JPH03120247A - Apparatus for producing alpha,beta-unsaturated nitrile - Google Patents

Apparatus for producing alpha,beta-unsaturated nitrile

Info

Publication number
JPH03120247A
JPH03120247A JP1257899A JP25789989A JPH03120247A JP H03120247 A JPH03120247 A JP H03120247A JP 1257899 A JP1257899 A JP 1257899A JP 25789989 A JP25789989 A JP 25789989A JP H03120247 A JPH03120247 A JP H03120247A
Authority
JP
Japan
Prior art keywords
gas
reactor
dispersion
dispersion tube
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1257899A
Other languages
Japanese (ja)
Inventor
Masanobu Ota
政信 太田
Tetsuo Tanaka
田中 鉄男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1257899A priority Critical patent/JPH03120247A/en
Priority to KR1019910700564A priority patent/KR940007528B1/en
Priority to DE69007965T priority patent/DE69007965T2/en
Priority to EP90914763A priority patent/EP0446379B1/en
Priority to CA002042584A priority patent/CA2042584C/en
Priority to ES90914763T priority patent/ES2051025T3/en
Priority to PCT/JP1990/001279 priority patent/WO1991004961A1/en
Publication of JPH03120247A publication Critical patent/JPH03120247A/en
Priority to SU914895746A priority patent/RU1829957C/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To obtain the subject compound in a high yield by specifying the distance between nozzles in the outermost peripheral part for dispersing a gas and a reactor body wall and mutual positional relationship between the nozzles in the outer peripheral part in reacting propylene, etc., with ammonia and an oxygen-containing gas in the vapor phase in a fluidized bed. CONSTITUTION:(A) Propylene, isobutylene or tert-butyl alcohol is catalytically reacted with (B) ammonia and (C) an oxygen-containing gas in the vapor phase at a high temperature using a fluidized bed reaction catalyst to produce the subject compound having the same number of carbon atoms as that of the compound (A). In the process, a dispersion plate or dispersion tube 4 for the gas (C) and a dispersion tube 3 for a mixed gas of the compounds (A) and (B) are arranged from the bottom of a fluidized bed reactor. The distance between nozzles 6 in the outermost peripheral part of the dispersion tubes 3 and 4 and the reactor body wall 1 is simultaneously set at <=300mm to remarkably improve the fluid state of the catalyst. Furthermore, nozzles 5 in the outer peripheral part of the dispersion tube 3 for the mixed gas of the compounds (A) and (B) are preferably arranged to the central side of the reactor from the nozzles 6 in the outer peripheral part of the dispersion plate 4, etc., for the gas (C). Thereby, the rate of reaction is remarkably improved in the outer peripheral part to afford the objective compound in high yield.

Description

【発明の詳細な説明】 本発明はプロピレン又はイソブチレン又は第3ブチルア
ルコールをアンモキシデーシランによって原料オレフィ
ン又は第3級アルコールと同じ炭素数を有するα・β−
不飽和ニトリルを高収率で製造する装置に関するもので
ある。更に詳しくは流動層でアンモニア、酸素含有ガス
、およびオレフィン又は第3級アルコールを気相反応さ
せて不飽和ニトリル例えばアクリロニトリルやメタクリ
ロニトリルを製造するに際し、酸素含有ガス分散板ある
いは分数管、オレフィン又は第3級アルコールとアンモ
ニアの混合ガス(以後この混合ガスを「オレフィン混合
ガス」と略記する)分散管を有する反応器の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method of converting propylene, isobutylene or tertiary butyl alcohol into alpha- and beta-
This invention relates to an apparatus for producing unsaturated nitriles in high yield. More specifically, when producing an unsaturated nitrile such as acrylonitrile or methacrylonitrile by a gas phase reaction of ammonia, an oxygen-containing gas, and an olefin or tertiary alcohol in a fluidized bed, an oxygen-containing gas distribution plate or a fraction tube, an olefin or This invention relates to an improvement of a reactor having a dispersion tube for a mixed gas of tertiary alcohol and ammonia (hereinafter this mixed gas will be abbreviated as "olefin mixed gas").

従来より気相接触反応によってアンモニ乙 酸素(多く
の場合、空気が用いられる)、およびオレフィン又は第
3級アルコールを反応させて不飽和ニトリルを製造する
場合はは流動層が広く用いられている。しかし、流動層
反応器では流動触媒が反応器中心部で上昇し、反応器本
体壁付近で下降するいわゆる粒子循環流を形成するため
、ガスの逆混合、吹抜けなど触媒との接触効率が低下し
て反応率の低下を招来し、触媒の能力を充分に発揮させ
ることができないという重大な欠点を有する。そのため
従来から流動改善の目的で流動層内部に多孔[等の構造
物を設は気泡の再分散化を行ってきた。しかし、気泡の
再分散を行うとこの部分における圧損の増大、あるいは
粒子の落下不足等により内部an物の下部に反応ガス滞
留部が生じ目的生成物の収車低下を招来するため適切で
ない。
Conventionally, fluidized beds have been widely used to produce unsaturated nitriles by reacting ammonia, oxygen (often air is used), and olefins or tertiary alcohols through a gas phase catalytic reaction. However, in a fluidized bed reactor, the fluidized catalyst rises in the center of the reactor and descends near the wall of the reactor main body, forming a so-called particle circulation flow, which reduces the efficiency of contact with the catalyst, such as gas backmixing and blow-through. This has the serious drawback that the reaction rate decreases, making it impossible to fully utilize the catalyst's ability. For this reason, structures such as porous holes have been traditionally installed inside the fluidized bed to redisperse the air bubbles in order to improve fluidity. However, if the bubbles are redispersed, the reaction gas stagnation will occur at the bottom of the internal ant material due to an increase in pressure loss in this area or insufficient particle fall, etc., which will lead to a decrease in the yield of the desired product, which is not appropriate.

一方、反応器内に供給されるガスの組成は爆発範凹内に
ある高濃度オレフィン又は第3級アルコールであるから
rオレフィン混合ガス」は酸素含有ガスの供給口とは別
個の供給口から供給される必要がある。すなわち、反応
器内では「オレフィン混合ガスノは分散管から噴出され
均一に分散される。また酸素含有ガスも同様に分散板ま
たは分散管から均一に分散される。流動層による不飽和
ニトリルの製造に際して、 「オレフィン混合ガスJと
W1素含有ガスを速やかに混合させて均一な混合ガスと
してから反応させることはきわめて重要であり、例えば
USP−4801731にみられるようにit素含有ガ
ス分肚板または分散管のノズルと「オレフィン混合ガス
」分散管のノズルを直孫上に配置させることにより「オ
レフィン混合ガスJとM素含有ガスを流動層反応器内で
向流接触させて混合させる提案がなされている。
On the other hand, since the composition of the gas supplied into the reactor is a high concentration olefin or tertiary alcohol within the explosion chamber, the "olefin mixed gas" is supplied from a separate supply port from the supply port for the oxygen-containing gas. need to be done. That is, in the reactor, the olefin mixed gas is ejected from the dispersion tube and dispersed uniformly.The oxygen-containing gas is also uniformly dispersed from the dispersion plate or dispersion tube.When producing unsaturated nitrile using a fluidized bed, ``It is extremely important to quickly mix the olefin mixed gas J and the W1 element-containing gas to form a homogeneous mixed gas before reacting. A proposal has been made to mix olefin mixed gas J and M element-containing gas by bringing them into countercurrent contact in a fluidized bed reactor by arranging the nozzle of the tube and the nozzle of the olefin mixed gas dispersion tube directly above each other. There is.

しかしながら上記粒子循環流の存在下においては反応器
本体壁付近の下降流の影響により外周部での酸素含有ガ
スジェットが反応器中心y/Iハ曲げられるためυ5P
−4801731の方法では外周部でのrオレフィン混
合ガス」と[素含有ガスの混合が不十分であるという欠
点がなお残っている。
However, in the presence of the above-mentioned particle circulation flow, the oxygen-containing gas jet at the outer periphery is bent by the reactor center y/I due to the influence of the downward flow near the wall of the reactor main body, so υ5P
The method of -4801731 still has the drawback that the mixing of the ``r-olefin mixed gas'' and the ``element-containing gas'' in the outer peripheral portion is insufficient.

以下、本発明を説明するに、反応器中心からの距離と反
応器半径との比(以下r / Rと略記する)が0.8
−1.0の範囲を外周部と定義する。
Hereinafter, to explain the present invention, the ratio of the distance from the reactor center to the reactor radius (hereinafter abbreviated as r/R) is 0.8.
The range of -1.0 is defined as the outer periphery.

本究明者らは流動層による不飽和ニトリルの製造装置に
ついて鋭!研究を重ねた結果、粒子循環流を抑制し且つ
rオレフィン混合ガス」と酸素含有ガスの外周部番:お
ける混合を十分は行うためには、上記分散板あるいは分
散管の最外周部ノズルと反応器本体壁との距離及び外周
部のノズル相互の位置関係がm*であることを知得した
The researchers are very knowledgeable about the production equipment for unsaturated nitrile using a fluidized bed. As a result of repeated research, in order to suppress the particle circulation flow and to sufficiently mix the olefin mixed gas and the oxygen-containing gas at the outer periphery of the dispersion plate or dispersion tube, it is necessary to It was learned that the distance to the vessel body wall and the mutual positional relationship of the nozzles on the outer periphery were m*.

すなわち、酸素含有ガス分散板あ6いは分散管およびr
オレフィン混合ガスJ分散管の最外周部ノズルと反応器
本体壁との距離を300mm以下とする事により反応器
本体・壁付近の流動触媒の下降流を抑制し、さらに反応
器本体W付近の下降流の影響により外周部での酸素含有
ガスジェットが反応器中心側に曲げられるのを考慮して
「オレフィン混合ガス」分散管の外周部ノズルを上記混
合ガス分散管の下部に配置される酸素含有ガス分散板ま
たは分散管の外111部ノズルより反応器中心側に配置
させる方法である。
That is, the oxygen-containing gas dispersion plate 6 or the dispersion tube and r
By setting the distance between the outermost nozzle of the olefin mixed gas J dispersion tube and the reactor main body wall to 300 mm or less, the downward flow of the fluidized catalyst near the reactor main body/wall is suppressed, and furthermore, the downward flow of the fluidized catalyst near the reactor main body W is suppressed. Considering that the oxygen-containing gas jet at the outer periphery is bent toward the center of the reactor due to the influence of the flow, the outer nozzle of the "olefin mixed gas" dispersion tube is arranged at the bottom of the oxygen-containing gas dispersion tube. This is a method in which the outer part of the gas distribution plate or distribution tube is placed closer to the center of the reactor than the nozzle.

本発明方法に使用し得る触媒としてはオレフィンのアン
モキシデージョン用触媒として公知の流動層反応触媒は
すべて使用できる。
As catalysts that can be used in the method of the present invention, all known fluidized bed reaction catalysts as catalysts for ammoxidation of olefins can be used.

本発明において反応器に供給する濃霧空気はオレフィン
又は第3級アルコールに対して5−19モル地 好まし
くは7−14モル比であり、供給アンモニアはオレフィ
ン又は第3級アルコールに対し1−2モル瓜 好ましく
は1−1.5モル比の範囲である。
In the present invention, the dense fog air supplied to the reactor has a molar ratio of 5 to 19 molar ratios to the olefin or tertiary alcohol, preferably 7 to 14 molar ratio, and the ammonia supplied to the olefin or tertiary alcohol has a molar ratio of 1 to 2 molar ratios. Melon Preferably the molar ratio is in the range of 1-1.5.

なお反応温度は350℃−600℃、好ましくは400
℃−500″C,圧力は3 kg / e11’以下、
好ましくは0.2−1.5 kg/ cs’、接触時間
は1−10秒、好ましくは2−6秒の条件下で行われる
The reaction temperature is 350°C to 600°C, preferably 400°C.
℃-500″C, pressure is 3 kg/e11′ or less,
It is preferably carried out under conditions of 0.2-1.5 kg/cs' and a contact time of 1-10 seconds, preferably 2-6 seconds.

本発明方法によると、最外周部ノズルと反応器本体壁間
の距離が長い場合と比較して流動層触媒の流動状態が飛
躍的に改讐される。 また、外周部の酸素含有ガス分散
板あるいは分散管のノズルとrオレフィン混合がス」分
散管のノズルを反応器本体中心側にずらさない場合と比
較して外周部の反応率が飛躍的に向上する。
According to the method of the present invention, the fluidization state of the fluidized bed catalyst is dramatically improved compared to the case where the distance between the outermost peripheral nozzle and the reactor body wall is long. In addition, the reaction rate at the outer periphery is dramatically improved compared to the case where the oxygen-containing gas dispersion plate or the nozzle of the dispersion tube at the outer periphery and the r-olefin mixture are not moved to the center of the reactor body. do.

次に、木兄WARIIの一例を第1図、第2■を用いて
説明する。第1図は本発明方法によって用いられる流動
層反応器の一区であり、図中1は流動層反応器本体、 
2は除熱コイル、 3は「オレフィン混合ガス」分散管
、4は酸素含有ガス分散板を示す、第2図は本究明を特
徴づけている各ノズルの位置関係、および粒子層II流
の流れの損金の一例を示しており、図中5は「オレフィ
ン混合ガス」分散管のノズル、 6は酸素含有ガス分散
板のノズル、 7はI!素含有ガス分分散のノズルによ
って形成されるジェット、 8は粒子循環流を示す0本
発明方法においては、s2素含有ガス分数板あるいは分
散管を流動!!1蝮層の下部に、上記分散板あるいは分
散管の上方にrオレフィン混合ガス」分散管を、さらに
上記酸素含有ガス分t[あるいは分散管ノズルにより形
成される酸素含有ガスジェットあるいは気泡の内部に上
記「オレフィン混合ガスJ分敢菅ノズルを投置した構造
を有する流動層Eiz器を使用し、酸素含有ガス分散板
又は分散管の最外周部ノズルと反応器本体壁との路肩を
300+nm以下、好ましくは50mm−200mmの
範囲内になるように上記最外周部のノズルを設置する。
Next, an example of Kinoe WAR II will be explained using FIG. 1 and FIG. 2 (2). Figure 1 shows a section of the fluidized bed reactor used in the method of the present invention, in which 1 is the main body of the fluidized bed reactor;
2 is a heat removal coil, 3 is an "olefin mixed gas" dispersion tube, and 4 is an oxygen-containing gas dispersion plate. Figure 2 shows the positional relationship of each nozzle, which characterizes this research, and the flow of the particle layer II flow. In the figure, 5 is the nozzle of the "olefin mixed gas" dispersion tube, 6 is the nozzle of the oxygen-containing gas dispersion plate, and 7 is the I! The jet formed by the nozzle for dispersing the element-containing gas fraction, 8 indicates the particle circulation flow. ! 1 At the bottom of the layer, above the above-mentioned dispersion plate or dispersion tube, there is a dispersion tube for the olefin mixed gas. Using the above-mentioned fluidized bed Eiz device having a structure in which the olefin mixed gas J-tube nozzle is placed, the road shoulder between the outermost nozzle of the oxygen-containing gas distribution plate or distribution tube and the wall of the reactor body is 300+ nm or less, Preferably, the outermost nozzle is installed within the range of 50 mm to 200 mm.

また、外Jai1部のrオレフィン混合ガス」分散管の
ノズルと酸素含有ガス分散板あるいは分散管のノズルと
の位置関係は粒子循環流あるいは各々の分散管ノズルの
距##によって左右されるため限定されるものではない
が、本5!明者らの観察によると上記反応条件下の一般
的な商業用規模の流動層反応器において上記ノズル相互
の好ましい位置関係は酸素含有ガス分散板あるいは分散
管ノズルのガス吹き出し口中心と「オレフィン混合がス
」分散管ノズルのガス吹き出し口中心を結んだ綿と酸素
含有ガス分散板あるいは分散管ノズルのガス吹き出し口
の鉛直線が交わる角度(以下、 リズル角度jと略す)
が40°以下、さらに好ましい上記「ノズル角度」は3
0@以下であった。
In addition, the positional relationship between the nozzle of the dispersion tube and the oxygen-containing gas dispersion plate or the nozzle of the dispersion tube is limited because it depends on the particle circulation flow or the distance ## of each dispersion tube nozzle. Although it is not something that will be done, book 5! According to our observations, in a typical commercial-scale fluidized bed reactor under the above reaction conditions, the preferred positional relationship between the nozzles is between the center of the gas outlet of the oxygen-containing gas distribution plate or the dispersion tube nozzle, and the ``olefin mixing'' position. The angle between the cotton connecting the center of the gas outlet of the dispersion tube nozzle and the vertical line of the oxygen-containing gas distribution plate or the gas outlet of the dispersion tube nozzle (hereinafter abbreviated as rizzle angle j)
is 40 degrees or less, and more preferably the above "nozzle angle" is 3
It was below 0@.

次に本発明方法を比較例および実施例によりさらに説明
するが、本発明はその要旨を越えない限り、下記の実施
側番;限定されるものではない、流動触媒層密度は酸素
含有ガス分散板からあるいは分散管ノズルのガス吹き出
し口から上750mmおよび1250mmの位置の静圧
差を測定する圧力タップを流動層反応器の中心部でr/
R=0.0の位置および外J11部でr/R=0.9の
位置に設置し、一般的に知られている圧力差を眉いて密
度を算出する手法を使用した。ここで、粒子循環流が形
成されるドライビングフォースは流動層の半径方向密度
差テアル(rFl、tlI[1IZATION ENG
INEERINGJ(0,にunit、0.Leven
spieliF )) P 354 * 照)、よって
流動触媒層密度の半径方向分布が均一であれば粒子循環
流が形成されていないことは自明である。また、未反応
オレフィンは高さ9mの中心部でr / P、 = O
、Oおよび同一高さの外周部でr/R=0.9の位置に
ガスサンプリングノズルを設け、当該ノズルからでるガ
スを水で洗浄して取り出し、ガスクロマトグラフを用い
て分析した。計器その他相MHI備は通常使用されるも
のであり、通常の誤差[匣内のものである。
Next, the method of the present invention will be further explained with reference to comparative examples and examples. A pressure tap was installed at the center of the fluidized bed reactor to measure the static pressure difference at 750 mm and 1250 mm above the gas outlet of the dispersion tube nozzle.
It was installed at the position of R = 0.0 and the position of r/R = 0.9 at the outer J11 part, and a generally known method of calculating the density by calculating the pressure difference was used. Here, the driving force for forming the particle circulation flow is the radial density difference TEAL of the fluidized bed (rFl, tlI[1IZATION ENG
INEERINGJ (0, ni unit, 0.Leven
Therefore, it is obvious that if the radial distribution of the density of the fluidized catalyst bed is uniform, no particle circulation flow is formed. Moreover, the unreacted olefin is r / P, = O at the center of 9 m height.
A gas sampling nozzle was provided at a position of r/R=0.9 on the outer periphery at the same height as , O, and the gas coming out from the nozzle was washed with water and taken out, and analyzed using a gas chromatograph. Instruments and other phase MHI equipment are those normally used and have normal tolerances.

比較例 使用した反応器はl[径7.8mで、触媒は粒径10−
100μm、平均な径50μmのモリブデン−ビスマス
−鉄系シリカ担持触媒である。上記触媒を静止層高3m
となるように充填した。
The reactor used in the comparative example had a diameter of 7.8 m, and the catalyst had a particle size of 10-m.
It is a molybdenum-bismuth-iron-based silica-supported catalyst with a diameter of 100 μm and an average diameter of 50 μm. The above catalyst has a static bed height of 3 m.
It was filled so that

最外周部ノズルと反応器本体壁間距趨が450mm、外
周部の「ノズル角度」が0°の分散板および分散管を使
用し、流動層下部より空気を4100ONM3/H,プ
ロピレンを400ONM’/H17ンモ:−7ヲ480
0 N M 3/ H供m シ、反E温度450℃、圧
力1kg / cm ’で反応させたところ、次のu1
4を得た。
Using a dispersion plate and a dispersion tube with a distance between the outermost nozzle and the wall of the reactor body of 450 mm and a "nozzle angle" of 0° at the outer periphery, air was supplied from the bottom of the fluidized bed at 4100ONM3/H, and propylene was supplied at 400ONM'/H17. Nmo: -7 wo 480
When the reaction was carried out at a reaction temperature of 450°C and a pressure of 1 kg/cm', the following u1
I got 4.

中心部 外周部 流動態IIJA密度 (kg/@3)   480 7
30未圧応プロピレン (vo14)  0.17 1
.05実施灘 1 比較例と同一の友応ト二本5e明方法により、最外周部
ノズルと反応器本体壁間距盾が150mm、外周部の「
ノズル角度」が15@の分散板および分散管を使用し、
同一の条件下で反応を行ったところ、次のように粒子循
環流および外周部未反応プロピレンの著しい減少がみら
れた。
Center Peripheral flow dynamics IIJA density (kg/@3) 480 7
30 Unpressurized propylene (VO14) 0.17 1
.. 05 Implementation 1 Using the same method as in the comparative example, the distance between the outermost nozzle and the reactor body wall was 150 mm, and the distance between the outermost nozzle and the reactor body wall was 150 mm, and the
Using a dispersion plate and dispersion tube with a nozzle angle of 15@,
When the reaction was carried out under the same conditions, a significant decrease in particle circulation flow and unreacted propylene at the outer periphery was observed as shown below.

中心部 外周部 流動触媒密度 (kg/鳳り   570 590未反
応プロピレン(val、χ)0.09 0.11実施例
 2−3 実施例1ζ準じて、最外周部ノズルと反応器本体壁間距
離および外周部の「ノズル角度」を表1に示すように変
化させて反応を行わせた結果を表1に示す。
Center part Peripheral fluidized catalyst density (kg/tori) 570 590 Unreacted propylene (val, Table 1 shows the results of the reaction carried out by changing the "nozzle angle" of the outer periphery as shown in Table 1.

0ONM3/H,アンモニアを300ONM’/H供給
し、反応濃度430″C,圧力1kg/口2で反応させ
たところ、次の結果を停妃 中心部 外周部 流動触媒密度 (kg / m’) 未反応イソブチレン (val、χ) 560   570 0.07  0.08 (双下奈白) 実施例 4 使用した反応器は+1!径5.3mで、触媒は粒径10
−100μm、平均FRffi50.umのモリブデン
−ビスマス−鉄系シリカtl持MaIである。上記触媒
を静止層高3mとなるように充填した。
0ONM3/H, ammonia was supplied at 300ONM'/H, and the reaction was carried out at a reaction concentration of 430"C and a pressure of 1kg/port2. The following results were obtained. Reacted isobutylene (val, χ) 560 570 0.07 0.08 (Nahaku Soshita) Example 4 The reactor used was +1! diameter 5.3 m, and the catalyst had a particle size of 10
-100μm, average FRffi50. um molybdenum-bismuth-iron-based silica Tl-bearing MaI. The above catalyst was packed to a static bed height of 3 m.

最外周部ノズルと反応器本体壁間距離が120mm、外
周部の「ノズル角度jが156の分数板および分散管を
使用し、流動層下部より空気を2
The distance between the outermost nozzle and the wall of the reactor body is 120 mm, and a fraction plate and dispersion tube with a nozzle angle j of 156 on the outer periphery are used to inject air from the bottom of the fluidized bed to 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための一実施例を示す流動層
反応器の断面図であり、第2図は同実施例でガス分散板
および分散管付近のノズルのα1および粒子と!2素含
有ガスの流れの模式図である。
FIG. 1 is a cross-sectional view of a fluidized bed reactor showing an example for explaining the present invention, and FIG. 2 is a cross-sectional view of a fluidized bed reactor showing an example of the present invention, and FIG. FIG. 2 is a schematic diagram of the flow of a gas containing two elements.

Claims (1)

【特許請求の範囲】 1)プロピレン又はイソブチレン又は第3ブチルアルコ
ールをアンモニアと酸素含有ガスと共に高温かつ気相で
流動層反応触媒によって接触反応させて原料オレフィン
又は第3級アルコールと同じ炭素数を有する、α・β−
不飽和ニトリルを製造する際に使用する反応器において
、下部より酸素含有ガス分散板または分散管、オレフィ
ン又は第3級アルコールとアンモニアの混合ガス分散管
を配置させて、且つ上記分散板および分散管の最外周部
ノズルと反応器本体壁との距離を300mm以下とする
ことを特徴とするα・β−不飽和ニトリルの製造装置。 2)オレフィン又は第3級アルコールとアンモニアの混
合ガス分散管の外周部ノズルを、当該混合ガス分散管の
下部に配置される酸素含有ガス分散板または分散管の外
周部ノズルより反応器中心側に寄せて配置させることを
特徴とする特許請求の範囲第1項に記載の製造装置。
[Claims] 1) Propylene, isobutylene, or tertiary butyl alcohol is catalytically reacted with ammonia and an oxygen-containing gas at high temperature in the gas phase using a fluidized bed reaction catalyst to produce a product having the same carbon number as the raw material olefin or tertiary alcohol. , α・β−
In the reactor used for producing unsaturated nitrile, an oxygen-containing gas dispersion plate or dispersion tube, and a mixed gas dispersion tube of olefin or tertiary alcohol and ammonia are arranged from the bottom, and the above dispersion plate and dispersion tube An apparatus for producing α/β-unsaturated nitrile, characterized in that the distance between the outermost nozzle and the wall of the reactor body is 300 mm or less. 2) The outer nozzle of the mixed gas dispersion tube of olefin or tertiary alcohol and ammonia is placed closer to the center of the reactor than the outer nozzle of the oxygen-containing gas distribution plate or dispersion tube located at the bottom of the mixed gas dispersion tube. The manufacturing apparatus according to claim 1, wherein the manufacturing apparatus is arranged close to each other.
JP1257899A 1989-10-04 1989-10-04 Apparatus for producing alpha,beta-unsaturated nitrile Pending JPH03120247A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1257899A JPH03120247A (en) 1989-10-04 1989-10-04 Apparatus for producing alpha,beta-unsaturated nitrile
KR1019910700564A KR940007528B1 (en) 1989-10-04 1990-10-04 Apparatus for producing dip-unsaturated nitrile
DE69007965T DE69007965T2 (en) 1989-10-04 1990-10-04 APPARATUS FOR THE PRODUCTION OF ALPHA-BETA-UNSATURATED NITRILES.
EP90914763A EP0446379B1 (en) 1989-10-04 1990-10-04 Apparatus for producing alpha-beta-unsaturated nitrile
CA002042584A CA2042584C (en) 1989-10-04 1990-10-04 .alpha., .beta.-unsaturated nitrile manufacturing apparatus
ES90914763T ES2051025T3 (en) 1989-10-04 1990-10-04 APPARATUS FOR THE MANUFACTURE OF ALPHA NITRILE, BETA NOT SATURATED.
PCT/JP1990/001279 WO1991004961A1 (en) 1989-10-04 1990-10-04 APPARATUS FOR PRODUCING α,β-UNSATURATED NITRILE
SU914895746A RU1829957C (en) 1989-10-04 1991-06-03 Device for production of nonsaturated nitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1257899A JPH03120247A (en) 1989-10-04 1989-10-04 Apparatus for producing alpha,beta-unsaturated nitrile

Publications (1)

Publication Number Publication Date
JPH03120247A true JPH03120247A (en) 1991-05-22

Family

ID=17312736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1257899A Pending JPH03120247A (en) 1989-10-04 1989-10-04 Apparatus for producing alpha,beta-unsaturated nitrile

Country Status (1)

Country Link
JP (1) JPH03120247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002870A (en) * 2001-06-21 2003-01-08 Asahi Kasei Corp Method for coproducing prussic acid in production of unsaturated nitrile
JP2008080219A (en) * 2006-09-27 2008-04-10 Asahi Kasei Chemicals Corp Temperature control method of fluidized bed reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002870A (en) * 2001-06-21 2003-01-08 Asahi Kasei Corp Method for coproducing prussic acid in production of unsaturated nitrile
JP2008080219A (en) * 2006-09-27 2008-04-10 Asahi Kasei Chemicals Corp Temperature control method of fluidized bed reactor

Similar Documents

Publication Publication Date Title
US5225575A (en) Oxidation process and apparatus
US3230246A (en) Process for preparing olefinically unsaturated nitriles
US2546570A (en) Fluidizied bed reactor
EP0320904B1 (en) Preparation of acrylonitrile
US4152393A (en) Reactor for contacting gases and a particulate solid
JP2007063089A (en) Method and device for producing nitrile compound
TWI451909B (en) Gas phase reaction method
JP6427225B1 (en) Fluid bed reactor and method for producing α, β-unsaturated nitrile
RU1829957C (en) Device for production of nonsaturated nitrile
KR0169027B1 (en) Process for producing unsaturated nitrile
US4341717A (en) Reactor for contacting gases and a particulate solid
KR100288618B1 (en) Process for Producing α,β-Unsaturated Nitrile
WO1988004199A1 (en) Fluidized bed
JPH03120247A (en) Apparatus for producing alpha,beta-unsaturated nitrile
US4470931A (en) Combination fixed-fluid bed reactor
CN1041413C (en) Device for preparing alpha,beta_unsatisfied nitrile
US3944592A (en) Method of producing unsaturated nitriles
JPH08208583A (en) Apparatus for producing alpha, beta-unsaturated nitrile
JP3974951B2 (en) Method for producing α, β-unsaturated nitrile
US4082786A (en) Process of production of aromatic nitriles
JPH0827087A (en) Method for producing alpha,beta-unsaturated nitrile
US4622424A (en) Preparation of acrylic acid and methacrylic acid in a combination fixed-fluid bed reactor
US3518295A (en) Process for preparing unsaturated nitriles by catalytic ammoxidation of olefins
JP3958361B6 (en) Method for producing α, β-unsaturated nitrile
JPH03123767A (en) Production of alpha,beta-unsaturated nitrile