JPH03117395A - Cogeneration plant - Google Patents

Cogeneration plant

Info

Publication number
JPH03117395A
JPH03117395A JP1251580A JP25158089A JPH03117395A JP H03117395 A JPH03117395 A JP H03117395A JP 1251580 A JP1251580 A JP 1251580A JP 25158089 A JP25158089 A JP 25158089A JP H03117395 A JPH03117395 A JP H03117395A
Authority
JP
Japan
Prior art keywords
induction generator
internal combustion
power
combustion engine
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1251580A
Other languages
Japanese (ja)
Other versions
JP2587297B2 (en
Inventor
Noriomi Miyoshi
紀臣 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1251580A priority Critical patent/JP2587297B2/en
Publication of JPH03117395A publication Critical patent/JPH03117395A/en
Application granted granted Critical
Publication of JP2587297B2 publication Critical patent/JP2587297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To achieve economical merits even in a small scale system by containing an induction generator to be connected with AC distribution lines and an internal combustion engine to be coupled directly with the induction generator in a thermally insulated integral casing, and driving the induction generator as a starting motor for the internal combustion engine. CONSTITUTION:A gas engine 7 and an induction generator 8 are coupled directly and contained in an integral casing 46 covered with a thermal insulation material 32. Distribution lines 1 are connected through a power sensor 4a with a power sensor 4b which is connected through an electromagnetic switch 6 with terminals 8a of the induction generator 8. The induction generator 8 serves as the starting motor for the gas engine 7 and provided with starting power from the distribution lines 1. Upon start of the induction generator 8 as the starting motor, the gas engine 7 starts rotation and at an instance when the increasing rotation exceeds the synchronous speed, the induction generator 8 functions as a generator. Since switching means, throwing means or synchronous phase modifying means is not required, power can be fed to the distribution lines 1 simply through the control of the throttle 16 of the gas engine 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力タービン、ディーゼル機関、ガソリン機
関などの各種原動機を応用した熱併給発電装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a cogeneration power generation device using various types of prime movers such as a thermal turbine, a diesel engine, and a gasoline engine.

〔従来の技術〕[Conventional technology]

熱併給発電装置は、ガソリンエンジンなどの原動機で発
電機を駆動して電力を得、またこの得られた電力を利用
して給湯、暖房等を行うものであるが、従来、その規模
が数百KW以上の大型のものがほとんどである。
Cogeneration power generation equipment uses a prime mover such as a gasoline engine to drive a generator to obtain electricity, and uses this electricity to supply hot water, space heating, etc.; Most of them are larger than KW.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

エネルギの有効利用、省エネ等の観点からこの熱併給発
電装置の需要は近年ますます増大してきている。しかし
、規模の大きさからしてシステム構成もかなり複雑でコ
ストも高く、小規模なシステムにまで普及するものは現
在存在していない。
Demand for this cogeneration power generation device has been increasing in recent years from the viewpoint of effective energy use, energy saving, etc. However, due to its large scale, the system configuration is quite complex and the cost is high, and there are currently no systems that can be widely used in small-scale systems.

すなわち、小規模に構成するとしても位相、電圧に関し
て電力(配電)系統との連系運転を行うためには、連系
投入、解除、連系運転時の発電量と過電流の制御、逆送
電の防止など高度な制御システムを構成する必要がある
からである。
In other words, even if configured on a small scale, in order to perform interconnected operation with the electric power (distribution) system in terms of phase and voltage, it is necessary to connect, disconnect, control the amount of power generated and overcurrent during interconnected operation, and reverse power transmission. This is because it is necessary to configure an advanced control system to prevent such problems.

さらに、機関の始動、熱回収についても同様に高度の制
御が要求される。
Furthermore, a high degree of control is similarly required for engine starting and heat recovery.

このことは、小規模システムにおいて機器や制御システ
ムが発電容量の割には高価になることを示しており、こ
のため小規模システム普及の隘路となっていた。
This means that in small-scale systems, the equipment and control systems are expensive relative to the power generation capacity, which has been a bottleneck for the spread of small-scale systems.

本発明の目的は前記従来例の不都合を解消し、複雑な構
成を必要とせず極めて簡単な構成で熱併給発電システム
を構成することによって、小規模(IKW級)システム
においても充分経済的メリットの出せる熱併給発電装置
を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example, and to configure a cogeneration power generation system with an extremely simple configuration without requiring a complicated configuration, thereby achieving sufficient economic benefits even in a small-scale (IKW class) system. The objective is to provide a combined heat and power generation device that can generate electricity.

〔課題を解決するための手段] 本発明は前記目的を達成するため、交流配電線に接続す
る誘導発電機とこの誘導発電機と直結する内燃機関とを
一体の断熱ケースに収め、該ケースの上方に温水タンク
を設置し、内燃機関からの排気を熱源とする熱交換器を
温水タンク内に設け、また温水タンクの底部付近を冷水
取入口としてここから温水タンクの下方に出て途中に内
燃機関の冷却器を接続し、さらに温水タンク内の前記冷
水取入れ口よりも高所に排出口として開口する循環水路
を形成し、一方、誘導発電機は内燃機関で駆動される発
電機とするのみならず、内燃機関の始動電動機としても
駆動することを要旨とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention houses an induction generator connected to an AC power distribution line and an internal combustion engine directly connected to the induction generator in an integrated heat insulating case. A hot water tank is installed above the tank, and a heat exchanger that uses the exhaust gas from the internal combustion engine as a heat source is installed inside the hot water tank.The bottom of the hot water tank is also used as a cold water intake port, which flows out from below the hot water tank and connects the internal combustion engine along the way. A circulation waterway is connected to the engine cooler and opens as an outlet at a higher location than the cold water intake in the hot water tank, while the induction generator is only a generator driven by an internal combustion engine. The main idea is that it can also be driven as a starting motor for an internal combustion engine.

(作用) 本発明によれば、誘導発電機は連系する交流配電線によ
って励磁されるので、連系投入時の電圧、位相の差によ
る過電流等の問題を避けることができ、さらに、該誘導
発電機は内燃機関で駆動される発電機とするのみならず
、内燃機関の始動電動機としても駆動することにより、
単に同期速度付近で連系投入したのち同期速度以上とな
るよう逆にトルクを加えることによって連系時の問題を
発生することなく、また何等電気的、機械的な切換を行
うことなく発電状態に移行でき、しかも加えるトルクの
大小によって同期速度からのスリップの程度が変わり発
電量が円滑に変化できる。
(Function) According to the present invention, since the induction generator is excited by the interconnected AC distribution line, it is possible to avoid problems such as overcurrent due to voltage and phase differences when interconnection is turned on. The induction generator is not only a generator driven by an internal combustion engine, but also a starter motor for the internal combustion engine.
By simply connecting to the grid at around the synchronous speed and then applying torque in the opposite direction to bring it above the synchronous speed, power generation can be achieved without causing any problems during grid connection, and without any electrical or mechanical switching. Furthermore, the degree of slip from the synchronous speed changes depending on the amount of torque applied, and the amount of power generation can smoothly change.

また、内燃機関からの排気は温水タンク内の熱交換器の
熱源となり、排熱利用が行える。
Furthermore, the exhaust gas from the internal combustion engine becomes a heat source for the heat exchanger in the hot water tank, allowing waste heat to be utilized.

さらに、内燃機関は温水タンクの水を冷媒とする冷却器
で冷やされ、該冷却器の熱交換で温められら水は再度温
水タンクに戻るので、内燃機関の排気以外の排熱も利用
でき、効率のよい省エネルギー化ができる。
Furthermore, the internal combustion engine is cooled by a cooler that uses water from the hot water tank as a refrigerant, and the water is warmed by heat exchange in the cooler and returns to the hot water tank again, so waste heat other than the exhaust from the internal combustion engine can also be used. Efficient energy saving is possible.

そして、前記冷却器がある循環水路は上方に設置した温
水タンクの底部付近を冷水取入口とし、この冷水取入口
よりも高所に排出口を開口するので、自然対流を利用で
き、循環用のポンプは不要である。
The circulation waterway where the cooler is located has a cold water intake near the bottom of the hot water tank installed above, and an outlet opening higher than the cold water intake, so natural convection can be used and the circulation No pump required.

一方、内燃機関は誘導発電機を含めて一体の断熱ケース
に収められているので、コンパクトとなり、外部への熱
の放散を避けて、冷却器が持ち去る熱の比率が可能な限
り高められる。
On the other hand, the internal combustion engine, including the induction generator, is housed in a single insulated case, making it compact, avoiding heat dissipation to the outside, and ensuring that the proportion of heat carried away by the cooler is as high as possible.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の熱併給発電装置の1実施例を示す説明
図で、誘導発電機8を駆動する内燃機関としてガスエン
ジン7を使用する場合である。
FIG. 1 is an explanatory diagram showing one embodiment of the cogeneration power generation apparatus of the present invention, in which a gas engine 7 is used as an internal combustion engine that drives an induction generator 8.

本発明の主たる設備としては、前記ガスエンジン7と誘
導発電機8の他に、温水タンク12とからなり、ガスエ
ンジン7と誘導発電機8とを直結しこれらは外周をすべ
て断熱材32で覆った一体の構造のケース46に収める
The main equipment of the present invention includes, in addition to the gas engine 7 and induction generator 8, a hot water tank 12, which is directly connected to the gas engine 7 and the induction generator 8, and whose outer peripheries are entirely covered with a heat insulating material 32. It is housed in a case 46 having an integral structure.

また、温水タンク12はこのケース46の上方に設置し
、その外周も断熱材32で覆った。
Further, the hot water tank 12 was installed above the case 46, and its outer periphery was also covered with a heat insulating material 32.

先に電気系統について説明すると、電力配電系統に接続
された配電線1は、積算電力計2、遠隔操作可能のブレ
ーカ3を経て、電力潮流方向および電力瞬時値の信号を
出すことのできる電力センサ4aに接続され、さらに電
力センサ4bおよび電力センサ4cと接続されている。
First, to explain the electrical system, a power distribution line 1 connected to the power distribution system passes through an integrating wattmeter 2, a remotely controllable breaker 3, and a power sensor that can output signals of the power flow direction and instantaneous power value. 4a, and further connected to power sensor 4b and power sensor 4c.

このうち、電力センサ4bの他端は電磁開閉器6を経て
ガスエンジン7と直結された誘導発電機8の端子8aに
接続される。
The other end of the power sensor 4b is connected via an electromagnetic switch 6 to a terminal 8a of an induction generator 8 directly connected to a gas engine 7.

また、電力センサ4cの他端は負荷側の配電線9に接続
され、この負荷側の配電線9には電磁開閉器10と電力
調節器11を介して、ガスエンジン7よりも位置的に高
所に設けられている温水タンク12内のヒータ13に接
続される。
The other end of the power sensor 4c is connected to the load-side power distribution line 9, which is connected to the load-side power distribution line 9 through an electromagnetic switch 10 and a power regulator 11, which is located at a higher position than the gas engine 7. It is connected to a heater 13 in a hot water tank 12 provided at a location.

一方、都市ガスの配管系統は止め弁14、ガス配管15
、ガス電磁弁5を経て、スロットルバルブ16に接続さ
れ、空気取入口17、エアクリーナ18を通過してきた
空気とベンチュリ部19にて混合されガスエンジン7の
吸入管7aに接続され、さらにガス配管15にはガス圧
センサ44が設けられる。
On the other hand, the city gas piping system has a stop valve 14 and a gas pipe 15.
, is connected to the throttle valve 16 via the gas electromagnetic valve 5, is mixed with the air that has passed through the air intake port 17 and the air cleaner 18 at the venturi section 19, is connected to the intake pipe 7a of the gas engine 7, and is further connected to the gas piping 15. A gas pressure sensor 44 is provided.

ガスエンジン7の排気口8gは、温水タンク12の内部
に設けられた熱交換器29と蛇腹管30を介して連結さ
れ、該熱交換器29の他端は温水タンクエ2外へ導出さ
れて消音器31を経て大気中へ開放される。
The exhaust port 8g of the gas engine 7 is connected to a heat exchanger 29 provided inside the hot water tank 12 via a bellows pipe 30, and the other end of the heat exchanger 29 is led out to the outside of the hot water tank 2 for noise reduction. It passes through the vessel 31 and is released into the atmosphere.

温水タンク12の底部付近に流出口25が形成され、該
流出口25を冷水取入口としてここから温水タンク12
の下方にでて温水タンク12内の戻り口27を排出口と
する循環水路45を形成した。
An outflow port 25 is formed near the bottom of the hot water tank 12, and the outflow port 25 is used as a cold water intake port from which the hot water tank 12 is connected.
A circulation waterway 45 is formed below the hot water tank 12 and has a return port 27 in the hot water tank 12 as an outlet.

この循環水路45の途中には、冷却器としてシリンダ8
cの外周に設けられた水ジャケット8dが配設されるが
、水ジャケラ1−8dの流入口8eと前記流出口25と
は流出口25に可とう性のある蛇腹管26によって、ま
た流出口8fと戻り口27とは蛇腹管28によって接続
され、この温水タンク12内の戻り口27は流出口25
よりも高い所に位置付けられる。
In the middle of this circulation waterway 45, a cylinder 8 is installed as a cooler.
A water jacket 8d is provided on the outer periphery of the water jacket 8d, and the inlet 8e of the water jacket 1-8d and the outlet 25 are connected to each other by a flexible bellows pipe 26 at the outlet 25, and 8f and the return port 27 are connected by a bellows pipe 28, and the return port 27 in the hot water tank 12 is connected to the outlet 25.
be placed higher than.

ガスエンジン7と直結する誘導発電機8の回転子8bの
下端にスリット付円板20を設け、そのスリットを検知
するための位置センサ21を円板2oに近設する。そし
て、位置センサ21はガスエンジン7の点火栓22に高
電圧パルスを供給する点火器23に接続されるとともに
制御器24に入力される。
A slitted disc 20 is provided at the lower end of the rotor 8b of the induction generator 8 directly connected to the gas engine 7, and a position sensor 21 for detecting the slit is provided close to the disc 2o. The position sensor 21 is connected to an igniter 23 that supplies high voltage pulses to the ignition plug 22 of the gas engine 7, and is also input to a controller 24.

温水タンク12と同様に、前記蛇腹管26.28.30
も断熱材32で覆った。
Similar to the hot water tank 12, the bellows pipe 26.28.30
It was also covered with a heat insulating material 32.

温水タンク12への給水は市水(水道)に接続された止
め弁33と、水位センサ34a、 34bの信号と制御
器24によって開閉が制御される電磁弁35によって、
常に水位センサ34aと34bとの間に水位が保たれる
ように構成されている。一方、厨房や浴用など清浄な温
水を供給するため熱交換器36が設けらる。
Water is supplied to the hot water tank 12 by a stop valve 33 connected to city water (tap water) and a solenoid valve 35 whose opening and closing are controlled by signals from water level sensors 34a and 34b and the controller 24.
The water level is always maintained between the water level sensors 34a and 34b. On the other hand, a heat exchanger 36 is provided to supply clean hot water for use in the kitchen or bath.

温水タンク12内の温水は温水出口37から温水ポンプ
38によって送り出され、暖房用ファンコイルユニット
39などの熱放散機器を経て戻り口40に戻るように接
続される。
Hot water in the hot water tank 12 is sent out from a hot water outlet 37 by a hot water pump 38, and is connected to return to a return port 40 via a heat dissipation device such as a heating fan coil unit 39.

温水タンク12の、上部にタンク内圧の上昇を防ぐため
のベントチューブ42を、内部には水温センサ41を、
さらに最下部には水抜き用のドレンプラグ43をそれぞ
れ設けた。
A vent tube 42 is installed at the top of the hot water tank 12 to prevent an increase in tank internal pressure, and a water temperature sensor 41 is installed inside the hot water tank 12.
Furthermore, drain plugs 43 for draining water were provided at the bottom.

前記水温センサ41は、水温が高さ方向で大きく変化す
る場合には、高さ方向に複数個設ける場合もある。
If the water temperature changes significantly in the height direction, a plurality of water temperature sensors 41 may be provided in the height direction.

また、これまでに説明した電力センサ4a、4b、4c
、位置センサ21、水位センサ34a、 34b、水温
センサ41、ガス圧センサ44の出力信号はすべて制御
器24に入力される。さらにブレーカ3、電磁開閉器6
,10、電力調節器11、ガス電磁弁5、スロンクバル
ブ16、電磁弁35は制御器24への各センサからの信
号によって発電量、水温、電力と熱の最適比率などを予
めインプットされたプログラムに従って制御された操作
指令信号によって操作(動作)されるように構成されて
いる。
In addition, the power sensors 4a, 4b, 4c described so far
, position sensor 21, water level sensors 34a, 34b, water temperature sensor 41, and gas pressure sensor 44 are all input to the controller 24. Furthermore, breaker 3, electromagnetic switch 6
, 10, the power regulator 11, the gas solenoid valve 5, the throttle valve 16, and the solenoid valve 35 control the power generation amount, water temperature, optimal ratio of power and heat, etc. according to a pre-input program based on signals from each sensor to the controller 24. It is configured to be operated (operated) by a controlled operation command signal.

次に、使用法及び動作について説明する。Next, usage and operation will be explained.

誘導発電機8はガスエンジン7の始動電動機を兼ね、そ
の始動のための電力は既設の配電線lから得る。
The induction generator 8 also serves as a starting motor for the gas engine 7, and the power for starting it is obtained from the existing power distribution line 1.

その結果、誘導発電機8が始動後発電状態に移行しても
何等の切換、投入、同期調相などの手段を必要としない
でガスエンジン7のトルク制御=スロットルの制御のみ
で極めて円滑に始動電力の供給を受けた配電線に電力を
送出できる。
As a result, even when the induction generator 8 transitions to the power generation state after starting, it does not require any means such as switching, turning on, or synchronizing phase adjustment, and can be started extremely smoothly just by controlling the torque of the gas engine 7 = throttle control. Power can be sent to the distribution line that receives the power supply.

この間のトルクと回転数の状況は、第2図に示す通りで
あり、誘導発電機8が始動電動機として回転を始めたの
ちガスエンジン7が始動して回転数が上昇し、同期速度
を越えた瞬間に誘導電動機8は発電機に変化し、ガスエ
ンジン7の出力トルクに応じた同期速度よりわずかに速
い回転数で回転し、消費電力量および温水タンク12の
水温等の条件および最適にコントロールされたトルクす
なわちスロットル16の開度により運転を継続する。
The situation of torque and rotational speed during this time is as shown in Figure 2. After the induction generator 8 started rotating as a starting motor, the gas engine 7 started and the rotational speed rose, exceeding the synchronous speed. Instantly, the induction motor 8 changes into a generator, rotating at a slightly higher rotation speed than the synchronous speed corresponding to the output torque of the gas engine 7, and is optimally controlled according to conditions such as power consumption and water temperature of the hot water tank 12. The operation continues depending on the torque, that is, the opening degree of the throttle 16.

この最適にコントロールする条件としては、当然使用電
力量が少なく温水の需要も少ないなどの条件、例えば夜
間などにおいては装置を停止することも含まれる。この
制御のパターンの一例を第3図に示す。
Conditions for optimal control include, of course, conditions such as low power consumption and low demand for hot water, and for example, stopping the device at night. An example of this control pattern is shown in FIG.

しかし、ガスエンジン7のごとき通常のレシプロ形の内
燃機関においては、始動時の圧縮行程で非常に大きなト
ルクを要する場合があり、誘導発電機8の誘導電動機と
しての始動時の発生トルクでは駆動不可の場合も発生す
る。この場合は誘導電動機を単相の場合には反発起動形
またはコンデンサ始動形として起動トルクの増加をはか
るかまたは内燃機関のシリンダ部に圧縮逃し機構を設け
て始動トルクの低減をはかり回転数が始動に充分な値に
達した後、圧縮逃し機構を解除する手段を設けることに
よって、始動を容易にすることが可能である。
However, in a normal reciprocating internal combustion engine such as the gas engine 7, a very large torque may be required in the compression stroke at the time of starting, and the induction generator 8 cannot be driven by the torque generated at the time of starting as an induction motor. It also occurs in the case of In this case, if the induction motor is single-phase, try to increase the starting torque by using a repulsion start type or capacitor start type, or by installing a compression relief mechanism in the cylinder section of the internal combustion engine to reduce the starting torque and increase the rotation speed. Starting can be facilitated by providing means for releasing the compression relief mechanism after a sufficient value has been reached.

誘導発電機8と配電線1.9の接続点の両側および誘導
発電機8に接続されている線路には電力量および電力潮
流方向検知機として、電力センサ4a、4bおよび4c
があり、その出力をもとに電力消費量に応じて誘導発電
機8の発電量を調節するように、ガスエンジン7に供給
する燃料と空気の混合気量をスロットバルブ16の変化
で調整する。
On both sides of the connection point between the induction generator 8 and the distribution line 1.9 and on the line connected to the induction generator 8, power sensors 4a, 4b and 4c are installed as power amount and power flow direction detectors.
The amount of mixture of fuel and air supplied to the gas engine 7 is adjusted by changing the slot valve 16 so that the amount of power generated by the induction generator 8 is adjusted according to the power consumption based on the output. .

特に、夜間など消費電力量が少ない場合には、運転を停
止したり、また消費電力量は少ないが、熱交換器29の
消費量が多い場合には、配電線9の負荷側から開閉器1
0を介して、また必要に応じてさらに電力調節器11を
通して温水タンク12内のヒータ13に通電するなど電
力と熱の負荷に応じてその比率を制御することができる
In particular, when the power consumption is low such as at night, the operation may be stopped, or when the power consumption is low but the heat exchanger 29 consumes a large amount, the switch 1 is connected to the load side of the distribution line 9.
The ratio of power and heat can be controlled in accordance with the power and heat load by energizing the heater 13 in the hot water tank 12 through 0 and further through the power regulator 11 as necessary.

温水タンク12はヒータ13により電力によって加熱さ
れるが、ガスエンジン7からの排気を熱源とする熱交換
器29から熱を得ることができ、さらにシリンダ8cの
外周に設けられた冷却器としての水ジャケット8dが熱
交換器として作用し、この水ジャケット8dからも熱を
得ることができる。
The hot water tank 12 is heated by electric power by the heater 13, but heat can be obtained from a heat exchanger 29 whose heat source is exhaust gas from the gas engine 7. Furthermore, the hot water tank 12 can obtain heat from a heat exchanger 29 that uses exhaust gas from the gas engine 7 as a heat source. The jacket 8d acts as a heat exchanger, and heat can also be obtained from the water jacket 8d.

ガスエンジン7gのスリット付円板20と位置センサ2
1は、この位置センサ21の出力を制御器24に入力す
ることで、過回転検知および防止も行なえる。
Gas engine 7g disk with slit 20 and position sensor 2
1, by inputting the output of the position sensor 21 to the controller 24, over-rotation can be detected and prevented.

なお、以上の実施例は内燃機関としてガスエンジンを用
いた場合について述べたが、本発明の主旨から、ガソリ
ン、ディーゼル等他の形式の内燃機関についてもまった
く同様の効果を発揮できることは自明である。
Although the above embodiments have been described using a gas engine as the internal combustion engine, it is obvious that the same effects can be achieved with other types of internal combustion engines, such as gasoline and diesel engines, based on the gist of the present invention. .

さらに、内燃機関によらずとも外燃機関の一種であるス
ターリングサイクルエンジンにおいても同様の効果を発
揮することが可能である。
Furthermore, the same effect can be achieved not only by an internal combustion engine but also by a Stirling cycle engine, which is a type of external combustion engine.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の熱併給発電装置は、と(に小
規模なシステムに対して著しい効果を発揮できるもので
、誘導発電機が内燃機関の始動電動機を兼ね、その始動
のための電力は既設の配電線から得ることによって始動
後発型状態に移行しても何等の切換、投入、同期調相な
どの手段を必要としないで円滑に始動電力の供給を受け
た配電線に電力を送出できるものである。
As described above, the combined heat and power generation device of the present invention can exhibit a remarkable effect on small-scale systems. By obtaining power from the existing distribution lines, even if the state shifts to a late-start type state, power can be smoothly transmitted to the distribution lines that have been supplied with starting power without requiring any means such as switching, turning on, or synchronizing phase adjustment. It is possible.

さらに、熱回収の効率についても、内燃機関を発電機と
ともに一体の断熱ケースに収めて外部と断熱することに
よって従来のシステムにおいては必ず冷却損失となる発
電機の鉄損、銅損、メカロスによる発熱までもが回収対
象となるため熱回収は極めて小規模のシステム構成とし
ても非常に高い効率を維持することができる。
Furthermore, in terms of heat recovery efficiency, the internal combustion engine and the generator are housed in an integrated insulated case and insulated from the outside, which generates heat due to the generator's iron loss, copper loss, and mechanical loss, which would otherwise result in cooling loss in conventional systems. Heat recovery can maintain extremely high efficiency even in extremely small-scale system configurations, as even heat can be recovered.

また、内燃機関の冷却器がある循環水路は上方に設置し
た温水タンクの底部付近を冷水取入れ口とし、この冷水
取入れ口よりも高所に排出口を開口するので、自然対流
を利用でき、循環用のポンプは不要で、より省エネルギ
ー化が実現できるものである。
In addition, the circulation waterway where the internal combustion engine's cooler is located uses the cold water intake near the bottom of the hot water tank installed above, and the outlet is opened higher than the cold water intake, so natural convection can be used and the circulation There is no need for a separate pump, and even greater energy savings can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱併給発電装置の1実施例を示すもの
で、全体の構成、制御を示す説明図、第2図は誘導発電
機、誘導電動機の回転数とトルクとの関係図、第3図は
電力の負荷に応じて発電量を変化させる制御パターンの
一例を示す相関図である。 1・・・配電線     2・・・積算電力計3・・・
ブレーカ    4a・・・電力センサ4b・・・電力
センサ  4c・・・電力センサ5・・・ガス電磁弁 
  6・・・電磁開閉器7・・・ガスエンジン  7a
・・・吸入管8・・・誘導発電機 8a・・・端子     8b・・・回転子8c・・・
シリンダ   8d・・・水ジャケラ8e・・・流入口
    8f・・・流出口8g・・・排気口    9
・・・配電線10・・・電磁開閉器   11・・・電
力調節器12・・・温水タンク   13・・・ヒータ
14・・・止め弁     15・・・ガス配管16・
・・スロットバルブ 17・・・空気取入口18・・・
エアクリーナ  19・・・ベンチュリ部20・・・ス
リット付円板 21・・・位置センサ22・・・点火栓
     23・・・点火器24・・・制御器    
 25・・・流出口26.28.30・・・蛇腹管  
27・・・戻り口29.36・・・熱交換器  31・
・・消音器32・・・断熱材     33・・・止め
弁34a、34b・・・水位センサ35・・・電磁弁3
7・・・温水出口    38・・・温水ポンプ39・
・・ファンコイルユニット ト 40・・・戻り口 42・・・ベントチューブ 44・・・ガス圧センサ 46・・・ケース 41・・・水温センサ 43・・・ドレンプラグ 45・・・循環水路
FIG. 1 shows one embodiment of the cogeneration power generation device of the present invention, and is an explanatory diagram showing the overall configuration and control. FIG. 2 is a diagram of the relationship between the rotational speed and torque of an induction generator and an induction motor. FIG. 3 is a correlation diagram showing an example of a control pattern for changing the amount of power generation depending on the power load. 1... Distribution line 2... Integrating power meter 3...
Breaker 4a...Power sensor 4b...Power sensor 4c...Power sensor 5...Gas solenoid valve
6...Electromagnetic switch 7...Gas engine 7a
...Suction pipe 8...Induction generator 8a...Terminal 8b...Rotor 8c...
Cylinder 8d...Water jacket 8e...Inlet 8f...Outlet 8g...Exhaust port 9
... Distribution line 10 ... Electromagnetic switch 11 ... Power controller 12 ... Hot water tank 13 ... Heater 14 ... Stop valve 15 ... Gas piping 16.
...Slot valve 17...Air intake port 18...
Air cleaner 19...Venturi part 20...Disc with slit 21...Position sensor 22...Ignition plug 23...Igniter 24...Controller
25... Outlet 26.28.30... Bellows pipe
27...Return port 29.36...Heat exchanger 31.
...Silencer 32...Insulating material 33...Stop valves 34a, 34b...Water level sensor 35...Solenoid valve 3
7... Hot water outlet 38... Hot water pump 39.
・Fan coil unit 40 ・Return port 42 ・Vent tube 44 ・Gas pressure sensor 46 ・Case 41 ・Water temperature sensor 43 ・Drain plug 45 ・Circulation waterway

Claims (1)

【特許請求の範囲】[Claims] 交流配電線に接続する誘導発電機とこの誘導発電機と直
結する内燃機関とを一体の断熱ケースに収め、該ケース
の上方に温水タンクを設置し、内燃機関からの排気を熱
源とする熱交換器を温水タンク内に設け、また温水タン
クの底部付近を冷水取入口としてここから温水タンクの
下方に出て途中に内燃機関の冷却器を接続し、さらに温
水タンク内の前記冷水取入口よりも高所に排出口として
開口する循環水路を形成し、一方、誘導発電機は内燃機
関で駆動される発電機とするのみならず、内燃機関の始
動電動機としても駆動することを特徴とする熱併給発電
装置。
The induction generator connected to the AC power distribution line and the internal combustion engine directly connected to the induction generator are housed in an integrated heat insulating case, and a hot water tank is installed above the case to provide heat exchange using the exhaust gas from the internal combustion engine as the heat source. A cooler is installed in the hot water tank, and a cold water intake is provided near the bottom of the hot water tank, and a cooler for the internal combustion engine is connected to the lower part of the hot water tank from here, and the cooler is connected to the cooler of the internal combustion engine on the way. A combined heat generation system in which a circulation waterway is formed that opens as a discharge port at a high place, and the induction generator is not only a generator driven by an internal combustion engine but also a starter motor for the internal combustion engine. Power generator.
JP1251580A 1989-09-27 1989-09-27 Cogeneration system Expired - Lifetime JP2587297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251580A JP2587297B2 (en) 1989-09-27 1989-09-27 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251580A JP2587297B2 (en) 1989-09-27 1989-09-27 Cogeneration system

Publications (2)

Publication Number Publication Date
JPH03117395A true JPH03117395A (en) 1991-05-20
JP2587297B2 JP2587297B2 (en) 1997-03-05

Family

ID=17224930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251580A Expired - Lifetime JP2587297B2 (en) 1989-09-27 1989-09-27 Cogeneration system

Country Status (1)

Country Link
JP (1) JP2587297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503298A (en) * 2009-08-27 2013-01-31 マクアリスター テクノロジーズ エルエルシー Energy system for residential facilities support
JP2014024383A (en) * 2012-07-25 2014-02-06 Tokyo R & D Co Ltd Temperature control device of electric vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587839A (en) * 1978-12-23 1980-07-03 Nakamura Jikou:Kk Power generator using total heat quantity
JPS5913938U (en) * 1982-07-19 1984-01-27 三菱電機株式会社 water heater
JPS60261399A (en) * 1984-06-08 1985-12-24 Hitachi Ltd Operating method of induction generator
JPS6246101A (en) * 1985-08-26 1987-02-28 トーヨー・マシナリー株式会社 Power supply type boiler
JPS6424124A (en) * 1987-07-17 1989-01-26 Atoutsudo Shisuku Robaato Apparatus and method for generating heat and electric energy output
JPH01184006A (en) * 1988-01-19 1989-07-21 Masashi Nanba Device for preventing contamination in heat exchanger of circulation type bath furnace
JPH01123154U (en) * 1988-02-10 1989-08-22

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587839A (en) * 1978-12-23 1980-07-03 Nakamura Jikou:Kk Power generator using total heat quantity
JPS5913938U (en) * 1982-07-19 1984-01-27 三菱電機株式会社 water heater
JPS60261399A (en) * 1984-06-08 1985-12-24 Hitachi Ltd Operating method of induction generator
JPS6246101A (en) * 1985-08-26 1987-02-28 トーヨー・マシナリー株式会社 Power supply type boiler
JPS6424124A (en) * 1987-07-17 1989-01-26 Atoutsudo Shisuku Robaato Apparatus and method for generating heat and electric energy output
JPH01184006A (en) * 1988-01-19 1989-07-21 Masashi Nanba Device for preventing contamination in heat exchanger of circulation type bath furnace
JPH01123154U (en) * 1988-02-10 1989-08-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503298A (en) * 2009-08-27 2013-01-31 マクアリスター テクノロジーズ エルエルシー Energy system for residential facilities support
JP2014024383A (en) * 2012-07-25 2014-02-06 Tokyo R & D Co Ltd Temperature control device of electric vehicle

Also Published As

Publication number Publication date
JP2587297B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US3678284A (en) Energy supply apparatus and method for a building
AU596338B2 (en) Cogeneration system
US4065055A (en) Complete system for a home air heating and cooling, hot and cold water, and electric power
US4876856A (en) Heat exchanging system
US3944837A (en) System and method for generation and distribution of electrical and thermal energy and automatic control apparatus suitable for use therein
CA2562636C (en) System and method for hydronic space heating with electrical power generation
US5617504A (en) Cogeneration system and control therefor with auxiliary heating elements and thermal barrier
US8093733B2 (en) Cogeneration system
CA2638728A1 (en) Dampered flow waste heat management system for a grid and local use ic-engine generator set
US8354755B2 (en) Cogeneration system
KR20010105235A (en) Multi Energy System
CN107939518A (en) A kind of heat power heat pump assembly and heat power heat pump control method
JPH03117395A (en) Cogeneration plant
CN108104948A (en) A kind of hybrid power heat pump apparatus of air source and hybrid power heat pump apparatus of air source control method
CN108105065A (en) A kind of heat power compressor and heat pump system and heat pump system control method
CN108105113A (en) A kind of serial power water pump and the heat pump system for including serial power water pump
CN108087113A (en) A kind of heat power water pump and the heat pump system for including heat power water pump
JP3663942B2 (en) Heat pump water heater
CN108106049A (en) A kind of double dynamical heat pump apparatus of air source and double dynamical heat pump apparatus of air source control method
RU2806960C1 (en) Gas turbine thermal power plant
CN107957148A (en) A kind of serial power heat pump assembly and serial power heat pump control method
CN207881273U (en) A kind of heat power heat pump apparatus of air source
RU14603U1 (en) AUTONOMOUS DEVICE FOR HEAT AND ELECTRIC SUPPLY
RU2216640C2 (en) Co-generative modular heat power station with internal combustion engine and additional burner assembly
JP2000111154A5 (en)