JPH0311594Y2 - - Google Patents

Info

Publication number
JPH0311594Y2
JPH0311594Y2 JP1985056484U JP5648485U JPH0311594Y2 JP H0311594 Y2 JPH0311594 Y2 JP H0311594Y2 JP 1985056484 U JP1985056484 U JP 1985056484U JP 5648485 U JP5648485 U JP 5648485U JP H0311594 Y2 JPH0311594 Y2 JP H0311594Y2
Authority
JP
Japan
Prior art keywords
tape
tube
torsion
heat transfer
tube body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985056484U
Other languages
Japanese (ja)
Other versions
JPS61175788U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985056484U priority Critical patent/JPH0311594Y2/ja
Publication of JPS61175788U publication Critical patent/JPS61175788U/ja
Application granted granted Critical
Publication of JPH0311594Y2 publication Critical patent/JPH0311594Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、管体内に螺旋状に捩られた熱良導性
の帯状体からなる捩りテープを挿入して、管内単
相流の伝熱を促進するようにした伝熱管に関する
ものである。 (従来の技術) 従来から管体内に螺旋状に捩られた捩りテープ
を挿入した伝熱管は良く知られているが、管体内
壁に管体の内径にほぼ等しいテープ幅を有する捩
りテープを密着させて挿入すると、管体内を流れ
る流体の全てが捩りテープ面からの流動抵抗を受
けることから、圧力損失が非常に大きくなるとい
う問題があつた。かかる問題に対処するため、第
6図図示の如く、捩りテープ2の幅Wを管体1の
内径dより小さく設定して流路中の濡れ面積を小
さくし、圧力損失の低減を図るとともに、前記捩
りテープ2の側端部に、前記管体1内壁に密着さ
れる突片3,3…を部分的に突設したものが提案
されている(特公昭49−30179号公報参照)。 (考案が解決しようとする問題点) 上記公知例の如き構造のものにあつては、捩り
テープ2と管体1内壁との接触が、突片3,3…
部分の極く限られた長さであるため、捩りテープ
2の幅全体を管体1内壁に密着させた場合に比べ
ると圧力損失は低減するが、前者に比べて、伝熱
部分が極めて少なくなり、捩りテープ2の伝熱フ
インとしての効果を殆ど期待することができな
い。 本考案は、上記の点に鑑みてなされたもので、
熱伝達率の向上と圧力損失の低減との両面を考慮
し、より良い形状の捩りテープを提供し、あわせ
て、捩りテープおよび伝熱管の製作性の向上を図
らんとすることを目的としている。 (問題点を解決するための手段) 本考案では、上記問題点を解決するための手段
として、図面に示すように、管体1内に螺旋状に
捩られた熱良導性の帯状体からなる捩りテープ2
を挿入した伝熱管において、前記管体1内壁に、
前記捩りテープ2の旋回方向と逆向きの旋回方向
をもつ微細な螺旋溝10,10…を形成するとと
もに、前記捩りテープ2に、テープ幅が管体1内
径にほぼ等しく、その側端部4aが前記管体1内
壁に密着される広幅部分4と、該広幅部分4より
狭いテープ幅を有し且つ前記広幅部分4とほぼ等
しい管軸方向長さを有する狭幅部分5とを管軸方
向に交互に連続的に形成している。 (作用) 本考案では、上記手段によつて下記の如き作用
が得られる。 即ち、微細螺旋溝付管である管体1内に捩りテ
ープ2を挿入する構成としたことにより、流体の
流動抵抗を抑制しながらフイン効果が確保され、
更に、流れが、捩りテープ2の外縁と螺旋溝10
との交差角が大きくなる向きに旋回させられるこ
ととなり、管内壁近傍での流体の乱れが増大せし
められる。 また、管体1内径と捩りテープ2とが接触する
部分が、捩りテープ2の全長に対して約1/2とな
り、管体1と捩りテープ2との熱伝導が良好とな
り、捩りテープ2の伝熱フインとしての効果が大
巾に向上する。 さらに、管体1と捩りテープ2とが接触しない
〓間部分が、捩りテープ2の全長に対して約1/2
を占めるため、圧力損失が大巾に低減する。 (実施例) 以下、添付の図面を参照して、本考案の好適な
実施例を説明する。 本実施例の伝熱管は、第1図図示の如く、管体
1内に熱良導体(例えば、銅など)からなる捩り
テープ2を管軸方向に挿入固定して構成されてい
る。ここで、捩りテープ2とは、長手方向の軸線
周りに螺旋状に捩つて形成された帯状体のことで
ある。そして、本実施例においては、前記管体1
の内壁には、前記捩りテープ2の旋回方向と逆向
きの旋回方向をもつ微細な螺旋溝10,10…が
形成されており、捩りテープ2の外縁と螺旋溝1
0との交差点θは、約45゜とされている。 前記捩りテープ2には、第3図図示の如く、テ
ープ幅の広い広幅部分4とテープ幅の狭い狭幅部
分5とを管軸方向に交互に連続的に形成されてお
り、広幅部分4および狭幅部分5の管軸方向長さ
12はほぼ等しくされている。又、前記広幅
部分4の側端部には、テープ幅がw1からw3に拡
大するテープ幅6,6が設けられており、該各テ
ーパ部6の最小幅w1は、管体1の内径dと等し
いか、あるいはそれより若干大きくされている。
而して、テーパ部6における幅狭側の角部には、
大略円弧状のアール部7が設けられている。かく
して、この捩りテープ2を管体1内へ挿入する場
合、テーパ部6の幅狭側を前方にして矢印A方向
に挿入される。従つて、テーパ部6およびアール
部7は捩りテープ2の挿入作業を容易ならしめる
べく作用することとなる。管体1内に挿入された
捩りテープ2は、その広幅部分4,4…のテーパ
部6,6…に生じる弾性によつて、管体1内壁に
充分に接触固定され、伝熱性の向上および振動の
防止が図られることとなる。 更に、前記狭幅部分5のテープ幅w2は、管体
1の内径dの0.8〜0.9倍とされており、管体1内
壁と狭幅部分5側端との間には、管体1内を流通
する流体の流動抵抗を減らすべく〓間部8,8が
形成されている。該〓間部8,8の平均〓間率δ
は次式であらわされる。 即ち、第3図において、 δ=〓間部8,8の面積/長方形ABCDの面積=2(d
−w2)/(12)dとな るが、12,w2=(0.8〜0.9)dであるところ
から、 δ=1/2(1−w2/d)=0.05〜0.1となる。 そこで、狭幅部分5のテープ幅w2を変化させ
て、〓間率δ=(d−w)/dを変化させた場合
の伝熱性能比iEの傾向を示すと、第4図図示の如
くδ=0.05〜0.1の範囲においてiEが約1.7と最も
高くなつている。この事実を勘案すると、上記実
施例の伝熱管が伝熱性能比iEの点からみて好適で
あることがわかる。このことは、δ=0.05〜0.1
の範囲において、熱伝達率と圧力損失との変化割
合のバランスが最も良好となつていることに起因
しているものと思われる。 更に、本実施例の如く、12とすると、第
5図図示の如く、一枚の板材9から多数の捩りテ
ープ2,2…を打抜き加工により製作する場合、
材料の無駄を可及的に少なくすることができる。
なお、この場合、テーパ部6やアール部7の加工
は打抜き加工後に適宜行なえばよい。 又、性能上の観点からすると、12を減少
させる(即ち、12とする)に伴なつて、管
体1内壁と捩りテープ2との密着部が減少するた
め、伝熱フインとしての効果が小さくなり、伝熱
性能比iEが低下し、他方、12を増加させる
(即ち、12とする)に伴なつて、管体1内
を流通する流体の流動抵抗が増加し、やはり伝熱
性能比iEは低下してしまう。従つて、流動抵抗の
低減とフイン効果による伝熱性能の増加の両面を
考慮すると、12とすることが望ましい。 さて、表−には、微細螺旋溝付管に挿入され
る捩りテープの旋回方向の違いによる伝熱性能比
iEの変化が示されている。
(Industrial Application Field) The present invention is a method of promoting heat transfer in a single-phase flow in a pipe by inserting a twisted tape made of a spirally twisted strip with good thermal conductivity into a pipe. It is related to heat tubes. (Prior art) Heat exchanger tubes in which a spirally twisted torsion tape is inserted into the tube body are well known. If the tube is inserted with the tube in the same position, all of the fluid flowing inside the tube is subjected to flow resistance from the torsion tape surface, resulting in a problem that the pressure loss becomes extremely large. In order to deal with this problem, as shown in FIG. 6, the width W of the torsion tape 2 is set smaller than the inner diameter d of the tube body 1 to reduce the wetted area in the flow path and reduce pressure loss. It has been proposed that the torsion tape 2 has protrusions 3, 3, . (Problems to be Solved by the Invention) In the structure of the above-mentioned known example, the contact between the torsion tape 2 and the inner wall of the tube body 1 is caused by the protrusions 3, 3...
Since the length of the section is extremely limited, pressure loss is reduced compared to when the entire width of the torsion tape 2 is brought into close contact with the inner wall of the tube body 1, but compared to the former, the heat transfer section is extremely small. Therefore, almost no effect of the torsion tape 2 as a heat transfer fin can be expected. This invention was made in view of the above points,
The aim is to provide a twist tape with a better shape, taking into account both improvements in heat transfer coefficient and reduction in pressure loss, and at the same time, to improve the manufacturability of twist tapes and heat exchanger tubes. . (Means for Solving the Problems) In the present invention, as a means for solving the above problems, as shown in the drawings, a band-like body with good thermal conductivity twisted spirally inside the pipe body 1 is used. Naru twist tape 2
In the heat exchanger tube into which the tube body 1 is inserted,
Fine spiral grooves 10, 10, . A wide portion 4 that is in close contact with the inner wall of the tube body 1, and a narrow portion 5 that has a narrower tape width than the wide portion 4 and has a length in the tube axis direction that is approximately equal to the wide portion 4 in the tube axis direction. They are formed alternately and continuously. (Function) In the present invention, the following effects can be obtained by the above-mentioned means. That is, by inserting the torsion tape 2 into the tube body 1, which is a fine spiral grooved tube, the fin effect is ensured while suppressing the fluid flow resistance.
Furthermore, the flow is caused by the outer edge of the torsion tape 2 and the spiral groove 10.
As a result, the turbulence of the fluid near the inner wall of the pipe increases. In addition, the contact area between the inner diameter of the tube body 1 and the torsion tape 2 is approximately 1/2 of the total length of the torsion tape 2, and the heat conduction between the tube body 1 and the torsion tape 2 is good. The effectiveness as a heat transfer fin is greatly improved. Furthermore, the portion between the tube body 1 and the torsion tape 2 where they do not come into contact is approximately 1/2 of the total length of the torsion tape 2.
, the pressure loss is greatly reduced. (Embodiments) Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the heat transfer tube of this embodiment is constructed by inserting and fixing a torsion tape 2 made of a good thermal conductor (for example, copper) into a tube body 1 in the tube axis direction. Here, the twisted tape 2 is a band-shaped body formed by twisting spirally around a longitudinal axis. In this embodiment, the pipe body 1
Fine spiral grooves 10, 10, .
The intersection θ with 0 is approximately 45°. As shown in FIG. 3, the torsion tape 2 is formed with wide portions 4 having a wide tape width and narrow portions 5 having a narrow tape width alternately and continuously in the tube axis direction. Length of narrow portion 5 in tube axis direction
1 and 2 are almost equal. Furthermore, tape widths 6, 6 are provided at the side ends of the wide portion 4, and the tape width increases from w1 to w3 , and the minimum width w1 of each tapered portion 6 is the same as that of the tube body 1. The inner diameter d is equal to or slightly larger than the inner diameter d.
Therefore, at the narrow corner of the tapered portion 6,
A roughly arc-shaped rounded portion 7 is provided. Thus, when this torsion tape 2 is inserted into the tubular body 1, it is inserted in the direction of arrow A with the narrow side of the tapered portion 6 facing forward. Therefore, the tapered portion 6 and the rounded portion 7 function to facilitate the insertion work of the torsion tape 2. The torsion tape 2 inserted into the tube body 1 is sufficiently contacted and fixed to the inner wall of the tube body 1 due to the elasticity generated in the tapered portions 6, 6 of the wide portions 4, 4, etc., thereby improving heat conductivity and Vibration will be prevented. Further, the tape width w 2 of the narrow portion 5 is set to be 0.8 to 0.9 times the inner diameter d of the tube 1, and there is no tape between the inner wall of the tube 1 and the side end of the narrow portion 5. Intermediate portions 8, 8 are formed to reduce the flow resistance of fluid flowing therethrough. Average spacing ratio δ of the spacing portions 8, 8
is expressed by the following formula. That is , in FIG.
-w 2 )/( 1 + 2 ) d, but since 12 and w 2 = (0.8 to 0.9) d, δ = 1/2 (1-w 2 / d ) = 0.05 to 0.1 becomes. Therefore, the tendency of the heat transfer performance ratio iE when changing the tape width w 2 of the narrow portion 5 and changing the spacing ratio δ = (d-w)/d is shown in Fig. 4. As shown, iE is the highest at about 1.7 in the range of δ=0.05 to 0.1. Taking this fact into consideration, it can be seen that the heat transfer tube of the above embodiment is suitable in terms of the heat transfer performance ratio iE. This means that δ=0.05~0.1
This seems to be due to the fact that the rate of change in heat transfer coefficient and pressure loss is best balanced in the range of . Furthermore, if 1 = 2 as in this embodiment, when manufacturing a large number of torsion tapes 2, 2, . . . by punching from a single plate 9 as shown in FIG.
Material waste can be minimized.
In this case, the tapered portion 6 and the rounded portion 7 may be processed as appropriate after the punching process. In addition, from a performance standpoint, as the ratio of 1/2 is reduced (i.e., 1 < 2 ), the area of close contact between the inner wall of the tube body 1 and the torsion tape 2 is reduced, so that it is not suitable as a heat transfer fin. The effect of , the heat transfer performance ratio iE decreases, and on the other hand, as 1/2 increases (i.e., 1 > 2 ), the flow resistance of the fluid flowing inside the tube body 1 increases. However, the heat transfer performance ratio iE still decreases. Therefore, considering both the reduction in flow resistance and the increase in heat transfer performance due to the fin effect, it is desirable to set 1≈2 . Now, the table shows the heat transfer performance ratio due to the difference in the direction of rotation of the twisted tape inserted into the fine spiral grooved tube.
Changes in iE are shown.

【表】 ここで、捩りテープ外縁と管軸との交差角α=
20゜、螺旋溝と管軸との交差角β=20゜とし、実施
例の場合θ=α+β、比較例の場合θ=β−αと
している。 表−によれば、本実施例のものの方が比較例
に比べて非常に高い伝熱性能比iEを示しているこ
とがわかる。 又、第2図(イ),(ロ)には、螺旋溝10と流線fと
の関係を交差角θの違いによつて模式的に表わし
たものが示されており、(イ)が本実施例を、(ロ)が比
較例を示している。これによれば、本実施例の場
合の方が、管体1の内壁面近傍を流れる流体の乱
れが激しいために、温度境界層が撹乱されて、熱
伝達率が著しく増大すると考えられる。 一般に微細螺旋溝付管による単相流での伝熱促
進は、伝熱面積増加と管内壁近傍の流体の乱れに
よるものであるが、前者が主であり大幅な性能向
上が望めなかつた。これに対し、本考案の実施例
の如く、微細螺旋溝付管内に捩りテープを挿入す
る構成とすると、流体の流動抵抗を抑制しながら
フイン効果を確保し、更に、前記交差角θが大き
くなる方向に流れを旋回させて管内壁近傍での流
体の乱れを増大させることが可能となり、高い伝
熱性能比iEが得られるのである。 (考案の効果) 叙上の如く、本考案によれば、管体1内に挿入
される捩りテープ2に、管体1内壁に密着される
広幅部分4と、該広幅部分4より狭いテープ幅を
有する狭幅部分5とを管軸方向に交互に連続的に
形成し、しかも広幅部分4と狭幅部分5との管軸
方向長さをほぼ等しくしたので、フイン効果の確
保と圧力損失の低減とにより伝熱性能比(即ち、
同一ポンプ動力での平滑管の熱伝達率に対する比
率)が著しく向上するという実用的な効果があ
る。 又、広幅部分4と狭幅部分5の管軸方向長さを
ほぼ等しくしているので、一枚の板材から多数の
捩りテープ2を製作する場合、材料を無駄なく切
断加工することが可能となるという利点もある。 更に、管体1内壁に、捩りテープ2の旋回方向
と逆向きの旋回方向をもつ微細な螺旋溝10,1
0…を形成し、該管体1内に捩りテープ2を挿入
するようにしているので、流体の流動抵抗を抑制
しながらフイン効果を確保し、更に、捩りテープ
2の外縁と螺旋溝10との交差角θが大きくなる
方向に流れを旋回させて管内壁近傍での流体の乱
れを増大させることが可能となり、高い伝熱性能
比iEを得ることができる。 実旋態様項2に記載する如く、広幅部分4の側
端部に、最小幅が管体1の内径に等しいか、ある
いはそれより若干大きいテーパ部6を設け且つ該
テーパ部6における少なくとも幅狭側の角部に略
円弧状のアール部7を設ければ、捩りテープ2を
管体1内へ挿入する際の作業が極めて容易となる
ばかりでなく、捩りテープ2と管体1内壁の密着
度が高くなり、伝熱フインの効果を助長するとと
もに、流体が高速で管内を通過する際の振動現象
および異常発生をも防止することができる。
[Table] Here, the intersection angle α between the outer edge of the torsion tape and the tube axis =
20°, and the intersection angle β between the spiral groove and the tube axis is 20°, θ=α+β in the example, and θ=β−α in the comparative example. According to the table, it can be seen that the heat transfer performance ratio iE of the present example is much higher than that of the comparative example. In addition, FIGS. 2(a) and 2(b) schematically show the relationship between the spiral groove 10 and the streamline f by different intersection angles θ, and (a) shows the relationship between the spiral groove 10 and the streamline f. This example is shown, and (b) shows a comparative example. According to this, it is considered that in the case of this embodiment, the turbulence of the fluid flowing near the inner wall surface of the tube body 1 is more severe, so that the temperature boundary layer is disturbed and the heat transfer coefficient increases significantly. In general, heat transfer enhancement in single-phase flow using micro-spiral grooved tubes is due to an increase in heat transfer area and turbulence of the fluid near the inner wall of the tube, but the former is the main factor and no significant performance improvement could be expected. On the other hand, if the torsion tape is inserted into the fine spiral grooved tube as in the embodiment of the present invention, the fin effect is ensured while suppressing the fluid flow resistance, and the crossing angle θ becomes larger. By swirling the flow in this direction, it is possible to increase the turbulence of the fluid near the inner wall of the pipe, and a high heat transfer performance ratio iE can be obtained. (Effect of the invention) As described above, according to the invention, the torsion tape 2 inserted into the tube body 1 has a wide portion 4 that is in close contact with the inner wall of the tube body 1, and a tape width narrower than the wide portion 4. Since the narrow width portions 5 having the same width are formed alternately and continuously in the tube axis direction, and the lengths of the wide width portions 4 and the narrow width portions 5 in the tube axis direction are approximately equal, it is possible to secure the fin effect and reduce pressure loss. The heat transfer performance ratio (i.e.,
This has the practical effect of significantly improving the heat transfer coefficient (ratio to the heat transfer coefficient of a smooth tube at the same pump power). In addition, since the lengths of the wide portion 4 and the narrow portion 5 in the tube axis direction are approximately equal, when manufacturing a large number of torsion tapes 2 from one plate material, it is possible to cut the material without wasting it. There is also the advantage of being Furthermore, fine spiral grooves 10 and 1 having a turning direction opposite to that of the torsion tape 2 are formed on the inner wall of the tube body 1.
0... and the torsion tape 2 is inserted into the tube body 1, so that the fin effect is secured while suppressing the fluid flow resistance, and the outer edge of the torsion tape 2 and the spiral groove 10 are It is possible to increase the turbulence of the fluid near the inner wall of the pipe by turning the flow in the direction in which the intersection angle θ becomes larger, and it is possible to obtain a high heat transfer performance ratio iE. As described in Actual embodiment 2, a tapered portion 6 whose minimum width is equal to or slightly larger than the inner diameter of the tube body 1 is provided at the side end of the wide portion 4, and at least the narrow width of the tapered portion 6 is provided. Providing a substantially arc-shaped rounded portion 7 at the side corner not only makes it extremely easy to insert the torsion tape 2 into the tube body 1, but also prevents the torsion tape 2 from coming into close contact with the inner wall of the tube body 1. This increases the effectiveness of the heat transfer fins, and also prevents vibration phenomena and abnormalities when fluid passes through the pipe at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例にかかる伝熱管の要部
縦断側面図、第2図イ,ロは本考案の実施例にお
ける螺旋溝と捩りテープ外縁との交差角θの違い
による管内内壁近傍の流れの状態を模式的に示す
図で、イは実施例を、ロは比較例を示し、第3図
は第1図における捩りテープの展開図、第4図は
捩りテープ内挿管における〓間率δと伝熱性能比
iEの関係を示す特性図、第5図は捩りテープ切断
加工例を示す平面図、第6図は従来公知の伝熱管
の縦断面図である。 1……管体、2……捩りテープ、4……広幅部
分、5……狭幅部分、6……テーパ部、7……ア
ール部、10……螺旋溝。
Fig. 1 is a longitudinal cross-sectional side view of the main part of the heat transfer tube according to the embodiment of the present invention, and Fig. 2 A and B show the vicinity of the inner wall of the tube due to the difference in the intersection angle θ between the spiral groove and the outer edge of the twisted tape in the embodiment of the present invention. FIG. 4 is a diagram schematically showing the flow state of the tube in which A shows an example, B shows a comparative example, FIG. 3 is a developed view of the twisted tape in FIG. 1, and FIG. Rate δ and heat transfer performance ratio
A characteristic diagram showing the relationship between iE, FIG. 5 is a plan view showing an example of a torsion tape cutting process, and FIG. 6 is a longitudinal sectional view of a conventionally known heat exchanger tube. DESCRIPTION OF SYMBOLS 1...Tube body, 2...Twisted tape, 4...Wide width part, 5...Narrow width part, 6...Tapered part, 7...Rounded part, 10...Spiral groove.

Claims (1)

【実用新案登録請求の範囲】 1 管体1内に螺旋状に捩られた熱良導性の帯状
体からなる捩りテープ2を挿入した伝熱管にお
いて、前記管体1内壁には、前記捩りテープ2
の旋回方向と逆向きの旋回方向をもつ微細な螺
旋溝10,10…を形成するとともに、前記捩
りテープ2には、テープ幅が管体1内径にほぼ
等しく、その側端部が前記管体1内壁に密着さ
れる広幅部分4と、該広幅部分4より狭いテー
プ幅を有し且つ前記広幅部分4とほぼ等しい管
軸方向長さを有する狭幅部分5とを管軸方向に
交互に連続的に形成したことを特徴とする伝熱
管。 2 前記広幅部分4は、その側端部に、最小幅が
前記管体1内径に等しいか、あるいはそれより
若干大きいテーパ部6を有し且つ該テーパ部6
における少なくとも幅狭側の角部に、略円弧状
のアール部7を有する前記実用新案登録請求の
範囲第1項記載の伝熱管。
[Claims for Utility Model Registration] 1. In a heat exchanger tube in which a twisted tape 2 made of a spirally twisted belt-like body with good thermal conductivity is inserted into a tube body 1, the torsion tape is attached to the inner wall of the tube body 1. 2
The torsional tape 2 is formed with fine spiral grooves 10, 10, . 1. Wide portions 4 that are in close contact with the inner wall and narrow portions 5 that have a narrower tape width than the wide portions 4 and have approximately the same length in the tube axis direction as the wide portions 4 are alternately continuous in the tube axis direction. A heat exchanger tube characterized in that it is formed by 2 The wide portion 4 has a tapered portion 6 at its side end, the minimum width of which is equal to or slightly larger than the inner diameter of the tubular body 1;
The heat exchanger tube according to claim 1, which has a substantially arc-shaped rounded portion 7 at at least the corner portion on the narrow side of the tube.
JP1985056484U 1985-04-15 1985-04-15 Expired JPH0311594Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985056484U JPH0311594Y2 (en) 1985-04-15 1985-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985056484U JPH0311594Y2 (en) 1985-04-15 1985-04-15

Publications (2)

Publication Number Publication Date
JPS61175788U JPS61175788U (en) 1986-11-01
JPH0311594Y2 true JPH0311594Y2 (en) 1991-03-20

Family

ID=30580120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985056484U Expired JPH0311594Y2 (en) 1985-04-15 1985-04-15

Country Status (1)

Country Link
JP (1) JPH0311594Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272185A (en) * 2000-03-27 2001-10-05 Calsonic Kansei Corp Egr gas cooling device and manufacturing method therefor
CN104344759A (en) * 2013-08-05 2015-02-11 上海通华不锈钢压力容器工程有限公司 Heat exchange tube with internal left and right spiral pieces
JP6675132B2 (en) * 2015-11-20 2020-04-01 秀之 春山 Heat exchange mixing device and solution transfer cooling device
JP2019086180A (en) * 2017-11-02 2019-06-06 カルソニックカンセイ株式会社 Double pipe and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134772U (en) * 1973-03-19 1974-11-20

Also Published As

Publication number Publication date
JPS61175788U (en) 1986-11-01

Similar Documents

Publication Publication Date Title
US4265275A (en) Internal fin tube heat exchanger
EP1540262B1 (en) Heat exchanger fin having canted lances
EP0591094A1 (en) Internally ribbed heat transfer tube
KR20050027407A (en) Heat exchanger
JPH0311594Y2 (en)
US4709753A (en) Uni-directional fin-and-tube heat exchanger
CA1261820A (en) Heat exchanger core and heat exchanger employing the same
JPS6152592A (en) Heat exchanger core and manufacture thereof
JPS6361892A (en) Heat exchanger for automobile
US4700749A (en) Swirl-generating, helical agitator for heat exchanger tubes
JP2701956B2 (en) ERW pipe for heat transfer
JPH0972683A (en) Heat transfer tube
JP2009139085A (en) Louver type corrugated insert for heat exchanger
JPS59185992A (en) Heat exchanger
RU2033593C1 (en) Heat-exchange pipe
JPH0449501Y2 (en)
CN220708159U (en) Radiating fin structure and radiator
JPH10332292A (en) Heat-exchanger
JPS62123293A (en) Heat exchanger with fin
JPS59147995A (en) Finned heat exchanger
JPS5929991A (en) Heat exchange tube
JPS5932870Y2 (en) Heat exchanger tube with fins for condenser
JPH0116956Y2 (en)
JPS616591A (en) Finned heat exchanger
JPS632788Y2 (en)