JPH0311619B2 - - Google Patents

Info

Publication number
JPH0311619B2
JPH0311619B2 JP60206683A JP20668385A JPH0311619B2 JP H0311619 B2 JPH0311619 B2 JP H0311619B2 JP 60206683 A JP60206683 A JP 60206683A JP 20668385 A JP20668385 A JP 20668385A JP H0311619 B2 JPH0311619 B2 JP H0311619B2
Authority
JP
Japan
Prior art keywords
flame
foam
insulating material
heat insulating
retardant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60206683A
Other languages
Japanese (ja)
Other versions
JPS6268737A (en
Inventor
Kazumaro Koshiishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP20668385A priority Critical patent/JPS6268737A/en
Publication of JPS6268737A publication Critical patent/JPS6268737A/en
Publication of JPH0311619B2 publication Critical patent/JPH0311619B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、住宅、ビル、冷凍・冷蔵用倉庫等の
建造物の壁、屋根等に使用される不燃性、少なく
とも難燃性断熱材料及びその製造方法に関するも
のである。 [従来の技術] 生活水準の向上に伴い住宅やビル等の冷暖房が
普及し、また、冷凍・冷蔵用倉庫等の大型化が進
んで、優れた断熱性を有する断熱材料の開発が要
請されるようになり、一時有機系のものが使用さ
れるようになつた。 しかしながらこのような有機系断熱材料は、そ
の断熱性が優れている反面、可燃性、発煙性、有
害ガス発生性等の防災面からの問題点を有し、次
第にその利用が制限されつつある。 そこで、このような可燃性、発煙性、有毒ガス
発生性等の問題点を解決し、防災面から安心して
使用できる断熱材料として、粒状の無機質発泡
体、例えば黒曜石、蛭石、真珠岩等にポルトラン
ドセメントや珪酸アルカリ系の無機質系バインダ
ーを添加し、この無機質発泡体を結合成形して得
られる無機質系の断熱材料が提案されている。 [発明が解決しようとする課題] しかしながらこの無機質系の断熱材料は、上記
従来の有機系断熱材料と較べて、その構成材料で
ある無機質発泡体並びにその結合に使用するポル
トランドセメントの重量が崇むため、その軽量化
が損われるという問題があり、更に上記無機質発
泡体が若干の伝熱性を有しているため、上記有機
系断熱材料と較べてその断熱効果も劣るといつた
問題点があつた。 本発明は、かかる観点に鑑みて創案されたもの
で、断熱性の優れた有機質発泡体が有する軽量と
いう特長を生かしつつ、この外表面を不燃性の無
機質系バインダー、特に軽量の珪酸アルカリで被
覆してその不燃化若しくは難燃化並びに耐水性と
強度の向上を図り、もつて軽量でしかも断熱効果
の優れた不燃性、少なくとも難燃性の断熱材料並
びにその製造方法を提供するものである。 〔課題を解決するための手段〕 すなわち本発明は、 粒状若しくは片状の有機質発泡体又はこれを主
体とする発泡基材と、 この発泡基材の外表面を被覆すると共にこれ等
を結合する珪酸アルカリと、 金属珪素を主体とする金属珪素粉とリン酸塩よ
り成り上記珪酸アルカリ溶液を硬化させる硬化
剤、 とで構成されていることを特徴とする不燃性少な
くとも難燃性断熱材料であり、 また、粒状若しくは片状の有機質発泡体又はこ
れを主体とする発泡基材に、珪酸アルカリ溶液、
及び、金属珪素を主体とする金属珪素粉とリン酸
塩より成り上記珪酸アルカリ溶液を硬化させる硬
化剤を混合し、これ等を硬化させて成形すること
を特徴とする不燃性少なくとも難燃性断熱材料の
製造方法である。 ここで、本発明において使用する発泡基材とし
ての有機質発泡体は、それが従来公知の如何なる
ものであつてもよく、具体的には発泡ポリスチレ
ン粒、発泡フエノール粒、発泡ポリウレタン粒、
発泡ポリ塩化ビニル粒等があり、その1種のみを
使用できるほか、2種以上の混合物としても使用
することができる。またこれ等有機質発泡体は上
記の粒状のものに限られるものではなく、ウレタ
ンフオームやフエノールフオーム等の生産工場に
おいて大量に発生するこれ等フオームの屑をチツ
プ化する等して片状にしたものも利用することが
できる。この有機質発泡体を粒径若しくは一片の
大きさについては、目的とする製品断熱材料の種
類、用途等によつて異なるが、通常1〜10mmφの
ものが使用される。また、これ等有機質発泡体の
密度は0.02〜0.06g/cm3で、通常使用される無機
質発泡体(密度0.1〜0.25g/cm3)と較べて著し
く軽量である。また更に上記有機質発泡体に密度
0.1〜0.16g/cm3の軽量の無機質発泡体例えばパ
ーライトを加え、これを発泡基材としてその難燃
性を良くする構成を採つてもよい。 次ぎに本発明において、上記発泡基材の外表面
を被覆しかつこれ等を結合させる軽量の珪酸アル
カリ溶液としては、通常、珪酸ナトリウム水溶液
や珪酸カリウム水溶液が使用されるが、水に対す
る溶解性や原料コストの点から好ましくは珪酸ナ
トリウム水溶液である。珪酸ナトリウムとしては
SiO2とNa2Oのモル比は通常2.0〜3.5であるが、
好ましくは2.3〜2.7のものであり、その水溶液の
濃度は通常35〜42重量%、好ましくは40〜42重量
%である。また、この珪酸アルカリ溶液の使用量
については、その濃度によつて異なるが、発泡基
材100重量部に対して、通常30〜120重量部、好ま
しくは50〜100重量部である。この珪酸アルカリ
溶液の使用量が30重量部より少ないと、上記発泡
基材の外表面を被覆する珪酸アルカリの膜厚が、
必要とする厚さより薄くなつてその不燃性が低下
してしまうと共に、発泡基材間の結合力が小さく
なつて強度の低下という問題が生じ、また、120
重量部より多いとバインダーが過剰になり、発
熱・脱水硬化反応の段階でバインダー分を流出し
てしまう結果となり、有効に作用しないという問
題が生じる。なお、本発明で使用する珪酸アルカ
リは、単一物質としての珪酸アルカリに限らず、
二酸化珪素と水酸化アルカリとを加熱溶融して得
られるいわゆる水ガラスも包含されるもので、メ
タ珪酸ナトリウム、オルト珪酸ナトリウム、二珪
酸ナトリウム、四珪酸ナトリウム等の混合物であ
つてもよい。 また本発明において上記珪酸アルカリ溶液を硬
化させる硬化剤としては、金属珪素粉とリン酸塩
とを併用したものが使用される。すなわち上記金
属珪素粉は、金属珪素それ自体に限らず、それが
金属珪素としての性質を有するものも包含される
もので、例えば、鉄と珪素との合金であるフエロ
シリコンや金属珪素と二酸化珪素の混合物等も使
用することができる。 この金属珪素粉は、例えば、珪酸ナトリウムと
次の反応によつて珪酸(SiO2)を生じ、次第に
SiO2/Na2Oのモル比の高い珪酸ナトリウムを形
成する。 Na2O・SiO2+H2ONaOH+NaHSiO3 ……(1) NaHSiO3+H2ONaOH+H2SiO3 ……(2) Si+2NaOH+nH2O→Na2SiO3+2H2↑ ……(3) この金属珪素粉の使用量は、珪酸アルカリ溶液
の種類や濃度によつても異なるが、この珪酸アル
カリ溶液100重量部に対して、通常10〜20重量部、
好ましくは13〜15重量部である。金属珪素粉の使
用量が10重量部より少ないと圧縮強度や耐水性が
不十分になり、また、20重量部より多いと金属珪
素粉が酸化し有効に作用しないという問題が生じ
る。 また、硬化剤の他の成分として使用されるリン
酸塩としては、硬化反応時にそれが珪酸アルカリ
と反応して水難溶性で熱安定性に優れたバインダ
ー物質を生成するものであればよく、好ましくは
リン酸アルミニウム、リン酸マグネシウム、リン
酸亜鉛等のリン酸金属塩や、ポリリン酸の金属塩
や、金属酸化物と五酸化リンとが所定の比率で結
合している縮合リン酸金属塩等があり、より好ま
しくは縮合リン酸アルミニウムで代表される縮合
リン酸金属塩である。このリン酸塩の使用量は、
珪酸アルカリ溶液のアルカリ量によつて決まり、
珪酸アルカリ溶液の種類や濃度によつても異なる
が、この珪酸アルカリ溶液100重量部に対して、
通常2〜30重量部、好ましくは10〜20重量部であ
る。リン酸塩の使用量が2重量部より少ないと圧
縮強度や耐水性が不十分であり、また、30重量部
より多くしても圧縮強度や耐水性の向上はみられ
ない。 本発明において、上記不燃性又は難燃性の断熱
材料を製造する際の成形法としては、従来公知の
方法を採用することができ、例えば、上記有機質
発泡体と硬化剤としての金属珪素粉及びリン酸塩
とを混合し、次いでこの混合物にバインダーとし
ての珪酸アルカリ溶液を添加して混合した後所望
の形状の型に注入し、常温で放置して硬化させ
る。発熱・脱水硬化反応が終了した後、型から外
して放置し乾燥させる。使用する型枠としては、
例えばボードを成形する場合、少なくとも片面に
ガス抜き孔を有する枠板を設け、均一世を確保す
るために振動を与えながら混合物を注入充填し、
充填完了後、発熱反応時の噴出を防止するために
ガス抜き孔を有する蓋をし、締付けて放置する。
常温にて約30分間放置すると、始めは徐々に反応
していたものが、次第に急激な発熱と水蒸気の蒸
発を伴つて脱水縮合の硬化反応を起す。この硬化
反応終了後、型枠から外して放置し乾燥させる。 また本発明においては、必要に応じて補強用添
加材としてスチールフアイバー、ガラス繊維、ロ
ツクウール等の鉱物質繊維を配合させてもよく、
その配合割合については、不燃性又は難燃性断熱
材料の用途等に応じて適宜選択することができ
る。なお、この補強用添加材を配合した場合にお
ける上記珪酸アルカリ溶液及び硬化剤の使用量
は、この補強用添加材を発泡基材の一部として考
慮し、補強用添加材の種類によつて異なるが、若
干の増量を必要とする。 〔作用〕 そして、本発明は以下のように作用する。 すなわち、本発明の不燃性又は難燃性断熱材
料、及び、本発明の製造方法で求められた不燃性
又は難燃性断熱材料は、第1図に示すように軽量
でかつ断熱性の優れた有機質発泡体1を発泡基材
として使用し、この外表面を不燃性の無機質バイ
ンダー、特に軽量の珪酸アルカリ2で被覆して外
部からの空気を遮断する構成のため、上記有機質
発泡体1の不燃化又は難燃化が図れると共に、有
機質発泡体1の優れた断熱性をそのまま維持する
ことができる。 しかも、上記珪酸アルカリ溶液を硬化させる硬
化剤が金属珪素を主体とする金属珪素粉とリン酸
塩とで構成されており、この金属珪素粉と珪酸ア
ルカリ溶液が反応してSiO2の比率が高い珪酸ア
ルカリ2を形成する一方、硬化反応時にリン酸塩
が珪酸アルカリ溶液と反応して水難溶性で熱安定
性に優れたバインダー物質を生成するため、無機
質バインダーである珪酸アルカリ2の不燃度が上
昇して有機質発泡体1の不燃化又は難燃化を更に
向上させることが可能になると共に、有機質発泡
体1の耐水性と強度をも向上させることが可能と
なる。 [実施例] 以下実施例及び比較例に基いて、本発明を不燃
性の場合について具体的に説明する。 実施例 1 有機質発泡体として平均粒径約2mm、密度0.04
g/cm3のフエノール発泡体100gを使用し、これ
に40%珪酸ナトリウム水溶液250gとフエロシリ
コン75g及び縮合リン酸アルミニウム(例えばヘ
キスト社製商品名:HBハードナー)15gとから
なる硬化剤とを配合し、混合して200mm×200mm×
50mmの板材成形用型に注入し、常温で約30分間放
置し発熱硬化させた後に型から外し、24時間放置
して乾燥させ第2図に示す有機質発泡板を成形し
た。この発泡板からテストピース(40mm×40mm×
50mm)を切出した。 実施例 2 有機質発泡体として平均粒径約2mm、密度0.04
g/cm3のフエノール発泡体50gを使用し、これに
無機質発泡体として平均粒径約1mm、密度0.12
g/cm3の黒曜石発泡体150gを使用し、これに40
%珪酸ナトリウム水溶液250gとフエロシリコン
75g及び縮合リン酸アルミニウム(例えばヘキス
ト社製商品名:HBハードナー)15gとからなる
硬化剤とを配合し、混合して200mm×200mm×50mm
の板材成形型に注入し、常温で約30分間放置し発
熱硬化させた後に型から外し、24時間放置して乾
燥させ第3図に示す有機質発泡板を成形した。こ
の発泡板からテストピース(40mm×40mm×50mm)
を切出した。 そして得られたテストピースの断面容積比
(%)を第1表に示す。
[Field of Industrial Application] The present invention relates to a non-combustible or at least flame-retardant heat insulating material used for walls, roofs, etc. of buildings such as houses, buildings, and warehouses for freezing and refrigerated storage, and a method for manufacturing the same. . [Conventional technology] With the improvement of living standards, heating and cooling of houses and buildings has become popular, and as warehouses for freezing and refrigerated storage are becoming larger, there is a demand for the development of heat insulating materials with excellent heat insulation properties. For a time, organic products came to be used. However, although such organic heat insulating materials have excellent heat insulating properties, they have problems from a disaster prevention perspective such as flammability, smoke generation, and harmful gas generation, and their use is gradually being restricted. Therefore, in order to solve these problems such as flammability, smoke generation, and toxic gas generation, we have developed granular inorganic foams such as obsidian, vermiculite, and pearlite as insulating materials that can be used safely from a disaster prevention perspective. An inorganic heat insulating material has been proposed which is obtained by adding an inorganic binder such as Portland cement or an alkali silicate type and bonding and molding this inorganic foam. [Problems to be Solved by the Invention] However, compared to the above-mentioned conventional organic heat insulating materials, this inorganic heat insulating material has a disadvantage in that the weight of the inorganic foam that is its constituent material and the portland cement used to bond them is high. Therefore, there is a problem that the weight reduction is impaired, and furthermore, since the above-mentioned inorganic foam has some heat conductivity, there is a problem that its heat insulation effect is inferior compared to the above-mentioned organic heat-insulating material. Ta. The present invention was devised in view of this point of view, and while taking advantage of the lightweight feature of an organic foam with excellent heat insulation properties, the outer surface of the organic foam is coated with a nonflammable inorganic binder, particularly a lightweight alkali silicate. The object of the present invention is to provide a non-flammable or at least flame-retardant heat insulating material that is lightweight and has an excellent heat insulating effect, as well as a method for producing the same. [Means for Solving the Problems] That is, the present invention comprises: a granular or flaky organic foam, or a foam base material mainly composed of the organic foam, and a silicic acid material that covers the outer surface of the foam base material and binds them together. A non-flammable or at least flame-retardant heat insulating material, characterized in that it is composed of an alkali, and a curing agent for curing the alkaline silicate solution, which is made of a metal silicon powder mainly composed of metal silicon and a phosphate, In addition, an alkali silicate solution,
and a non-combustible or at least flame-retardant heat insulating material, which is characterized by mixing metallic silicon powder mainly composed of metallic silicon and a curing agent for curing the above-mentioned alkaline silicate solution, and curing and molding the mixture. This is a method of manufacturing the material. Here, the organic foam used as the foam base material in the present invention may be any conventionally known material, and specifically, foamed polystyrene particles, foamed phenol particles, foamed polyurethane particles,
There are foamed polyvinyl chloride particles, etc., and not only one type thereof can be used, but also a mixture of two or more types can be used. In addition, these organic foams are not limited to the granular ones mentioned above, but also those made by chipping the scraps of urethane foam, phenol foam, etc., which are generated in large quantities in factories producing urethane foam and phenol foam. can also be used. The particle diameter or the size of a piece of this organic foam varies depending on the type of product heat insulating material intended, its use, etc., but a diameter of 1 to 10 mm is usually used. Furthermore, these organic foams have a density of 0.02 to 0.06 g/cm 3 , which is significantly lighter than commonly used inorganic foams (density 0.1 to 0.25 g/cm 3 ). Furthermore, the above organic foam has a density
A structure may be adopted in which a lightweight inorganic foam such as perlite of 0.1 to 0.16 g/cm 3 is added and this is used as a foam base material to improve its flame retardance. Next, in the present invention, a sodium silicate aqueous solution or a potassium silicate aqueous solution is usually used as a lightweight alkali silicate solution for coating the outer surface of the foamed base material and bonding them. From the viewpoint of raw material cost, a sodium silicate aqueous solution is preferred. As sodium silicate
The molar ratio of SiO 2 and Na 2 O is usually 2.0-3.5,
It is preferably 2.3 to 2.7, and the concentration of its aqueous solution is usually 35 to 42% by weight, preferably 40 to 42% by weight. The amount of the alkaline silicate solution to be used varies depending on its concentration, but is usually 30 to 120 parts by weight, preferably 50 to 100 parts by weight, based on 100 parts by weight of the foamed base material. If the amount of the alkali silicate solution used is less than 30 parts by weight, the thickness of the alkali silicate coating the outer surface of the foamed base material will be
If the thickness becomes thinner than required, its nonflammability will decrease, and at the same time, the bonding force between the foam base materials will decrease, resulting in a decrease in strength.
If the amount is more than 1 part by weight, the binder becomes excessive, resulting in the binder component flowing out at the stage of the exothermic/dehydration curing reaction, resulting in a problem that it does not work effectively. Note that the alkali silicate used in the present invention is not limited to an alkali silicate as a single substance;
It also includes so-called water glass obtained by heating and melting silicon dioxide and alkali hydroxide, and may be a mixture of sodium metasilicate, sodium orthosilicate, sodium disilicate, sodium tetrasilicate, and the like. Further, in the present invention, as a curing agent for curing the alkali silicate solution, a combination of metal silicon powder and phosphate is used. In other words, the above-mentioned metallic silicon powder is not limited to metallic silicon itself, but also includes those having properties as metallic silicon, such as ferrosilicon, which is an alloy of iron and silicon, and metallic silicon and silicon dioxide. Mixtures of silicon and the like can also be used. This metal silicon powder produces silicic acid (SiO 2 ) through the following reaction with, for example, sodium silicate, and gradually
Forms sodium silicate with a high molar ratio of SiO 2 /Na 2 O. Na 2 O・SiO 2 +H 2 ONaOH+NaHSiO 3 ...(1) NaHSiO 3 +H 2 ONaOH+H2SiO 3 ...(2) Si+2NaOH+nH 2 O→Na 2 SiO 3 +2H 2 ↑ ...(3) The amount of this metal silicon powder used is Although it varies depending on the type and concentration of the alkaline silicate solution, it is usually 10 to 20 parts by weight per 100 parts by weight of the alkaline silicate solution.
Preferably it is 13 to 15 parts by weight. If the amount of metal silicon powder used is less than 10 parts by weight, the compressive strength and water resistance will be insufficient, and if it is more than 20 parts by weight, the metal silicon powder will be oxidized and will not work effectively. The phosphate to be used as another component of the curing agent may be one that reacts with an alkali silicate during the curing reaction to produce a binder substance that is poorly soluble in water and has excellent thermal stability. are metal phosphates such as aluminum phosphate, magnesium phosphate, and zinc phosphate, metal salts of polyphosphoric acid, and condensed metal phosphates in which metal oxide and phosphorus pentoxide are combined in a predetermined ratio. Among them, condensed metal phosphates typified by condensed aluminum phosphate are more preferred. The amount of phosphate used is
Determined by the amount of alkali in the alkaline silicate solution,
Although it varies depending on the type and concentration of the alkaline silicate solution, for 100 parts by weight of this alkaline silicate solution,
It is usually 2 to 30 parts by weight, preferably 10 to 20 parts by weight. If the amount of phosphate used is less than 2 parts by weight, compressive strength and water resistance will be insufficient, and if it is more than 30 parts by weight, no improvement in compressive strength or water resistance will be observed. In the present invention, a conventionally known method can be adopted as a molding method for producing the non-combustible or flame-retardant heat insulating material. For example, the organic foam, metal silicon powder as a hardening agent, and Then, an alkaline silicate solution as a binder is added to the mixture, and after mixing, the mixture is poured into a mold of a desired shape, and left at room temperature to harden. After the exothermic/dehydration curing reaction is completed, it is removed from the mold and left to dry. The formwork used is
For example, when molding a board, a frame plate having gas vent holes on at least one side is provided, and the mixture is injected and filled while applying vibration to ensure uniformity.
After filling is completed, cover with a gas vent hole to prevent ejection during exothermic reaction, tighten, and leave.
When left at room temperature for about 30 minutes, what initially reacts gradually becomes a hardening reaction of dehydration condensation accompanied by rapid heat generation and evaporation of water vapor. After this curing reaction is completed, it is removed from the mold and left to dry. In addition, in the present invention, mineral fibers such as steel fiber, glass fiber, and rock wool may be blended as reinforcing additives as necessary.
The blending ratio can be appropriately selected depending on the use of the non-flammable or flame-retardant heat insulating material. In addition, when this reinforcing additive is blended, the amount of the alkali silicate solution and curing agent used will vary depending on the type of reinforcing additive, considering this reinforcing additive as a part of the foam base material. However, a slight increase is required. [Operation] The present invention operates as follows. That is, the non-combustible or flame-retardant heat insulating material of the present invention and the non-flammable or flame-retardant heat insulating material obtained by the manufacturing method of the present invention are lightweight and have excellent heat insulating properties, as shown in FIG. The organic foam 1 is used as a foam base material, and its outer surface is coated with a nonflammable inorganic binder, particularly a lightweight alkali silicate 2, to block air from the outside. The organic foam 1 can be made flame retardant or flame retardant, and the excellent heat insulation properties of the organic foam 1 can be maintained as it is. Moreover, the curing agent for curing the above-mentioned alkaline silicate solution is composed of a metal silicon powder mainly composed of metal silicon and a phosphate, and this metal silicon powder and the alkaline silicate solution react to increase the ratio of SiO 2 . While forming alkali silicate 2, the phosphate reacts with the alkali silicate solution during the curing reaction to produce a binder substance that is poorly soluble in water and has excellent thermal stability, increasing the nonflammability of alkali silicate 2, which is an inorganic binder. This makes it possible to further improve the nonflammability or flame retardance of the organic foam 1, and also to improve the water resistance and strength of the organic foam 1. [Example] Based on Examples and Comparative Examples, the present invention will be specifically described in the case of non-combustible products. Example 1 Organic foam with an average particle diameter of about 2 mm and a density of 0.04
Using 100 g of phenol foam of g/cm 3 , a hardening agent consisting of 250 g of a 40% sodium silicate aqueous solution, 75 g of ferrosilicon, and 15 g of condensed aluminum phosphate (for example, Hoechst product name: HB Hardener) was added. Blend and mix 200mm x 200mm x
The mixture was poured into a 50 mm mold for molding plate materials, left at room temperature for about 30 minutes to heat-cure, then removed from the mold, and left to dry for 24 hours to form the organic foam board shown in Figure 2. Test piece (40mm x 40mm x
50mm) was cut out. Example 2 Organic foam with an average particle diameter of about 2 mm and a density of 0.04
50 g of phenol foam of g/cm 3 was used, and inorganic foam with an average particle size of about 1 mm and a density of 0.12 was used.
150 g of obsidian foam of g/cm 3 was used, and this
% sodium silicate aqueous solution 250g and ferrosilicon
75g and a hardening agent consisting of 15g of condensed aluminum phosphate (for example, Hoechst product name: HB Hardener) and mixed to form a 200mm x 200mm x 50mm.
The mixture was injected into a plate forming mold, left at room temperature for about 30 minutes to cure with heat, removed from the mold, and left to dry for 24 hours to form the organic foam board shown in Figure 3. Test piece (40mm x 40mm x 50mm) from this foam board
I cut it out. Table 1 shows the cross-sectional volume ratio (%) of the test piece obtained.

【表】 比較例 無機質発泡体として平均粒径約1mm、密度0.12
g/cm3の黒曜石発泡体300gを使用し、これに40
%珪酸ナトリウム水溶液250gとフエロシリコン
75g及び縮合リン酸アルミニウム(例えばヘキス
ト社製商品名:HBハードナー)0〜60gとから
なる硬化剤とを配合し、混合して200mm×200mm×
50mmの板材成形用型に注入し、常温で約30分間放
置し発熱硬化させた後に型から外し、24時間放置
して乾燥させ無機質発泡板を成形した。この発泡
板からテストピース(40mm×40mm×50mm)を切出
した。 不燃性試験 そして得られたテストピースについて、日本工
業規格による不燃性試験(JIS、A−1321)を行
つた。 すなわち第4図に示す加熱炉を使用し、電気炉
本体3の電熱線4を作動させて、炉内温度が2個
の熱電対5の各々の示度で750±10℃に20分間以
上安定するように調整した後、上記テストピース
を試料容器6内にそう入し、上記熱電対5の内高
い方の値を検出してそう入後の炉内温度の変化を
測定し、各テストピースの不燃度を調べた。この
結果を第5図に示す。 この結果から明らかなように、各テストピース
については、そう入後の炉内温度が800℃以下で
あり不燃性試験は全て合格であつた。 また上記不燃性試験に加えて各テストピースの
熱伝導率(Kcal/mh℃)、すなわち断熱性並び
に比重も測定しその結果を第2表に示す。
[Table] Comparative example Inorganic foam with average particle size of approximately 1 mm and density of 0.12
300 g of obsidian foam of g/cm 3 was used, and this
% sodium silicate aqueous solution 250g and ferrosilicon
75 g and a hardening agent consisting of 0 to 60 g of condensed aluminum phosphate (for example, Hoechst product name: HB Hardener), and mixed to form a 200 mm x 200 mm x
The mixture was poured into a 50 mm mold for molding plate material, left at room temperature for about 30 minutes to heat-cure, then removed from the mold, and left to dry for 24 hours to form an inorganic foam board. A test piece (40 mm x 40 mm x 50 mm) was cut out from this foam board. Non-flammability test The obtained test piece was subjected to a non-flammability test according to Japanese Industrial Standards (JIS, A-1321). That is, by using the heating furnace shown in Fig. 4 and operating the heating wire 4 of the electric furnace body 3, the temperature inside the furnace is stabilized at 750 ± 10°C as indicated by each of the two thermocouples 5 for 20 minutes or more. After adjusting the test pieces so that The flammability of the material was investigated. The results are shown in FIG. As is clear from these results, for each test piece, the temperature inside the furnace after being inserted was 800°C or less, and all nonflammability tests were passed. In addition to the above nonflammability test, the thermal conductivity (Kcal/mh°C), that is, the heat insulation property, and specific gravity of each test piece were also measured, and the results are shown in Table 2.

【表】 この結果から本発明の不燃性断熱材料は、無機
質系の断熱材料より不燃度は若干劣るものの、断
熱並びに軽量性の面で優れていた。 [発明の効果] 以上のように本発明の不燃性又は難燃性断熱材
料、及び、本発明の製造方法で求められた不燃性
又は難燃性断熱材料は、軽量でかつ断熱性の優れ
た有機質発泡体を発泡基材として使用し、この外
表面を軽量でその不燃度の改良が図られた珪酸ア
ルカリにより被覆して外部からの空気を遮断する
構成のため、上記有機質発泡体の不燃化又は難燃
化並びに耐水性と強度の向上が図れると共に、有
機質発泡体の優れた断熱性をそのまま維持するこ
とができる。 従つて、軽量でしかも断熱効果に優れた不燃性
又は難燃性断熱材料を提供できると共に、この不
燃性又は難燃性断熱材料を容易に製造できる効果
を有している。
[Table] From the results, the nonflammable heat insulating material of the present invention was superior in terms of heat insulation and light weight, although its nonflammability was slightly inferior to that of inorganic heat insulating materials. [Effects of the Invention] As described above, the non-flammable or flame-retardant heat insulating material of the present invention and the non-flammable or flame-retardant heat insulating material obtained by the manufacturing method of the present invention are lightweight and have excellent heat insulation properties. Organic foam is used as a foam base material, and its outer surface is coated with alkali silicate, which is lightweight and has improved flame resistance, to block air from outside, making the organic foam nonflammable. Alternatively, flame retardancy, water resistance and strength can be improved, and the excellent heat insulation properties of the organic foam can be maintained. Therefore, it is possible to provide a non-flammable or flame-retardant heat-insulating material that is lightweight and has an excellent heat-insulating effect, and it also has the effect that this non-flammable or flame-retardant heat-insulating material can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例に係るテスト
ピースにおける断熱材料の拡大断面図、第4図は
各テストピースの不燃性試験用の加熱炉の概略説
明図、第5図は各テストピースの不燃性試験の結
果を示すグラフ図をそれぞれ示している。 [符号説明]、1……有機質発泡体、2……珪
酸アルカリ。
1 to 3 are enlarged sectional views of the heat insulating material in the test piece according to the embodiment of the present invention, FIG. 4 is a schematic explanatory diagram of the heating furnace for nonflammability testing of each test piece, and Each of the graphs shows the results of the nonflammability test of the test piece. [Description of symbols], 1...Organic foam, 2...Alkali silicate.

Claims (1)

【特許請求の範囲】 1 粒状若しくは片状の有機質発泡体又はこれを
主体とする発泡基材と、 この発泡基材の外表面を被覆すると共にこれ等
を結合する珪酸アルカリと、 金属珪素を主体とする金属珪素粉とリン酸塩よ
り成り上記珪酸アルカリ溶液を硬化させる硬化剤
とで構成されていることを特徴とする難燃性断熱
材料。 2 上記発泡基材が軽量の無機質発泡体を含有す
ることを特徴とする特許請求の範囲第1項記載の
難燃性断熱材料。 3 上記無機質発泡体がパーライトであることを
特徴とする特許請求の範囲第2項記載の難燃性断
熱材料。 4 上記珪酸アルカリが珪酸ナトリウムであるこ
とを特徴とする特許請求の範囲第1項記載の難燃
性断熱材料。 5 上記金属珪素を主体とする金属珪素粉がフエ
ロシリコンであることを特徴とする特許請求の範
囲第1項記載の難燃性断熱材料。 6 粒状若しくは片状の有機質発泡体又はこれを
主体とする発泡基材に、珪酸アルカリ溶液、及
び、金属珪素を主体とする金属珪素粉とリン酸塩
より成り上記珪酸アルカリ溶液を硬化させる硬化
剤を混合し、これ等を硬化させて成形することを
特徴とする難燃性断熱材料の製造方法。 7 上記発泡基材が軽量の無機質発泡体を含有す
ることを特徴とする特許請求の範囲第6項記載の
難燃性断熱材料の製造方法。 8 上記無機質発泡体がパーライトであることを
特徴とする特許請求の範囲第7項記載の難燃性断
熱材料の製造方法。 9 上記珪酸アルカリが珪酸ナトリウムであるこ
とを特徴とする特許請求の範囲第6項記載の難燃
性断熱材料の製造方法。 10 上記金属珪素を主体とする金属珪素粉がフ
エロシリコンであることを特徴とする特許請求の
範囲第6項記載の難燃性断熱材料の製造方法。
[Scope of Claims] 1. A granular or flaky organic foam or a foamed base material mainly composed of the same, an alkali silicate that coats the outer surface of the foamed base material and binds them together, and a base material mainly composed of metallic silicon. A flame-retardant heat insulating material comprising a metal silicon powder and a curing agent made of a phosphate for curing the alkaline silicate solution. 2. The flame-retardant heat insulating material according to claim 1, wherein the foam base material contains a lightweight inorganic foam. 3. The flame-retardant heat insulating material according to claim 2, wherein the inorganic foam is pearlite. 4. The flame-retardant heat-insulating material according to claim 1, wherein the alkali silicate is sodium silicate. 5. The flame-retardant heat insulating material according to claim 1, wherein the metal silicon powder mainly composed of metal silicon is ferrosilicon. 6 A granular or flaky organic foam or a foam base material mainly composed of the same, an alkaline silicate solution, and a curing agent consisting of a metal silicon powder mainly composed of metal silicon and a phosphate to harden the alkaline silicate solution. 1. A method for producing a flame-retardant heat insulating material, which comprises mixing, curing and molding the materials. 7. The method for producing a flame-retardant heat-insulating material according to claim 6, wherein the foamed base material contains a lightweight inorganic foam. 8. The method for producing a flame-retardant heat-insulating material according to claim 7, wherein the inorganic foam is pearlite. 9. The method for producing a flame-retardant heat insulating material according to claim 6, wherein the alkali silicate is sodium silicate. 10. The method for producing a flame-retardant heat insulating material according to claim 6, wherein the metal silicon powder mainly composed of metal silicon is ferrosilicon.
JP20668385A 1985-09-20 1985-09-20 Flame-retardant heat-insulating material and manufacture thereof Granted JPS6268737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20668385A JPS6268737A (en) 1985-09-20 1985-09-20 Flame-retardant heat-insulating material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20668385A JPS6268737A (en) 1985-09-20 1985-09-20 Flame-retardant heat-insulating material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6268737A JPS6268737A (en) 1987-03-28
JPH0311619B2 true JPH0311619B2 (en) 1991-02-18

Family

ID=16527380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20668385A Granted JPS6268737A (en) 1985-09-20 1985-09-20 Flame-retardant heat-insulating material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6268737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144830B1 (en) * 2010-09-10 2012-05-11 주식회사 세라젬메디시스 Assay apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529889Y2 (en) * 1989-12-25 1997-03-19 松下電工株式会社 relay
KR20080037660A (en) * 2005-07-26 2008-04-30 에르떼씨 비.브이. Method for manufacturing a fire retardant composite and composite thus obtained

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959876A (en) * 1972-10-12 1974-06-11
JPS5562836A (en) * 1978-10-31 1980-05-12 Osaka Soda Co Ltd Foamed plastic molding method
JPS6046982A (en) * 1983-08-26 1985-03-14 日本ゼオン株式会社 Manufacture of flame retardant heat insulator
JPS60157849A (en) * 1984-01-26 1985-08-19 日本ゼオン株式会社 Flame-retardant heat-insulating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959876A (en) * 1972-10-12 1974-06-11
JPS5562836A (en) * 1978-10-31 1980-05-12 Osaka Soda Co Ltd Foamed plastic molding method
JPS6046982A (en) * 1983-08-26 1985-03-14 日本ゼオン株式会社 Manufacture of flame retardant heat insulator
JPS60157849A (en) * 1984-01-26 1985-08-19 日本ゼオン株式会社 Flame-retardant heat-insulating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144830B1 (en) * 2010-09-10 2012-05-11 주식회사 세라젬메디시스 Assay apparatus

Also Published As

Publication number Publication date
JPS6268737A (en) 1987-03-28

Similar Documents

Publication Publication Date Title
US4608795A (en) Facings of inorganic molding compositions for building components
US20050031843A1 (en) Multi-layer fire barrier systems
KR101726589B1 (en) Expanded mortar and method for fabricating thereof
CA2231513C (en) Method for forming insulated products and building products formed in accordance therewith
US4871694A (en) Cellular ceramic material and method of production thereof
CN103333457A (en) High-smoke suppression and high-oxygen index phenolic aldehyde fire-proof heat-preserving board and preparation method thereof
US6368527B1 (en) Method for manufacture of foamed perlite material
JP4230725B2 (en) Insulating refractory material composition and insulating refractory material using the same
JPH0311619B2 (en)
JP2006525406A (en) Foamed plastic molding with excellent fire resistance
KR101532274B1 (en) Flame retardant compositiom for coating styroform and styroform coated the same and method for manufacturing styroform
US7354542B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
GB2101644A (en) Production of low-flammability heat-insulating layer
US4960621A (en) Method of insulating with inorganic non-combustible foam
JP3180212B2 (en) Fireproof insulation panel
KR101019980B1 (en) non-combustible styrofoam manufacture method
KR100748622B1 (en) Process of heat insulating board using water glass
JPH081854A (en) Refractory board
GB2041908A (en) Insulating Material
JPS627681A (en) Manufacture of inorganic heat insulator
JPS63151691A (en) Manufacture of inorganic heat insulator
JPH0430306Y2 (en)
JP2572589B2 (en) Manufacturing method of inorganic foam
KR20230051414A (en) Manufacturing techniques of insulating materials based on foaming slurry and honeycomb structures
CA1332955C (en) Method of forming cellular ceramic material and related products