench
JP3531882B2 (en) Measurement error correction device for CMM
JP5297749B2 (en) Automatic dimension measuring device
US6351313B1 (en) Device for detecting the position of two bodies
CN209649917U (en) A kind of low cost 3 D measuring instrument
JPH03120410A (en) Automatic driving type comparative measuring instrument
JP2987607B2 (en) 3D coordinate measuring machine
JP3042157U (en) Three-dimensional coordinate measuring machine
CN115516389A (en) Processing method
KR100230942B1 (en) Three dimensional comparative measuring apparatus
JP3366052B2 (en) Comparative length measuring device
KR100235769B1 (en) Apparatus for determining acceptability of an object by three dimensional comparision
JP2572660B2 (en) Automatically driven comparison measuring machine
JP2790554B2 (en) Three-dimensional comparative measurement device
JP2982663B2 (en) Three-dimensional measuring method and device
JPH087059B2 (en) Calibration measurement method of circle diameter in comparative measuring machine
JP3064109B2 (en) Articulated comparative measuring device