JPH03115543A - High strength low thermal expansion alloy - Google Patents

High strength low thermal expansion alloy

Info

Publication number
JPH03115543A
JPH03115543A JP25285789A JP25285789A JPH03115543A JP H03115543 A JPH03115543 A JP H03115543A JP 25285789 A JP25285789 A JP 25285789A JP 25285789 A JP25285789 A JP 25285789A JP H03115543 A JPH03115543 A JP H03115543A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
low
coefficient
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25285789A
Other languages
Japanese (ja)
Other versions
JP2941312B2 (en
Inventor
Koji Sato
光司 佐藤
Rikizo Watanabe
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP25285789A priority Critical patent/JP2941312B2/en
Publication of JPH03115543A publication Critical patent/JPH03115543A/en
Application granted granted Critical
Publication of JP2941312B2 publication Critical patent/JP2941312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the high strength low thermal expansion alloy having speci fied thermal expansion coefficient and cold tensile strength by specifying a compsn. constituted of Ni, C, Si, Mn, Mo and Fe. CONSTITUTION:The high strength low terminal expansion alloy contains, by weight, 3b to <38% Ni, 0.1 to 0.5% C, <=0.5% Si, <=0.5% Mn, 1.0 to 4.0% Mo and the balance essential Fe, which has <=3.2X10<-4>/ deg.C average thermal expan sion coefficient at 30 to 230 deg.C and >=115kg f/mm<2> cold tensile strength. In the alloy, various additional elements are added to an 'Invar(R)' alloy as a base to improve the strength without increasing the thermal expansion coefficient. Thus, the above alloy is suitable for the application to precision machine parts, a core wire for a low looseness heat-resistant transmission line requiring low thermal expansion and high strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は使用中昇温の可能性のある精密機械部品や低弛
度耐熱送電線用芯線等に使用される高強度低熱膨張合金
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a high-strength, low-thermal-expansion alloy used for precision mechanical parts whose temperature may rise during use, core wires for low-sag heat-resistant power transmission lines, etc. It is.

〔従来の技術〕[Conventional technology]

従来より、架空送電線については、鋼心アルミ撚線(A
C3R線)が使用されているが、これをさらに発展させ
、送電容量の増大のために、高温度での使用に耐える耐
熱性の向上と弛度の減少にっいて種々検討がなされてい
る。これは、アルミ送電線の、温度上昇に伴う、熱膨張
による電線の弛度を高強度低熱膨張合金線を芯線に用い
ることで防止しようとするものである。
Traditionally, steel-core aluminum stranded wires (A
C3R wire) has been used, but in order to develop this further and increase power transmission capacity, various studies are being conducted on improving heat resistance to withstand use at high temperatures and reducing sag. This is intended to prevent sagging of aluminum power transmission lines due to thermal expansion caused by temperature rise by using high-strength, low-thermal-expansion alloy wires as core wires.

近年、この芯線用合金として、特公昭56−45990
号、特開昭55−122855号、特開昭55−131
15号などで提案されている。
In recent years, as an alloy for this core wire, Tokuko Sho 56-45990
No., JP-A-55-122855, JP-A-55-131
It has been proposed in issues such as No. 15.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような高強度低熱膨張合金線を芯線にもつAl送電
線のA1合金の耐熱温度は、連続送電温度で最大230
℃程度であり、弛度を抑えるための芯線には、常温から
230℃の温度範囲における低い熱膨張係数と高い強度
が要求される。従来の高強度低熱膨張合金線は230℃
よりも、さらに高い温度、例えば300℃程度までの平
均熱膨張係数に重点をおいた開発がなされている。
The heat resistance temperature of the A1 alloy of the Al power transmission line, which has such a high-strength, low-thermal-expansion alloy wire as the core wire, is a maximum of 230℃ at continuous power transmission temperature.
℃, and the core wire for suppressing sag is required to have a low coefficient of thermal expansion and high strength in the temperature range from room temperature to 230°C. Conventional high strength low thermal expansion alloy wire is 230℃
Developments have been focused on increasing the average coefficient of thermal expansion at even higher temperatures, for example, up to about 300°C.

しかし、実際にはAtの耐熱温度により送電線の使用温
度の上限が決定されてしまうので、高強度低熱膨張合金
には、A1合金の連続送電温度の上限である230℃ま
での平均熱膨張係数が特に間題となる。
However, in reality, the upper limit of the operating temperature of power transmission lines is determined by the heat resistance temperature of At, so high-strength, low-thermal-expansion alloys have an average thermal expansion coefficient of up to 230°C, which is the upper limit of the continuous power transmission temperature of A1 alloy. is a particular issue.

前述した特公昭56−45990号、特開昭55−12
2855号、特開昭55−13115号などの合金は、
Fe−Ni合金に各種強化元素を配合した合金組成をも
ち、冷間加工により高強度と低熱膨張特性が得られる。
The aforementioned JP 56-45990, JP 55-12
Alloys such as No. 2855 and JP-A-55-13115 are
It has an alloy composition in which various reinforcing elements are blended with Fe-Ni alloy, and high strength and low thermal expansion characteristics can be obtained by cold working.

しかし、冷間加工による低熱膨張化は、わずかの温度上
昇により、その効果が消失してしまうので、300℃程
度で短時間保持した後の熱膨張係数が特に重要となる。
However, the effect of reducing thermal expansion by cold working disappears with a slight temperature rise, so the coefficient of thermal expansion after being held at about 300° C. for a short period of time is particularly important.

特公昭56−45990号に示される合金は、F e−
38−48%Ni合金に強化元素として、C,Mo、C
rを添加したものである。
The alloy shown in Japanese Patent Publication No. 56-45990 is Fe-
C, Mo, C as reinforcing elements in 38-48%Ni alloy
It is added with r.

特開昭55−122855号に示される合金は、Fe−
38−5ONi合金に強化元素として、CならびにSi
、Mn。
The alloy shown in JP-A-55-122855 is Fe-
C and Si are added to the 38-5ONi alloy as reinforcing elements.
, Mn.

Crのうち1種または2種以上、さらにMo、TLV、
 Zr、Nb、Hf、Ta、Wのうち1種または2種以
上を添加したものである。また、特開昭55−1311
5号に示される合金はF e−35〜5ONi合金強化
元素としてCならびにSi、Mn、Orのうち1種また
は2種以上、さらにTi、Nb、Hf、V、Zr、Ta
、W、Alのいずれか1種または2種以上を添加したも
のである。これらの合金はいずれも冷間加工による高強
度化と常温から300℃あるいは200℃から300℃
までの低熱膨張とは図られているが、常温から230℃
までの低熱膨張化については、必ずしも最適Ni量と最
適強化元素の選定が十分に考慮されていない。
One or more of Cr, further Mo, TLV,
One or more of Zr, Nb, Hf, Ta, and W are added. Also, JP-A-55-1311
The alloy shown in No. 5 contains C and one or more of Si, Mn, and Or as strengthening elements for the Fe-35~5ONi alloy, as well as Ti, Nb, Hf, V, Zr, and Ta.
, W, and Al, or two or more of them are added. All of these alloys have high strength through cold working and are heated from room temperature to 300°C or from 200°C to 300°C.
Although it is designed to have low thermal expansion from room temperature to 230℃
Regarding the reduction in thermal expansion up to this point, sufficient consideration has not always been given to the selection of the optimum Ni content and optimum reinforcing elements.

本発明の目的は、上述のような送電線用芯線や使用中昇
温の可能性のある精密機械部品等の用途に最適の材料を
提供せんとするもので、室温から230℃までの平均熱
膨張係数が3.2XlO’ /℃以下、かつ常温引張強
さが11.5kg f / mm ”以上である高強度
低熱膨張合金を提供することである。
The purpose of the present invention is to provide a material that is optimal for applications such as the above-mentioned core wires for power transmission lines and precision mechanical parts that may rise in temperature during use. It is an object of the present invention to provide a high-strength, low-thermal-expansion alloy having an expansion coefficient of 3.2XlO'/°C or less and a room temperature tensile strength of 11.5 kg f/mm'' or more.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、インバー合金(F e−36%Ni)をベ
ースに各種添加元素を加え、熱膨張係数を増大させずに
強度を上げ、上述の特性を満足する材料の開発を行なっ
たゆ 鉄ニツケル系合金を強化する添加元素は、各種考えられ
るが、Ti、Nb+Ta、Hf、Zr等の元素は、Cと
の親和力が強く、塊状の硬い1次炭化物を形成するため
、靭延性を低下させるので本発明合金には添加しない。
The present inventor has developed a material that satisfies the above characteristics by adding various additive elements to an Invar alloy (Fe-36%Ni) to increase the strength without increasing the coefficient of thermal expansion. Various additive elements can be considered to strengthen nickel-based alloys, but elements such as Ti, Nb+Ta, Hf, and Zr have a strong affinity with C and form lumpy hard primary carbides, reducing toughness and ductility. Therefore, it is not added to the alloy of the present invention.

そこで本発明者は、強化元素として、C,Or。Therefore, the present inventor used C and Or as reinforcing elements.

Moに着目し、これらは元素の作用に関し、詳細に検討
を行った結果、CとMOを複合添加した場合に最も冷間
加工による加工硬化能が大きく、かつ低い熱膨張係数を
もつことがわかった。さらに常温から230℃までの平
均熱膨張係数を最小にする最適Ni量についても十分な
検討を行った結果、上述の特性を満足する本発明の合金
を見出した。
Focusing on Mo, we conducted a detailed study on the effects of these elements and found that when C and MO are added in combination, the work hardening ability by cold working is the greatest and the coefficient of thermal expansion is the lowest. Ta. Further, as a result of thorough study on the optimum amount of Ni that minimizes the average coefficient of thermal expansion from room temperature to 230°C, we have found an alloy of the present invention that satisfies the above-mentioned properties.

本発明は、重量比で、Ni35%以上38%未満、CO
,1−0,5%、Si0.5%以下、MnO,5%以下
、MOl、0〜4.0%を含み、残部は本質的にFeか
らなり、30〜230℃の平均熱膨張係数が3.2 X
 10= /℃以下、常温引張強さが115 kg f
 / aIll”以上であることを特徴とする高強度低
熱膨張合金である。
In the present invention, Ni is 35% or more and less than 38%, CO
, 1-0.5%, Si 0.5% or less, MnO, 5% or less, MOL, 0-4.0%, the remainder essentially consisting of Fe, and has an average thermal expansion coefficient of 30-230 ° C. 3.2 X
10= /℃ or less, room temperature tensile strength is 115 kg f
It is a high-strength, low-thermal-expansion alloy characterized by having a hardness of at least /aIll'' or more.

〔作用〕[Effect]

本発明において、N1の含有量は熱膨張特性に大きく影
響を及ぼす、特に常温から230℃までの平均熱膨張係
数を送電数を芯線として望ましい3.2X10’ /℃
以下に抑えるためには、35%以上38%未満のNiを
必要とし、Ni量が35%を下回る場合には、低熱膨張
特性の消失する温度を意味する変移点が低温側に移行し
、常温から230℃までの温度範囲において、目的とす
る低熱膨張特性が得られない、逆に38%以上のNiを
含む場合には、変移点は高温側に移行するものの、低温
側の熱膨張率が全体に高くなるので、目的とする低熱膨
張特性が得られない1以上の理由により、Niの含有量
は35%以上、38%未満に制限する。
In the present invention, the content of N1 has a large influence on the thermal expansion characteristics, and in particular, the average thermal expansion coefficient from room temperature to 230°C is preferably 3.2X10'/°C with the number of power transmissions as the core line.
In order to keep the temperature below 35% or more and less than 38% Ni, if the Ni amount is less than 35%, the transition point, which means the temperature at which the low thermal expansion characteristic disappears, shifts to the low temperature side, and at room temperature In the temperature range from 230℃ to 230℃, the desired low thermal expansion characteristics cannot be obtained.Conversely, if the Ni content is 38% or more, the transition point will shift to the high temperature side, but the coefficient of thermal expansion on the low temperature side will decrease. The content of Ni is limited to 35% or more and less than 38% for one or more reasons that the desired low thermal expansion characteristics cannot be obtained.

CはMOとともに本発明合金の冷間加工硬化能を著しく
高める作用をもつ、そのために必要なCは最低0.1%
であるが、過度のCの添加は熱膨張係数の増加をまねく
ため、上限を0.5%とする。
C, together with MO, has the effect of significantly increasing the cold work hardening ability of the alloy of the present invention, and for this purpose, the minimum amount of C required is 0.1%.
However, since excessive addition of C leads to an increase in the coefficient of thermal expansion, the upper limit is set to 0.5%.

Si、MnはMOに比べると十分な強化作用はもたらさ
ないが、脱酸元素として作用するので、それぞれ0.5
%以下とする。
Although Si and Mn do not have a sufficient strengthening effect compared to MO, they act as deoxidizing elements, so they each have a 0.5
% or less.

Moは、数多くの強化元素のうち、Cと複合添加した場
合の冷間加工による硬化能が最も大きい。
Among many reinforcing elements, Mo has the highest hardening ability by cold working when added in combination with C.

これは、固溶状態におけるMoとCrの相互作用、さら
に−111Mo、Cの微細炭化物の析出が原因と考えら
れる。また、MoはCrに比べ、熱膨張係数を高める度
合も小さいので、熱膨張特性の面からも有利な元素であ
る。そのために必要なMOは最低1.0%であるが、4
.0%を越える過度の添加は熱膨張係数の増加を招くの
で、Moは1.0〜4.0%に制限する。
This is considered to be caused by the interaction between Mo and Cr in a solid solution state and the precipitation of -111Mo and C fine carbides. Furthermore, Mo increases the coefficient of thermal expansion to a smaller extent than Cr, so it is an advantageous element in terms of thermal expansion characteristics. The MO required for this is at least 1.0%, but 4
.. Excessive addition exceeding 0% causes an increase in the coefficient of thermal expansion, so Mo is limited to 1.0 to 4.0%.

本発明にかかる高強度低熱膨張合金は、上述した主要元
素と、本質的に残部Feから構成される鉄ニツケル系合
金である。
The high-strength, low-thermal-expansion alloy according to the present invention is an iron-nickel alloy composed of the above-mentioned main elements and the remainder essentially Fe.

また、他の脱酸元素Al、Mg、Ti、Ca、B等は通
常含まれるそれぞれ下記に示す量の含有は、何等特性に
差し支えない。
Further, other deoxidizing elements Al, Mg, Ti, Ca, B, etc., which are usually contained, may be contained in the amounts shown below without any problem to the properties.

A1.TiS2.1% MLCa、B≦0.02% 〔実施例〕 第1表に示す組成の合金を溶製し、鍛造で加熱温度11
00℃で、直径10−の丸棒とした。これらの試料を、
1000℃の温度で1時間加熱後、油冷し、さらに冷間
にて伸線加工を行って直径4.6mmのココイルに仕上
げた。この線材について、冷間加工ままの状態で引張試
験を行い、さらに290 ℃で20時間、空冷後に熱膨
張測定を行った。これららの結果についても第1表に併
記するとともに第1図にまとめた。
A1. TiS2.1% MLCa, B≦0.02% [Example] An alloy having the composition shown in Table 1 was melted and forged at a heating temperature of 11
It was made into a round bar with a diameter of 10 mm at 00°C. These samples
After heating at a temperature of 1000° C. for 1 hour, it was cooled in oil and further cold wire drawn to form a cocoil with a diameter of 4.6 mm. This wire rod was subjected to a tensile test in the as-cold-worked state, and then thermal expansion measurements were performed after cooling it in air at 290° C. for 20 hours. These results are also listed in Table 1 and summarized in Figure 1.

第1表ならびに第1図より、30〜230℃までの平均
熱膨張係数は、MoとCの含有量がほぼ一定の下で、本
発明合金No、1〜3のN1量では低い熱膨張特性を示
し、比較合金No、12のようにNi量が低すぎても、
N o、 13のようにN1量が高すぎても、熱膨張係
数は高くなることがわかる。
From Table 1 and Figure 1, it can be seen that the average thermal expansion coefficient from 30 to 230°C is low for the N1 content of the invention alloys No. 1 to 3 under the condition that the content of Mo and C is almost constant. Even if the Ni content is too low as in comparative alloy No. 12,
It can be seen that even if the amount of N1 is too high as in No. 13, the coefficient of thermal expansion becomes high.

また、本発明合金No、1〜5がいずれも120kgf
/閣1以上の高い引張強さを示すのに対し、Cの低いN
o、1.1、またNo、3のMo?:Crで置換したN
o。
In addition, the present invention alloy Nos. 1 to 5 all had a weight of 120 kgf.
/ exhibits high tensile strength of 1 or higher, while C has low N
o, 1.1, and No. 3 Mo? :N substituted with Cr
o.

14はいずれも引張強さが本発明合金に比べ低く、逆に
熱膨張係数は高くなっている。
No. 14 has a lower tensile strength than the alloy of the present invention, and on the contrary, a higher coefficient of thermal expansion.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低熱膨張と高強度を必要とする精密機
械部品や低弛度送電線の芯線に適し、とりわけ、送電線
の芯線に使用することにより、従来合金よりも、送電線
の実用使用温度領域において、低い熱膨張係数を示すた
め、送電線の温度上昇による弛度をさらに低め、その結
果従来合金を芯線に用いた場合よりさらに送電容量を増
大することが可能となる。
According to the present invention, it is suitable for precision mechanical parts that require low thermal expansion and high strength, and the core wire of low-sag power transmission lines. Since it exhibits a low coefficient of thermal expansion in the operating temperature range, it further reduces the sag of the power transmission line due to temperature rise, and as a result, it becomes possible to further increase the power transmission capacity than when conventional alloys are used for the core wire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、30〜230℃および30〜300℃におけ
る平均熱膨張係数に及ぼすNi含有量の影響を示す図第 図 4 5 6 7 8 9 Ni量 (wt ’ム)
Figure 1 shows the influence of Ni content on the average thermal expansion coefficient at 30-230°C and 30-300°C.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で、Ni35%以上38%未満、C0.1〜
0.5%、Si0.5%以下、Mn0.5%以下、Mo
1.0〜4.0%を含み、残部は本質的にFeからなり
、30〜230℃の平均熱膨張係数が3.2×10^−
^5/℃以下、常温引張強さが115kgf/mm^2
以上であることを特徴とする高強度低熱膨張合金。
1 Weight ratio: Ni 35% or more and less than 38%, C0.1~
0.5%, Si 0.5% or less, Mn 0.5% or less, Mo
1.0~4.0%, the remainder essentially consists of Fe, and the average coefficient of thermal expansion at 30~230°C is 3.2 x 10^-
^5/℃ or less, room temperature tensile strength is 115kgf/mm^2
A high-strength, low-thermal-expansion alloy characterized by the above properties.
JP25285789A 1989-09-28 1989-09-28 High strength low thermal expansion alloy Expired - Fee Related JP2941312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25285789A JP2941312B2 (en) 1989-09-28 1989-09-28 High strength low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25285789A JP2941312B2 (en) 1989-09-28 1989-09-28 High strength low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JPH03115543A true JPH03115543A (en) 1991-05-16
JP2941312B2 JP2941312B2 (en) 1999-08-25

Family

ID=17243138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25285789A Expired - Fee Related JP2941312B2 (en) 1989-09-28 1989-09-28 High strength low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP2941312B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502350A (en) * 1993-07-05 1996-03-26 Hitachi Metals Ltd. Shadow mask support member having high strength and thermal deformation resistant low-expansion alloy plate and high expansion alloy plate and method of producing the same
CN114107834A (en) * 2021-11-05 2022-03-01 河钢股份有限公司 High-strength iron-nickel-molybdenum alloy wire and low-cost preparation method thereof
CN114107829A (en) * 2020-09-01 2022-03-01 宝武特种冶金有限公司 High-strength low-expansion invar alloy wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502350A (en) * 1993-07-05 1996-03-26 Hitachi Metals Ltd. Shadow mask support member having high strength and thermal deformation resistant low-expansion alloy plate and high expansion alloy plate and method of producing the same
CN114107829A (en) * 2020-09-01 2022-03-01 宝武特种冶金有限公司 High-strength low-expansion invar alloy wire
CN114107834A (en) * 2021-11-05 2022-03-01 河钢股份有限公司 High-strength iron-nickel-molybdenum alloy wire and low-cost preparation method thereof

Also Published As

Publication number Publication date
JP2941312B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US4705581A (en) Soft magnetic stainless steel
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPS6119767A (en) Austenite stainless steel for low temperature
JPH0321622B2 (en)
JP2968430B2 (en) High strength low thermal expansion alloy
JPH04218642A (en) Low thermal expansion superalloy
JPS60426B2 (en) Austenitic cast iron
JPH03115543A (en) High strength low thermal expansion alloy
JPS60231591A (en) Wire for submerged arc welding of cr-mo group low alloy steel
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
JPH10195587A (en) Spheroidal graphite cast iron and exhaust manifold excellent in intermediate temperature ductility, and production thereof
US1905247A (en) Welding electrode
JP2007262582A (en) Superconducting magnetic component
JPS6363617B2 (en)
JPH11179588A (en) Brazing filler metal for stainless steel
JPH0586463B2 (en)
JP6144402B1 (en) Heat-resistant steel for hearth hardware
US4049432A (en) High strength ferritic alloy-D53
JPS6070166A (en) Creep and oxidation resistant low-alloy steel
US5173254A (en) Steel having excellent vibration-dampening properties and weldability
KR100361969B1 (en) Extra high-strength invar alloys with low thermal expansion
JPH0270040A (en) High-strength low thermal expansion alloy
JP2023030847A (en) Low thermal expansion alloy for welding
US4196261A (en) Stable bimetal strip
JP2000263287A (en) Low hydrogen type coated electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees