JPH03115488A - Hydrotreating of heavy oil - Google Patents

Hydrotreating of heavy oil

Info

Publication number
JPH03115488A
JPH03115488A JP1254690A JP25469089A JPH03115488A JP H03115488 A JPH03115488 A JP H03115488A JP 1254690 A JP1254690 A JP 1254690A JP 25469089 A JP25469089 A JP 25469089A JP H03115488 A JPH03115488 A JP H03115488A
Authority
JP
Japan
Prior art keywords
catalyst
hydrotreating
heavy oil
direct desulfurization
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254690A
Other languages
Japanese (ja)
Inventor
Toshio Ito
俊夫 伊藤
Kenichi Murakawa
村川 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP1254690A priority Critical patent/JPH03115488A/en
Publication of JPH03115488A publication Critical patent/JPH03115488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To perform hydrotreating of heavy oil economically without using any catalyst regeneration column by suspending in the heavy oil a fresh direct desulfurization catalyst and/or a waste direct desulfurization catalyst, subjecting the suspension to hydrotreating, and recovering the catalyst(s) by means of a decanter for reuse in hydrotreating. CONSTITUTION:A metal selected from among Mo, Co, Ni and W is supported on an aluminum carrier to obtain a fresh direct desulfurization catalyst with an average grain size of 3 to 40mum. A waste catalyst removed from a direct desulfurization apparatus that directly desulfurizes a residue such as a residue of atmospheric or vacuum distillation is subjected to a regeneration treatment where the carbon sticking to its surface is burned off to thereby obtain a waste direct desulfurization catalyst with an average grain size of 3 to 40mum and a specific surface area of 40 to 200m<2>/g, in which 0.7 to 20wt.% vanadium and 0.2 to 10wt.% nickel are accumulated. In heavy oil, the fresh and/or the waste catalyst are suspended in an amount of 0.05 to 10.0wt.% based on the amount of the heavy oil. the suspension is then subjected to hydrotreating for 10 minutes to 4 hours at a temperature of 400 to 480 deg.C and a pressure of 50 to 300kg/cm<2>.G, at a liquid hourly space velocity of 0.1 to 3.0hr<-1>, at a hydrogen partial pressure of 35 to 200kg/cm<2>, and with a hydrogen consumption of 50 to 300m<2> per kiloliter of oil. The used catalyst(s) is (are) removed from the mixture by means of a decanter, and recycled for hydrotreating.

Description

【発明の詳細な説明】 産業上の利用分野〕 本発明は重質油の水素化処理方法に関し、さらに詳しく
は重質油を水素化分解するにあたり、触媒を微小にして
活性を上げるとともに、デカンタ−で使用済触媒を回収
して反応塔に戻し、再利用することのできる経済的な重
質油の水素化処理方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for hydrotreating heavy oil, and more specifically, in hydrocracking heavy oil, the catalyst is made smaller to increase its activity, and the decanter The present invention relates to an economical method for hydrotreating heavy oil in which a spent catalyst can be recovered, returned to a reaction tower, and reused.

〔従来の技術および発明が解決しようとする課題〕重質
油の水素化処理を懸濁床方式で行なう場合、経済性を良
くするためには、添加する触媒の濃度をできるだけ低く
する必要がある。触媒濃度が一定のとき、活性を上げる
ためには触媒粒径を小さくすればよいが、触媒粒径を小
さくした場合は、反応混合物から触媒を回収するにあた
り、液体サイクロンでは触媒捕集ができずに生成油と混
合してしまい、触媒の損失および生成残油の性状悪化が
起こる。また、フィルターを用いる濾過方法では、触媒
および重質生成物によるフィルターの目詰りが起こり実
用的でない。
[Prior art and problems to be solved by the invention] When hydrotreating heavy oil using a suspended bed method, in order to improve economic efficiency, it is necessary to reduce the concentration of the added catalyst as much as possible. . When the catalyst concentration is constant, the activity can be increased by decreasing the catalyst particle size, but if the catalyst particle size is decreased, a hydrocyclone cannot collect the catalyst when recovering the catalyst from the reaction mixture. This causes loss of catalyst and deterioration of the properties of the residual oil produced. In addition, the filtration method using a filter is not practical because the filter is clogged by the catalyst and heavy products.

従来、重質油の水素化処理を懸濁床方式で行なう方法と
しては特公昭46−35616号公報に記載の方法や特
開昭54−40806号公報に記載の方法が知られてい
る。しかしながら、前者の方法では触媒としてニッケル
・モリブテン担持アルミナ触媒を用いているものの、粒
径範囲を好ましくは300ミクロン以下とするだけで特
定化をしていない。さらに、この方法では水素化反応後
の触媒の分離や分離した触媒の反応塔への循環等の工程
は含まれていない。また、後者の方法では触媒として直
接脱硫廃触媒を用いているが、その粒径範囲を74μm
以下と記載するだけで特定化していない。さらに、水素
化反応後の固液分離は遠心分離機、液体サイクロン、フ
ィルター等を用い得るとしているのみで、しかも触媒の
再生塔を付加しており、この方法は経済的ではない。
Conventionally, methods described in Japanese Patent Publication No. 46-35616 and Japanese Patent Application Laid-Open No. 54-40806 are known as methods for hydrogenating heavy oil using a suspended bed method. However, in the former method, although a nickel-molybdenum-supported alumina catalyst is used as a catalyst, the particle size range is preferably 300 microns or less, but is not specified. Furthermore, this method does not include steps such as separating the catalyst after the hydrogenation reaction and recycling the separated catalyst to the reaction column. In addition, in the latter method, a direct desulfurization waste catalyst is used as a catalyst, but the particle size range is 74 μm.
It is not specified, it is simply stated as below. Furthermore, it is only stated that a centrifuge, hydrocyclone, filter, etc. can be used for solid-liquid separation after the hydrogenation reaction, and furthermore, a catalyst regeneration tower is added, making this method uneconomical.

(課題を解決するための手段〕 そこで、本発明者らは重質油の水素化処理を懸濁床方式
で経済、的に行なう方法について鋭意研究を重ねた結果
、特定の平均粒径を有する直接脱硫触媒を用い、さらに
デカンタ−を用いて水素化反応混合物から使用済触媒を
分離し、これを循環、再使用すれば、再生塔が不要とな
り、経済的に重質油の水素化処理を行なうことができる
ことを見出し、本発明を完成した。
(Means for Solving the Problems) Therefore, the present inventors have conducted intensive research on a method for economically and economically hydrogenating heavy oil using a suspended bed method. If a direct desulfurization catalyst is used, and a decanter is used to separate the spent catalyst from the hydrogenation reaction mixture, and this is recycled and reused, a regeneration tower is not required, making it possible to economically hydroprocess heavy oil. The inventors have discovered that this can be done and completed the present invention.

すなわち、本発明は重質油中に直接脱硫触媒を懸濁させ
て該重質油を水素化処理するにあたり、直接脱硫触媒の
平均粒径を3〜40μmとするとともに、デカンタ−を
用いて水素化反応混合物がら分離して得られた使用済触
媒を糸環、再使用することを特徴とする重質油の水素化
処理方法を提供するものである。
That is, in the present invention, when directly suspending a desulfurization catalyst in heavy oil to hydrotreat the heavy oil, the average particle size of the direct desulfurization catalyst is set to 3 to 40 μm, and hydrogen is removed using a decanter. The present invention provides a method for hydrotreating heavy oil, which is characterized in that a spent catalyst obtained by separation from a reaction mixture is recycled and reused.

本発明において用いられる重質油については特に制限は
なく、従来より重質油の水素化処理に45用されている
もの、例えば常圧蒸留残油、減圧蒸留残油、オイルサン
ド油、オイルシェール油などを用いることができる。ま
た、沸点500°C以上の残渣油の場合も希釈油なしで
用いることができる。
There are no particular restrictions on the heavy oil used in the present invention, and those conventionally used for hydrotreating heavy oils, such as atmospheric distillation residue, vacuum distillation residue, oil sand oil, and oil shale. Oil etc. can be used. Further, residual oil with a boiling point of 500°C or higher can also be used without diluting oil.

次に、本発明においては重質油を水素化処理するだめの
触媒として、直接脱硫触媒が用いられる。
Next, in the present invention, a direct desulfurization catalyst is used as a catalyst for hydrotreating heavy oil.

直接脱硫触媒としては、直接脱硫新触媒および/または
直接脱硫廃触媒があるが、間接脱硫触媒を単独でもしく
は直接脱硫触媒と組み合わせて用いることもできる。こ
こで、直接脱硫新触媒としては特に制限はなく、通常直
接脱硫触媒として用いられているものが任意に使用でき
る。具体的には、−aにアルミナを担体とし、担持金属
としてモリブデン、コバルト ニッケル タングステン
などを適宜組み合わせたものが用いられる。なお、直接
脱硫新触媒として球状のものを選択すると、流動性が良
いので懸濁床方式による水素化処理に好適である。また
、直接脱硫廃触媒としては、常圧蒸留残油や減圧蒸留残
油なとの残油をそのまま脱硫する直接脱硫装置から抜き
出された廃触媒であって、この廃触媒の基となる直接脱
硫に用いられる触媒の種類については特に制限はなく、
前記したものを用いればよい。この直接脱硫廃触媒は、
その表面に付着した炭素質を燃焼させて除去する再生処
理を施してから用いることが望ましく、このような再生
処理後の該触媒上には、通常バナジウムが0.7〜20
重量%およびニッケルが0.2〜10重量%程度の割合
で蓄積しており、その比表面積は、通常40〜20On
f/gの範囲である。
Direct desulfurization catalysts include direct desulfurization new catalysts and/or direct desulfurization waste catalysts, but indirect desulfurization catalysts can also be used alone or in combination with direct desulfurization catalysts. Here, the new direct desulfurization catalyst is not particularly limited, and any catalyst that is normally used as a direct desulfurization catalyst can be used. Specifically, a combination of alumina as a carrier and molybdenum, cobalt, nickel, tungsten, etc. as a supported metal is used. Note that when a spherical catalyst is selected as the new direct desulfurization catalyst, it has good fluidity and is suitable for hydrogenation treatment using a suspended bed method. In addition, the direct desulfurization waste catalyst is a waste catalyst extracted from a direct desulfurization equipment that directly desulfurizes residual oil such as atmospheric distillation residue or vacuum distillation residue, and is the base of this waste catalyst. There are no particular restrictions on the type of catalyst used for desulfurization.
Those described above may be used. This direct desulfurization waste catalyst is
It is desirable to perform a regeneration treatment to burn and remove the carbonaceous matter adhering to the surface of the catalyst before use, and after such regeneration treatment, the catalyst usually contains 0.7 to 20
% by weight and nickel is accumulated at a ratio of about 0.2 to 10% by weight, and its specific surface area is usually 40 to 20 On.
It is in the range of f/g.

本発明において、上記直接脱硫触媒の粒径は3〜40μ
mであることが必要である。粒径が3μm未満であると
、反応混合物からデカンタ−で触媒の捕集が完全にでき
ず、一方粒径が40μmを越えると、触媒の活性が低く
なり、いずれも好ましくない。触媒の添加量は、原料油
に対し0.05〜10.0重足%、好ましくは0.1〜
6.0重量%である。また、本発明においては、本発明
の目的を損なわない範囲で所望に応じ、前記触媒ととも
に、従来より重質油の水素化処理に慣用されている各種
の触媒を用いることができる。
In the present invention, the particle size of the direct desulfurization catalyst is 3 to 40μ.
It is necessary that m. When the particle size is less than 3 μm, the catalyst cannot be completely collected from the reaction mixture in a decanter, while when the particle size exceeds 40 μm, the activity of the catalyst decreases, and both are unfavorable. The amount of catalyst added is 0.05 to 10.0% by weight, preferably 0.1 to 10.0% by weight, based on the raw material oil.
It is 6.0% by weight. Furthermore, in the present invention, various catalysts that have been conventionally used in the hydrogenation treatment of heavy oil can be used in addition to the above-mentioned catalyst as desired within a range that does not impair the object of the present invention.

重質油の水素化処理方式としては、前記触媒を重質油中
に懸濁させて反応させる方法、工業的には懸濁床方式が
適用される。
As a method for hydrotreating heavy oil, a method in which the catalyst is suspended in heavy oil and reacted, and a suspended bed method is applied industrially.

本発明における重質油の水素化処理は、反応温度400
〜480°C1圧力50〜300kg/c+Il −G
、液時空間速度(L HS V) 0.1〜3. Oh
r水素分圧35〜200kg/cJ・G、水素消費量5
0〜300rrr/kl油の条件下で実施することが好
ましい。
The hydrogenation treatment of heavy oil in the present invention is carried out at a reaction temperature of 400
~480°C1 pressure 50~300kg/c+Il-G
, liquid hourly space velocity (LHS V) 0.1-3. Oh
r Hydrogen partial pressure 35 to 200 kg/cJ・G, hydrogen consumption 5
It is preferable to carry out under the condition of 0 to 300 rrr/kl oil.

本発明の方法を実施するには、原料の重質油と前記直接
脱硫触媒および所望に応じて用いられる粉末状水素化処
理触媒とを混合し、この混合物を反応器に供給し、前記
反応条件下で水素と反応させる。この場合、反応時間は
通常10分ないし4時間、好ましくは30分ないし2時
間程度である。
To carry out the method of the present invention, the feedstock heavy oil is mixed with the direct desulfurization catalyst and the optionally used powdered hydrotreating catalyst, this mixture is fed to a reactor, and the reaction conditions are as described above. React with hydrogen below. In this case, the reaction time is usually about 10 minutes to 4 hours, preferably about 30 minutes to 2 hours.

反応生成物は、まず気液分離により水素および低級炭化
水素などを含むガス状物が分離され、次いで固液分離に
より触媒が分離されたのち、生成油が回収される。本発
明では固液分離を行なうにあたり、反応混合物を軽油等
で洗浄したのち、デカンタ−により生成油と使用済触媒
に分離する。デカンタ−は円筒状コンベアー形のものが
好ましく、通常2000C;までで遠心分離を行ない生
成油と使用済触媒に分離する。遠心分離機にはデカンタ
−の他、シャープレス形遠心分離機やドラパル形遠心分
離機があるが、本発明のような固形分の多い(3〜30
重量%)ものを分離した場合には、内部への触媒の詰ま
りゃ半自動のため固形分の掻き出しのだめの機器の停止
が頻繁となり実用的でない。また、従来の液体サイクロ
ンでは粒径20μm以下の触媒の回収が完全にできない
ため生成油の性状が悪化し好ましくなく、また濾過法で
は粘着性のある重質物や触媒がフィルターを目詰まりさ
せてしまい濾過ができなくなるので好ましくない。
From the reaction product, gaseous substances including hydrogen and lower hydrocarbons are first separated by gas-liquid separation, then the catalyst is separated by solid-liquid separation, and then the produced oil is recovered. In performing solid-liquid separation in the present invention, the reaction mixture is washed with light oil or the like and then separated into produced oil and spent catalyst using a decanter. The decanter is preferably of the shape of a cylindrical conveyor, and is usually centrifuged at up to 2000C to separate the product oil and the spent catalyst. In addition to decanters, centrifugal separators include Sharpless type centrifuges and Drapal type centrifuges.
% by weight), if the catalyst gets clogged inside, the device is semi-automatic, so it is impractical because the device for scraping out the solids will have to stop frequently. In addition, conventional hydrocyclones cannot completely recover catalysts with a particle size of 20 μm or less, which deteriorates the properties of the produced oil, which is undesirable.Furthermore, with filtration methods, sticky heavy substances and catalysts clog filters. This is not preferable because filtration becomes impossible.

これに対し、デカンタ−により固液分離を行なって得ら
れる使用済触媒は、従来のように再生塔で再生処理を施
すことなく反応系に触媒としてリサイクルすることがで
きる。従って、触媒の再生塔が不要となるので建設費、
用役費が安くなると共に、使用済の触媒をリサイクルし
て使用するので触媒の消費量も抑えることができ、経済
的である。
On the other hand, the spent catalyst obtained by solid-liquid separation using a decanter can be recycled as a catalyst to the reaction system without being subjected to regeneration treatment in a regeneration tower as in the conventional method. Therefore, there is no need for a catalyst regeneration tower, which reduces construction costs.
It is economical because the utility costs are reduced, and since the used catalyst is recycled and used, the amount of catalyst consumed can be reduced.

使用済触媒をデカンタ−により分離して再使用する本発
明の方法によれば、沸点が171〜343°Cの範囲に
ある中間留分が高収率で得られると共に、沸点が343
〜525°Cの範囲にある減圧軽油もかなりの収率で得
られる。一方、コーク(炭素質トルエン不溶分)の生成
率は低く、条件によっては5重量%程度に抑えることが
できる。
According to the method of the present invention in which spent catalyst is separated using a decanter and reused, a middle distillate having a boiling point in the range of 171 to 343°C can be obtained in high yield, and a middle distillate with a boiling point in the range of 343°C can be obtained in high yield.
Vacuum gas oils in the range ˜525° C. are also obtained in reasonable yields. On the other hand, the production rate of coke (carbonaceous toluene insoluble matter) is low and can be suppressed to about 5% by weight depending on the conditions.

(実施例) 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらによって限定されるものではない。
(Example) Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

なお、実施例及び比較例における原料の重質油としては
、第1表に示す性状のアラビアンヘビー戚圧残油を用い
た。
As the raw material heavy oil in the Examples and Comparative Examples, Arabian heavy oil residue having the properties shown in Table 1 was used.

第1表 また、各成分の収率および転化率は次の通りである。Table 1 Moreover, the yield and conversion rate of each component are as follows.

中間留分収率: 原料油に対する沸点171〜343°C留分の重量割合 減圧軽油収率: 原料油に対する沸点343〜525°C留分の重量割合 析出アスファルテン収率: 析出炭素質でn−へブタンに不溶、かつトルエンに可溶
の留分の原料油に対する重量割合 コーク収率: 原料油に対する炭素質トルエン不溶分の重量割合 転化率: 100−(減圧残油収率+析出アスファルテン収率) (ただし、減圧残油収率は原料油に対する沸点525°
C以上の留分の割合、析出アスファルテン収率は析出炭
素質でn−へブタンに不溶で、トルエンに可溶分の原料
油に対する割合である)実施例1 触媒として平均粒径6μmの直接脱硫廃触媒(実装置か
ら抜き出したバナジウム1.1重量%およびニッケル1
.0重量%が蓄積した触媒化成工業■製のCD5−R2
3)0.42 gを原料油のアラビアンヘビー減圧残油
80gと共にオートクリープに充填したのち、水素雰囲
気下に450°C1170kg/cffl −Gで1時
間反応させた。
Middle distillate yield: Weight ratio of boiling point 171-343°C fraction to feedstock oil Vacuum gas oil yield: Weight ratio of boiling point 343-525°C fraction to feedstock oil Yield of precipitated asphaltene: N- in the precipitated carbonaceous material Weight ratio of fraction insoluble in hebutane and soluble in toluene to feedstock oil Coke yield: Weight ratio of carbonaceous toluene-insoluble fraction to feedstock oil Conversion rate: 100 - (yield of vacuum residual oil + yield of precipitated asphaltene) ) (However, the vacuum residual oil yield is based on the boiling point of 525° relative to the raw material oil.
The ratio of C or higher fractions and the yield of precipitated asphaltene are the ratios of precipitated carbonaceous substances that are insoluble in n-hebutane and soluble in toluene to the raw oil) Example 1 Direct desulfurization with an average particle size of 6 μm as a catalyst Waste catalyst (1.1% by weight of vanadium and 1% of nickel extracted from the actual equipment)
.. CD5-R2 manufactured by Catalysts & Chemicals Industry ■ which accumulated 0% by weight
3) After filling 0.42 g into an autocreep together with 80 g of Arabian Heavy vacuum residual oil as a raw material, the mixture was reacted in a hydrogen atmosphere at 450° C. at 1170 kg/cffl-G for 1 hour.

次いで、反応終了液中の触媒をデカンタ−により分離し
たのち、得られた液状生成物を蒸留ガスクロマトグラフ
ィーにより分析し、生成した中間留分及び減圧軽油の収
率をそれぞれ求めた。また、コーク収率は生成固形分を
トルエン及びアセトンで洗浄し、乾燥後、空気中にて5
50°Cで燃焼させて求めた。この結果を第1表に示す
Next, the catalyst in the reaction-completed liquid was separated by a decanter, and the obtained liquid product was analyzed by distillation gas chromatography to determine the yields of the produced middle distillate and vacuum gas oil, respectively. In addition, the coke yield was determined by washing the produced solids with toluene and acetone, drying them, and then leaving them in the air for 50 minutes.
It was determined by burning at 50°C. The results are shown in Table 1.

実施例2 実施例1において、平均粒径9μmの直接脱硫廃触媒を
用いたこと以外は実施例1と同様の操作を行なった。こ
の結果を第1表に示す。
Example 2 The same operation as in Example 1 was performed except that a direct desulfurization waste catalyst with an average particle size of 9 μm was used. The results are shown in Table 1.

比較例1 実施例1において、平均粒径60μmの直接脱硫廃触媒
を用いたこと以外は実施例1と同様の操作を行なった。
Comparative Example 1 The same operation as in Example 1 was performed except that a direct desulfurization waste catalyst with an average particle size of 60 μm was used.

この結果を第1表に示す。The results are shown in Table 1.

比較例2 実施例1において、同じ粒径範囲の粉砕したFC廃触媒
(実装置から抜き出した触媒化成工業(113製のMR
Z−204)にバナジウム2.0重量%およびニッケル
1.0重量%1旦持したものを用いたこと以外は実施例
1と同様の操作を行なった。ごの結果を第1表に示す。
Comparative Example 2 In Example 1, pulverized FC waste catalyst with the same particle size range (MR manufactured by Catalysts and Chemicals Industry Co., Ltd. (113) extracted from the actual equipment) was used.
The same operation as in Example 1 was carried out except that Z-204) containing 2.0% by weight of vanadium and 1.0% by weight of nickel was used. The results are shown in Table 1.

実施例3 実施例1で用いた触媒と同じ触媒4.2gと原料油のア
ラビアンヘビー減圧残油80gをオートクレーブに充填
し、水素雰囲気下に450“C117kg/cJ−Gで
1時間反応させた。反応終了後、固形分壱回収し、11
の軽油で洗浄後、遠心分離して使用済触媒を回収した。
Example 3 An autoclave was filled with 4.2 g of the same catalyst as used in Example 1 and 80 g of Arabian Heavy vacuum residue as a raw material oil, and reacted in a hydrogen atmosphere at 450"C117 kg/cJ-G for 1 hour. After the completion of the reaction, one solid content was collected and 11
After washing with light oil, the spent catalyst was recovered by centrifugation.

回収した使用済触媒をn−へブタンで洗浄し、乾燥させ
た後、反応系に戻し、再び反応させた。この様に反応と
触媒の回収を20回行なった。20回目に得られた生成
物の分析結果を第1表に示す。なお、遠心分離は国産遠
心器株式会社製のH−900多本架遠心器を用い、加速
度2000Gにて10分間行なった。
The recovered spent catalyst was washed with n-hebutane and dried, then returned to the reaction system and reacted again. The reaction and catalyst recovery were carried out 20 times in this manner. Table 1 shows the analysis results of the product obtained for the 20th time. The centrifugation was carried out at an acceleration of 2000 G for 10 minutes using an H-900 multi-bar centrifuge manufactured by Kokusan Centrifuge Co., Ltd.

使用済触媒は100重世%近く回収でき、生成油へのイ
昆入もなかった。
Nearly 100% of the spent catalyst could be recovered, and no particles were added to the produced oil.

比較例3 実施例1と同様の条件で反応を行なった後、1回目の反
応の残留固形分を回収し、402の軽油で希釈した。こ
れを、内径25ovn、高さ30cmと内径10mm、
高さ10cmの液体サイクロンを直列2段に結合したも
のを用い、線速かそれぞれ275m/sec、 130
m1secにて固液分離を行なった。その結果、使用済
触媒の回収率は30重量%であった。実施例3の結果と
比べて、液体サイクロンでは触媒の損失および生成物へ
の固形分の混入が避けられないことがわかった。また、
液体サイクロンでは回収触媒中ζ:大屋の洗浄軽油が含
まれるため、経済的に不利となることがわかった。
Comparative Example 3 After carrying out a reaction under the same conditions as in Example 1, the residual solid content from the first reaction was collected and diluted with 402 diesel oil. This has an inner diameter of 25ovn, a height of 30cm, an inner diameter of 10mm,
Using two stages of 10 cm high liquid cyclones connected in series, each linear velocity was 275 m/sec, 130
Solid-liquid separation was performed at m1sec. As a result, the recovery rate of the spent catalyst was 30% by weight. In comparison with the results of Example 3, it was found that loss of catalyst and contamination of solids into the product are inevitable in the hydrocyclone. Also,
It was found that liquid cyclone is economically disadvantageous because the recovered catalyst contains ζ: Oya's cleaning light oil.

比較例4 実施例1と同様の条件で反応を行なった後、1回目の反
応の残留固形分を回収し、11の軽油で洗浄、希釈した
。これを目開き1μmのメンブランフィルタ−にてiI
!過を行なった。その結果、粘着性の重質油分がフィル
ターを目詰りさせてしまい濾過不能であった。
Comparative Example 4 After carrying out a reaction under the same conditions as in Example 1, the residual solid content from the first reaction was collected, washed and diluted with No. 11 light oil. This was filtered through a membrane filter with an opening of 1 μm.
! I did something wrong. As a result, the sticky heavy oil clogged the filter, making it impossible to filter it.

比較例5 実施例1において、平均粒径2μmの直接脱硫廃触媒を
用いたこと以外は実施例1と同様の操作を行なった後、
1回目の反応の残留固形分を回収し、11の軽油で洗浄
した。その後、遠心分離機にて400Gで30分間処理
した。この触媒回収率は80重世%であり、1μm以下
の粒子が洗浄油に多く含まれていた。
Comparative Example 5 After performing the same operation as in Example 1 except for using a direct desulfurization waste catalyst with an average particle size of 2 μm,
The residual solid content from the first reaction was collected and washed with No. 11 light oil. Thereafter, the mixture was treated with a centrifuge at 400G for 30 minutes. The catalyst recovery rate was 80%, and the cleaning oil contained many particles of 1 μm or less.

実施例4 実施例1において、触媒としてモリブテン6.7重量%
およびニッケル1.7重量担持アルミナ新触媒(CDS
−R23)を平均粒径6μmに粉砕したものを用いたこ
と以外は、実施例1と同様の操作を行なった。この結果
を第1表に示す。
Example 4 In Example 1, 6.7% by weight of molybdenum was used as a catalyst.
and nickel 1.7 weight supported alumina new catalyst (CDS
The same operation as in Example 1 was carried out, except that -R23) was pulverized to an average particle size of 6 μm. The results are shown in Table 1.

第1表 〔発明の効果〕 本発明によれば、触媒再生塔が不要になるので建設費、
用役費が安くなる。また、使用済触媒を収率よく回収し
、反応系にリサイクルするので触媒消費量が少ない。し
たがって、本発明は効率よく、かつ経済的に重質油を水
素化処理できるので、石油精製の分野において有用であ
る。
Table 1 [Effects of the Invention] According to the present invention, since a catalyst regeneration tower is not required, the construction cost is reduced.
Utility costs are lower. In addition, since the used catalyst is recovered in high yield and recycled to the reaction system, the amount of catalyst consumed is small. Therefore, the present invention is useful in the field of petroleum refining because heavy oil can be hydrotreated efficiently and economically.

Claims (2)

【特許請求の範囲】[Claims] (1)重質油中に直接脱硫触媒を懸濁させて該重質油を
水素化処理するにあたり、直接脱硫触媒の平均粒径を3
〜40μmとするとともに、デカンターを用いて水素化
反応混合物から分離して得られた使用済触媒を循環、再
使用することを特徴とする重質油の水素化処理方法。
(1) When suspending a direct desulfurization catalyst in heavy oil and hydrotreating the heavy oil, the average particle size of the direct desulfurization catalyst is
A method for hydrotreating heavy oil, characterized in that the used catalyst is separated from the hydrogenation reaction mixture using a decanter and the spent catalyst is recycled and reused.
(2)直接脱硫触媒が直接脱硫新触媒および/または直
接脱硫廃触媒である請求項1記載の処理方法。
(2) The treatment method according to claim 1, wherein the direct desulfurization catalyst is a new direct desulfurization catalyst and/or a spent direct desulfurization catalyst.
JP1254690A 1989-09-29 1989-09-29 Hydrotreating of heavy oil Pending JPH03115488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254690A JPH03115488A (en) 1989-09-29 1989-09-29 Hydrotreating of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254690A JPH03115488A (en) 1989-09-29 1989-09-29 Hydrotreating of heavy oil

Publications (1)

Publication Number Publication Date
JPH03115488A true JPH03115488A (en) 1991-05-16

Family

ID=17268511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254690A Pending JPH03115488A (en) 1989-09-29 1989-09-29 Hydrotreating of heavy oil

Country Status (1)

Country Link
JP (1) JPH03115488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074863A (en) * 2014-12-18 2016-06-29 한국건설기술연구원 Dynamic Cone Penetration Tester

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440806A (en) * 1977-09-07 1979-03-31 Agency Of Ind Science & Technol Hydrogenating decomposition of hydrocarbon by waste desulfurization catalyst
JPS5670090A (en) * 1979-11-12 1981-06-11 Chiyoda Chem Eng & Constr Co Ltd Hydrotreating method of mineral oil
JPS63218791A (en) * 1987-03-09 1988-09-12 Res Assoc Petroleum Alternat Dev<Rapad> Hydrotreatment of heavy oil
JPH01131297A (en) * 1987-08-03 1989-05-24 Res Assoc Petroleum Alternat Dev<Rapad> Treatment of heavy oil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440806A (en) * 1977-09-07 1979-03-31 Agency Of Ind Science & Technol Hydrogenating decomposition of hydrocarbon by waste desulfurization catalyst
JPS5670090A (en) * 1979-11-12 1981-06-11 Chiyoda Chem Eng & Constr Co Ltd Hydrotreating method of mineral oil
JPS63218791A (en) * 1987-03-09 1988-09-12 Res Assoc Petroleum Alternat Dev<Rapad> Hydrotreatment of heavy oil
JPH01131297A (en) * 1987-08-03 1989-05-24 Res Assoc Petroleum Alternat Dev<Rapad> Treatment of heavy oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160074863A (en) * 2014-12-18 2016-06-29 한국건설기술연구원 Dynamic Cone Penetration Tester

Similar Documents

Publication Publication Date Title
US5209840A (en) Separation of active catalyst particles from spent catalyst particles by air elutriation
US7674369B2 (en) Process for recovering ultrafine solids from a hydrocarbon liquid
RU2352615C2 (en) Method for processing of heavy charge, such as heavy base oil and stillage bottoms
EP0521716B1 (en) Process for the reactivation of spent alumina-supported hydrotreating catalysts
US4525267A (en) Process for hydrocracking hydrocarbons with hydrotreatment-regeneration of spent catalyst
US5009770A (en) Simultaneous upgrading and dedusting of liquid hydrocarbon feedstocks
JPS6114289A (en) Petroleum two step hydrogenation
WO2011156178A2 (en) Slurry hydrocracking apparatus or process
US4363717A (en) Conversion of heavy hydrocarbon oils
JPS62192489A (en) Hydrogenation for heavy hydrocarbon in liquid phase under presence of dispersed catalyst
US2689825A (en) Removal of metals from petroleum hydrocarbons followed by fluidized cracking
EP0367021B1 (en) Process for hydrogenation of heavy oil
JP2995269B2 (en) Removal of metal contaminants from hydrocarbon liquids
US20080053871A1 (en) Expanded bed reactor system and method for hydroprocessing wax produced by fischer-tropsch reaction and contaminated with solids
JPH03115488A (en) Hydrotreating of heavy oil
JPH03131685A (en) Method of slurry type hydrogenation
GB2112412A (en) Process for hydrodemetallation of hydrocarbon oils
US2891005A (en) Removal of metal contaminants from high boiling oils
AU615565B2 (en) Process for the hydrocracking of a hydrocarbonaceous feedstock
CA1176198A (en) Process for hydrocracking hydrocarbons
GB2030468A (en) Separating suspended solids from a liquid containing them
US20230131108A1 (en) Extractive solids removal from heavy fractions
CN109423330A (en) A kind of processing method of catalytic cracked oil pulp
US4309273A (en) Removal of cracking catalyst fines
JPH0812979A (en) Treatment of heavy oil