JPH03115109A - Boron nitride powder - Google Patents

Boron nitride powder

Info

Publication number
JPH03115109A
JPH03115109A JP1250765A JP25076589A JPH03115109A JP H03115109 A JPH03115109 A JP H03115109A JP 1250765 A JP1250765 A JP 1250765A JP 25076589 A JP25076589 A JP 25076589A JP H03115109 A JPH03115109 A JP H03115109A
Authority
JP
Japan
Prior art keywords
boron nitride
powder
sintering
nitride powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1250765A
Other languages
Japanese (ja)
Other versions
JP2845983B2 (en
Inventor
Takao Tanaka
隆夫 田中
Hiroshi Fukui
弘 福井
Toshio Omukai
大向 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1250765A priority Critical patent/JP2845983B2/en
Publication of JPH03115109A publication Critical patent/JPH03115109A/en
Application granted granted Critical
Publication of JP2845983B2 publication Critical patent/JP2845983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain boron nitride powder capable of being sintered under ordinary pressure without adding a sintering aid and giving a high strength sintered body by specifying the size of crystallite, specific surface area and oxygen content. CONSTITUTION:BN powder having 40-150Angstrom size of crystallite (average thickness of crystallite in the C-axis direction), 150-300m<2>/g specific surface area (BET method) and 4-10wt.% oxygen content is prepd. as BN powder capable of being sintered under ordinary pressure without adding a sintering aid. This BN powder can be obtd. by heating a mixture of borax with melamine to >=750 deg.C in an inert gaseous atmosphere and regulating the heating temp. and time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化硼素(以下、BNと記す)粉末、更に詳し
くは焼結特性の優れた窒化硼素粉末に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to boron nitride (hereinafter referred to as BN) powder, and more particularly to boron nitride powder with excellent sintering properties.

〔従来技術〕[Prior art]

窒化硼素は白色の粉末で、特に六方晶の物は黒鉛と同じ
層状構造で熱伝導性、電気絶縁性、潤滑性、耐熱性及び
耐蝕性に優れた特性を持うている。
Boron nitride is a white powder, especially the hexagonal crystal, which has the same layered structure as graphite and has excellent properties such as thermal conductivity, electrical insulation, lubricity, heat resistance, and corrosion resistance.

また、焼結体は、機械加工が可能であるため、これらの
性質を生かして多岐な用途に用いらている。
Further, since sintered bodies can be machined, they are used in a wide variety of applications by taking advantage of these properties.

しかしながら、従来製造販売されてきた窒化硼素は難焼
結性であるため、窒化硼素焼結体を製造するにはアルカ
リ土類金属化合物等の焼結助剤を多量に添加し、ホット
プレスを使用して圧力を加えて加熱する方法がとられて
きた。
However, the boron nitride that has been manufactured and sold conventionally is difficult to sinter, so in order to manufacture boron nitride sintered bodies, a large amount of sintering aids such as alkaline earth metal compounds are added and hot pressing is used. A method of applying pressure and heating has been used.

(本発明が解決しようとする問題点) 従来の窒化硼素焼結体の製造では前述の様に焼結助剤を
多量に加え、なおかつホットプレスを使用して高温高圧
処理が必要であるため生産性の向上が困難であり製造コ
ストが非常に高くなる。また、大型の焼結体を得ようと
しても、特殊な設備であるため制限があり任意の大きさ
の物を得ることも困難であった。また、ホットプレスの
様な焼結方法を用いるにしても窒化硼素は焼結が困難で
あるためアルカリ土類金属化合物の様な焼結助剤を添加
する必要が有るため焼結助剤を均一に混合するためのコ
ストもかかっていた。
(Problems to be Solved by the Invention) In the conventional production of boron nitride sintered bodies, as mentioned above, a large amount of sintering aid is added and high-temperature and high-pressure treatment using a hot press is required. It is difficult to improve the properties and the manufacturing cost becomes very high. Furthermore, even if an attempt was made to obtain a large-sized sintered body, there were limitations due to the use of special equipment, and it was difficult to obtain a sintered body of any desired size. In addition, even if a sintering method such as hot pressing is used, it is difficult to sinter boron nitride, so it is necessary to add a sintering aid such as an alkaline earth metal compound, so the sintering aid must be uniformly distributed. There was also the cost of mixing the

従来のホットプレスによるコスト高を改良するために、
窒化硼素を常圧で焼結する方法が近年検討され、例えば
(1)特開昭62−123070号ではB粉末を1重量
%以上、KO−BsOs (Xはアルカリ土類金属)の
粉末0.5〜70重量%を含有してなる混金粉末を成形
後、還元窒化雰囲気で焼結せしめることを特徴とする窒
化ボロン系焼結体の製造方法が、(2)特開昭63−4
0769号ではBzOsとアルカリ土類金属酸化物およ
び又はアルカリ土類金属フン化物を含有する大方晶系窒
化硼素を不活性雰囲気中で加熱して得られた高結晶性生
成物を用いて成形し常圧焼結する方法が、(3)特開昭
63−303862号では結晶子の大きさLcが100
〜250Å、BN純度90〜97重量%のBN粉末原料
に焼結助剤としてBe、Mg、 Ca、 Sr、 Ba
の硝酸塩1種または2種以上を加えて、液体分散媒体中
で混合し、該混合物を成形し、該成形体を常圧N2雰囲
気下で焼成することを特徴とするBN焼結体の製造方法
が、(4)特開平1−131065号にはアルカリ土類
金属はう酸塩を2〜40重量%含有してなり相対密度が
65%以上であることを特徴とする常圧焼結窒化硼素成
形体が、(5)特開平1−172271号には窒化硼素
90〜99重■%とアルカリ土類金属酸化物の1種若し
くは2種以上1〜lO重量%とを含む混合粉末を1 =
10t/cm”の加圧下に成形し、非酸化性雰囲気中1
〜760torrの減圧若しくは常圧下乃至10kgf
/cII+”以下の加圧下1450〜1800°Cで焼
結することを特徴とする窒化硼素焼結体の製造方法の記
述がある。しかしながら、いずれの場合も焼結助剤を添
加する必要があるが、この焼結助剤の添加は添加量が不
適当だと強度が低くなり、混合が不十分だと強度のばら
つきが大きくなる等の問題があった。このため秤量、混
合を精密に行うために多くの時間を要し、また焼結晶の
強度もホットプレス品に比べ非常に小さい等十分に改良
された方法とはなっていなかった。また、焼結助剤のコ
ストもかかっていた。
In order to improve the high cost caused by conventional hot pressing,
In recent years, a method of sintering boron nitride under normal pressure has been studied. For example, (1) JP-A No. 62-123070 discloses that B powder is 1% by weight or more and KO-BsOs (X is an alkaline earth metal) powder is sintered in an amount of 1% by weight or more. A method for producing a boron nitride-based sintered body is disclosed in (2) JP-A-63-4, which comprises molding a mixed metal powder containing 5 to 70% by weight and then sintering it in a reducing nitriding atmosphere.
In No. 0769, a highly crystalline product obtained by heating macrogonal boron nitride containing BzOs and an alkaline earth metal oxide and/or an alkaline earth metal fluoride in an inert atmosphere is used to form the product. The pressure sintering method is disclosed in (3) JP-A No. 63-303862, in which the crystallite size Lc is 100.
Be, Mg, Ca, Sr, Ba as sintering aids to the BN powder raw material with ~250 Å and BN purity of 90 to 97% by weight
A method for producing a BN sintered body, which comprises adding one or more types of nitrates, mixing in a liquid dispersion medium, molding the mixture, and firing the molded body under a normal pressure N2 atmosphere. However, (4) JP-A-1-131065 discloses a pressure-sintered boron nitride containing 2 to 40% by weight of an alkaline earth metal borate and having a relative density of 65% or more. (5) JP-A-1-172271 discloses a mixed powder containing 90 to 99% by weight of boron nitride and 1 to 10% by weight of one or more alkaline earth metal oxides.
It was molded under a pressure of 10t/cm" and molded in a non-oxidizing atmosphere.
~760torr reduced pressure or normal pressure to 10kgf
There is a description of a method for manufacturing a boron nitride sintered body characterized by sintering at 1450 to 1800°C under pressure of /cII+'' or less.However, in either case, it is necessary to add a sintering aid. However, there are problems with adding this sintering aid, such as if the addition amount is inappropriate, the strength will be low, and if mixing is insufficient, the strength will vary widely.For this reason, weighing and mixing must be done precisely. This method was not sufficiently improved, as it took a lot of time and the strength of the sintered crystals was much lower than that of hot-pressed products.Additionally, the cost of sintering aids was high.

(問題点を解決するための手段〕 本発明者らは今般上述の問題点を解決し、焼結助剤無添
加で常圧焼結が可能であり、また焼結体強度も従来知ら
れている常圧焼結体より大きくなる窒化硼素粉末につい
て観音研究した結果、結晶子の大きさが40〜150人
で、比表面積が150〜300 m”7g、酸素含有量
が4〜lO重量%である窒化硼素粉末であれば、焼結助
剤が無添加で常圧焼結が可能であること、また焼結体強
度も大きくなる事を見いだし本発明を完成するに到った
(Means for Solving the Problems) The present inventors have now solved the above-mentioned problems, and have realized that pressureless sintering is possible without the addition of sintering aids, and that the strength of the sintered body is higher than previously known. As a result of Kannon research on boron nitride powder, which is larger than the pressureless sintered body, the crystallite size is 40 to 150, the specific surface area is 150 to 300 m''7g, and the oxygen content is 4 to 10% by weight. We have completed the present invention by discovering that with a certain boron nitride powder, atmospheric pressure sintering is possible without the addition of sintering aids, and that the strength of the sintered body is increased.

即ち、本発明は、結晶子の大きさが40〜150人で、
比表面積が150〜300 m”1g、酸素含有量が4
〜10重量%である焼結助剤無添加で常圧焼結が可能な
窒化硼素粉末に関する。
That is, in the present invention, the crystallite size is 40 to 150,
Specific surface area is 150-300 m”1g, oxygen content is 4
The present invention relates to boron nitride powder that can be sintered under normal pressure without adding a sintering aid of up to 10% by weight.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

本発明を更に詳細に説明する。 The present invention will be explained in more detail.

本発明でいう結晶子の大きさとは結晶子のC軸方向の平
均厚み(Lc)で日本学術振興会第117委員会法によ
って測定する事が出来る。この値が40人未満の窒化硼
素の場合は窒化硼素粉末の空気中での安定性が低くなる
ので好ましくなく、150人を越える場合は焼結性が低
下し、焼結体強度が向上しないので好ましくない。
The size of crystallites in the present invention refers to the average thickness (Lc) of crystallites in the C-axis direction, which can be measured by the method of the 117th Committee of the Japan Society for the Promotion of Science. If this value is less than 40 for boron nitride, the stability of the boron nitride powder in the air will decrease, which is undesirable. If it exceeds 150, the sinterability will decrease and the strength of the sintered body will not improve. Undesirable.

また比表面積とは、いわゆる吸着法(BET法)によっ
て測定された値で、この値が300m”1gより大きい
窒化硼素の場合は窒化硼素粉末の空気中での安定性が低
くなるので好ましくなく、150m”/g以下の場合は
焼結性が低下し、焼結体強度が向上しないので好ましく
ない。
In addition, the specific surface area is a value measured by the so-called adsorption method (BET method), and if this value is larger than 300m"1g for boron nitride, the stability of the boron nitride powder in the air will be low, so it is not preferable. If it is less than 150 m''/g, the sintering properties will deteriorate and the strength of the sintered body will not improve, which is not preferable.

また酸素含有量とはインパルス炉抽出法(例えば酸素窒
素同時分析装置LECO社TC136型)などで測定さ
れた値で、この値が10重世%を越える窒化硼素の場合
は焼結体の高温強度が低下するため好ましくなく、4重
量%未満の場合は焼結性が低下し、焼結体強度が向上し
ないので好ましくない。
In addition, the oxygen content is the value measured by the impulse furnace extraction method (for example, using an oxygen-nitrogen simultaneous analyzer LECO TC136 model), and in the case of boron nitride where this value exceeds 10%, the high-temperature strength of the sintered body is If the amount is less than 4% by weight, the sinterability will decrease and the strength of the sintered body will not improve, which is not preferable.

また、常圧焼結が可能であるとは、上記の結晶子の大き
さ、比表面積、酸素含有量の窒化硼素粉末をカルシア等
の焼結助剤を添加せずにスリップキャスト法やプレス成
型法で成型し、成型物を窒素、アルゴン、アンモニア、
水素、もしくはこれらの混合ガス雰囲気の大気圧下で1
500″C以上に加熱することにより焼結体となること
を意味する。
Also, the fact that pressureless sintering is possible means that boron nitride powder with the above crystallite size, specific surface area, and oxygen content is formed by slip casting or press molding without adding a sintering aid such as calcia. molded product using nitrogen, argon, ammonia,
1 under atmospheric pressure in a hydrogen or mixed gas atmosphere
This means that a sintered body is formed by heating to 500″C or higher.

また、成型助剤無添加とは成型時のバインダー、分散剤
、滑剤等焼結助剤以外の物の無添加は意味しない。
Furthermore, the term "no molding aid added" does not mean no addition of substances other than sintering aids such as binders, dispersants, lubricants, etc. during molding.

上述の様な常圧焼結が可能な窒化硼素を得る方法として
は(1)硼砂とメラミンとの混合物を不活性ガス雰囲気
にて750°C以上に加熱する方法(特開昭47−27
200号に記述)、(2)硼砂とメラミンとの混合物を
不活性ガス雰囲気で650〜1100°Cに加熱した後
、得られた反応生成物を洗浄液のPHが1以下となるま
で希鉱酸で洗浄し、ついで、洗浄液のpHが5〜7にな
るまで水洗する方法(特開昭61−63505号に記述
)、(3)はう酸アンモニウムと尿素、メラミンまたは
グアニジンとの混合物を650〜1100°Cに加熱す
る方法(特開昭61−295211号に記述)、(4)
無水硼酸及び硼酸塩類から選ばれた1種以上の硼素化合
物とNll!基を有する有機化合物との混合物を耐熱性
の蓋付き容器に入れ、不活性ガスまたは還元性ガスを流
通させることなく該蓋付き容器を加熱する方法(特開昭
64−18907号)等がある。
Methods for obtaining boron nitride that can be sintered under pressure as described above include (1) a method of heating a mixture of borax and melamine to 750°C or higher in an inert gas atmosphere (Japanese Patent Laid-Open No. 47-27
200), (2) After heating the mixture of borax and melamine to 650 to 1100°C in an inert gas atmosphere, the resulting reaction product is heated with dilute mineral acid until the pH of the cleaning solution becomes 1 or less. (described in JP-A No. 61-63505); (3) a mixture of ammonium oxalate and urea, melamine or guanidine; Method of heating to 1100°C (described in JP-A-61-295211), (4)
One or more boron compounds selected from boric anhydride and borates and Nll! There is a method in which a mixture with an organic compound having a group is placed in a heat-resistant lidded container and the lidded container is heated without passing an inert gas or reducing gas (Japanese Patent Application Laid-open No. 18907/1983). .

以上のいずれの方法を用いても、加熱温度と加熱時間を
調整することにより特許請求範囲の物性と同等の物性の
窒化硼素を得ることが出来る。
No matter which of the above methods is used, boron nitride having physical properties equivalent to those claimed in the claims can be obtained by adjusting the heating temperature and heating time.

また、以上の例示した以外の方法であっても、製造条件
を調整して特許請求範囲の物性と同等の物性とした窒化
硼素であるならば、本特許に含まれる。
Further, even methods other than those exemplified above are included in this patent as long as the manufacturing conditions are adjusted to produce boron nitride with physical properties equivalent to those in the claims.

以下実施例にて本発明を説明するが、実施例において部
及び%は、特記する以外は重量基準を表す。
The present invention will be explained below with reference to Examples, in which parts and percentages are by weight unless otherwise specified.

実施例1 (窒化硼素粉末の製造) 内容積12の蓋つきアルミナ製るつぼに、粉砕した無水
硼砂180g及びメラミン340gの混合物を入れた後
、そのるつぼを電気炉に入れ、電気炉中に毎分400 
mの割合で窒素ガスを流しながら、るつぼを電気炉で9
00℃で5時間加熱した。 反応後、窒素ガス雰囲気中
で一晩放冷し、反応生成物をビーカーの中に入れ、さら
に5%塩酸をビーカー中の反応生成物に加え、洗浄とデ
カンテーションを繰り返し、洗浄後の98を1以下とし
た後、約30分間攪拌し、デカンテーションの後、イオ
ン交換水を加え、攪拌とデカンテーションを繰り返し、
洗浄後のpHを6とした後、濾別した。さらに、沈殿物
をメタノールで2回洗浄した後、減圧で100℃で2時
間乾燥して窒化硼素粉末を得た。
Example 1 (Production of boron nitride powder) A mixture of 180 g of crushed anhydrous borax and 340 g of melamine was placed in an alumina crucible with a lid having an internal volume of 12, and then the crucible was placed in an electric furnace, and the crucible was heated every minute in the electric furnace. 400
The crucible was heated in an electric furnace while flowing nitrogen gas at a rate of 9 m.
The mixture was heated at 00°C for 5 hours. After the reaction, leave to cool overnight in a nitrogen gas atmosphere, put the reaction product into a beaker, add 5% hydrochloric acid to the reaction product in the beaker, repeat washing and decantation, and remove the washed 98. 1 or less, stir for about 30 minutes, decant, add ion exchange water, repeat stirring and decantation,
The pH after washing was adjusted to 6, and then filtered. Further, the precipitate was washed twice with methanol and then dried under reduced pressure at 100° C. for 2 hours to obtain boron nitride powder.

得られた窒化硼素のLcは92Å、BET法による比表
面積は210g”/g 、含有酸素量は6.2%であっ
た。
The Lc of the obtained boron nitride was 92 Å, the specific surface area by BET method was 210 g''/g, and the amount of oxygen contained was 6.2%.

(焼結) 次にこの窒化硼素粉末を焼結助剤無添加で1 ton/
CIl!の圧力で一軸プレス成型した。得られた予備成
型体を黒鉛るつぼに入れ、窒化硼素粉を埋め粉にして窒
素雰囲気にて1750’Cで1時間焼結した。
(Sintering) Next, add this boron nitride powder to 1 ton/min without adding any sintering aids.
CIl! Uniaxial press molding was carried out at a pressure of The obtained preform was placed in a graphite crucible, filled with boron nitride powder, and sintered at 1750'C for 1 hour in a nitrogen atmosphere.

この焼結体の比重は1.7で、3点曲げ強度の測定結果
は常温で4 kg/ram”と、焼結助剤無添加であっ
ても十分に焼結しており、強度も高いものが得られた。
The specific gravity of this sintered body is 1.7, and the three-point bending strength measurement result is 4 kg/ram'' at room temperature, indicating that it is sufficiently sintered and has high strength even without the addition of sintering aids. I got something.

実施例2 (窒化硼素粉末の製造) 内容積1Nの蓋つきアルミナ製るつぼに、粉砕した無水
四硼酸アンモニウム40g及び尿素130gの混合物を
入れた後、そのるつぼを電気炉に入れ、電気炉中に毎分
400 Idの割合で窒素ガスを流しながら、るつぼを
電気炉で1000°Cで5時間加熱した。
Example 2 (Manufacture of boron nitride powder) A mixture of 40 g of crushed ammonium tetraborate anhydride and 130 g of urea was placed in an alumina crucible with a lid having an internal volume of 1N, and then the crucible was placed in an electric furnace. The crucible was heated in an electric furnace at 1000° C. for 5 hours while flowing nitrogen gas at a rate of 400 Id/min.

反応後、窒素ガス雰囲気中で一晩放冷し、反応生成物を
ビーカーの中に入れ、イオン交換水を加え、攪拌とデカ
ンテーションを行い、濾別した9さらに、沈殿物をメタ
ノールで2回洗浄した後、減圧で100℃で2時間乾燥
して窒化硼素粉末を得た。 得られた窒化硼素のLcは
110Å、BET法による比表面積は200m”/g 
、含有酸素量は5.1%であった。
After the reaction, the reaction product was left to cool overnight in a nitrogen gas atmosphere, the reaction product was placed in a beaker, ion-exchanged water was added, stirring and decantation were performed, and the precipitate was filtered out. After washing, it was dried under reduced pressure at 100° C. for 2 hours to obtain boron nitride powder. The obtained boron nitride has an Lc of 110 Å and a specific surface area of 200 m”/g by BET method.
, the oxygen content was 5.1%.

(焼結) 次にこの窒化硼素粉末を焼結助剤無添加で1 ton/
clI″の圧力で一軸プレス成型した。得られた予備成
型体を黒鉛るつぼに入れ、窒化硼素粉を埋め粉にして窒
素雰囲気にて1750℃で1時間焼結した。
(Sintering) Next, add this boron nitride powder to 1 ton/min without adding any sintering aids.
Uniaxial press molding was carried out at a pressure of ``clI''.The obtained preform was placed in a graphite crucible, filled with boron nitride powder, and sintered at 1750°C for 1 hour in a nitrogen atmosphere.

この焼結体の比重は1.6で、3点曲げ強度の測定結果
は常温で3.7kg/as”と、焼結助剤無添加であっ
ても十分に焼結しており、強度も高いものが得られた。
The specific gravity of this sintered body is 1.6, and the measurement result of the three-point bending strength is 3.7 kg/as'' at room temperature, indicating that it is sufficiently sintered even without the addition of sintering aids, and the strength is also high. I got something expensive.

実施例3 (窒化硼素粉末の製造) 原料ホウ素化合物として粉末状の無水ホウ砂402gと
原料含窒素化合物として粉末状のメラミン504gをよ
く混合しくN/B原子比・3.0) 、この混合物を内
容積21のアルミナ製ルツボに入れ、このルツボを台車
に乗せた状態で内部温度が約800°Cに保持されたブ
タン燃焼方式トンネルキルンに該台車を送り込み、キル
ン内の滞留時間が約4時間になるように台車速度を制御
し、上記ルツボを加熱した。トンネルキルンから取り出
された台車上のルツボを放冷後粉末状の内容物を取り出
し、次いでこの粉末を濃度3%の硫酸水溶液及びイオン
交換水で洗浄後、120℃で4時間乾燥して窒化硼素の
粉末を得た。
Example 3 (Manufacture of boron nitride powder) 402 g of powdered anhydrous borax as a raw material boron compound and 504 g of powdered melamine as a raw material nitrogen-containing compound were thoroughly mixed (N/B atomic ratio 3.0), and this mixture was prepared. The crucible was placed in an alumina crucible with an internal volume of 21 cm, and the crucible was placed on a cart and the cart was sent to a butane combustion tunnel kiln whose internal temperature was maintained at approximately 800°C, and the residence time in the kiln was approximately 4 hours. The crucible was heated by controlling the cart speed so that After leaving the crucible on the cart taken out from the tunnel kiln to cool, the powdered contents were taken out, and the powder was washed with a 3% sulfuric acid aqueous solution and ion-exchanged water, and then dried at 120°C for 4 hours to form boron nitride. powder was obtained.

得られた窒化硼素粉末のLcは67Å、BET法による
比表面積は270+w”/g 、含有酸素量は7.3%
であった。
The obtained boron nitride powder has an Lc of 67 Å, a specific surface area of 270+w”/g by the BET method, and an oxygen content of 7.3%.
Met.

(焼結) 次にこの窒化硼素粉末を焼結助剤無添加で1.5ton
/cm”の圧力で一軸プレス成型形した。得られた予備
成型体を黒鉛るつぼに入れ、窒化硼素粉を埋め粉にして
窒素雰囲気にて1700℃で1時間焼結したこの焼結体
の比重は1.8.3点曲げ強度の測定結果は常温で5 
kg/−一〇あり、焼結助剤無添加であっても十分に焼
結して、強度も高いものが得られた。
(Sintering) Next, add 1.5 tons of this boron nitride powder without adding any sintering aids.
The obtained preformed body was placed in a graphite crucible, filled with boron nitride powder, and sintered at 1700°C for 1 hour in a nitrogen atmosphere.The specific gravity of this sintered body was 1.8. The measurement result of 3-point bending strength is 5 at room temperature.
kg/-10, and even without the addition of a sintering aid, it was sufficiently sintered and a product with high strength was obtained.

比較例1 市販の窒化硼素粉末(六方晶、純度99%、比表面Mi
7m”/g)を焼結助剤無添加で1.5ton/cm”
の圧力で一軸プレス成型した。得られた予備成型体を黒
鉛るつぼに入れ、窒化硼素粉を埋め粉にして窒素雰囲気
にて1750°Cで1時間焼結した。
Comparative Example 1 Commercially available boron nitride powder (hexagonal crystal, purity 99%, specific surface Mi
7 m”/g) to 1.5 ton/cm” without adding sintering aids.
Uniaxial press molding was carried out at a pressure of The obtained preform was placed in a graphite crucible, filled with boron nitride powder, and sintered at 1750° C. for 1 hour in a nitrogen atmosphere.

得られた物は焼結しておらず、密度、強度とも測定不能
であった。
The obtained product was not sintered, and neither density nor strength could be measured.

(発明の効果) 窒化硼素焼結体の製造にはホ・7トブレス法が一般的で
あり、常圧焼結法も最近では研究されてきた。しかしな
がら窒化硼素はH焼結法であるため焼結助剤の添加は不
可避であった。 しかるに本発明の窒化硼素粉末は焼結
助剤無添加であっても常圧焼結が出来るため、生産性が
非常に高く製造コストが低減し、窒化硼素成型体の用途
拡大に大きく寄与する事と思われる。
(Effects of the Invention) The Ho-7 press method is commonly used to produce boron nitride sintered bodies, and the pressureless sintering method has also been studied recently. However, since boron nitride is produced using the H sintering method, the addition of a sintering aid is unavoidable. However, since the boron nitride powder of the present invention can be sintered under normal pressure even without the addition of sintering aids, productivity is extremely high, manufacturing costs are reduced, and this greatly contributes to expanding the applications of boron nitride molded bodies. I think that the.

Claims (1)

【特許請求の範囲】[Claims] 1)結晶子の大きさ40〜150Å、比表面積150〜
300m^2/g、酸素含有量4〜10重量%である焼
結助剤無添加で常圧焼結が可能な窒化硼素粉末。
1) Crystallite size 40-150 Å, specific surface area 150-150 Å
Boron nitride powder having a particle size of 300 m^2/g and an oxygen content of 4 to 10% by weight, which can be sintered under normal pressure without the addition of a sintering aid.
JP1250765A 1989-09-28 1989-09-28 Boron nitride powder Expired - Lifetime JP2845983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1250765A JP2845983B2 (en) 1989-09-28 1989-09-28 Boron nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1250765A JP2845983B2 (en) 1989-09-28 1989-09-28 Boron nitride powder

Publications (2)

Publication Number Publication Date
JPH03115109A true JPH03115109A (en) 1991-05-16
JP2845983B2 JP2845983B2 (en) 1999-01-13

Family

ID=17212711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1250765A Expired - Lifetime JP2845983B2 (en) 1989-09-28 1989-09-28 Boron nitride powder

Country Status (1)

Country Link
JP (1) JP2845983B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001536A (en) * 2006-06-20 2008-01-10 Osaka Univ Aluminum nitride-boron nitride composite powder and method for producing the same
WO2013046784A1 (en) * 2011-09-27 2013-04-04 日立化成株式会社 Inorganic nitride particles, epoxy resin composition, semi-cured resin composition, cured resin composition, resin sheet, heat-generating electronic component, and method for producing inorganic nitride particles
WO2013081061A1 (en) * 2011-11-29 2013-06-06 三菱化学株式会社 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
JP2021102537A (en) * 2019-12-25 2021-07-15 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, cosmetic and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001536A (en) * 2006-06-20 2008-01-10 Osaka Univ Aluminum nitride-boron nitride composite powder and method for producing the same
WO2013046784A1 (en) * 2011-09-27 2013-04-04 日立化成株式会社 Inorganic nitride particles, epoxy resin composition, semi-cured resin composition, cured resin composition, resin sheet, heat-generating electronic component, and method for producing inorganic nitride particles
JP2013082883A (en) * 2011-09-27 2013-05-09 Hitachi Chemical Co Ltd Composition, b-stage sheet, prepreg, cured product of the composition, laminate, metal substrate, wiring board, and method of producing the composition
JPWO2013046784A1 (en) * 2011-09-27 2015-03-26 日立化成株式会社 Inorganic nitride particles, epoxy resin composition, semi-cured resin composition, cured resin composition, resin sheet, exothermic electronic component, and method for producing inorganic nitride particles
WO2013081061A1 (en) * 2011-11-29 2013-06-06 三菱化学株式会社 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
JP2013241321A (en) * 2011-11-29 2013-12-05 Mitsubishi Chemicals Corp Aggregated boron nitride particle, composition containing aggregated boron nitride particle, and three-dimensional integrated circuit having layer comprising composition
JP2015006985A (en) * 2011-11-29 2015-01-15 三菱化学株式会社 Boron nitride aggregated particle, composition containing boron nitride aggregated particle, and three-dimensional integrated circuit having layer comprising the composition
US9822294B2 (en) 2011-11-29 2017-11-21 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
US10400151B2 (en) 2011-11-29 2019-09-03 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three- dimensional integrated circuit having layer comprising said composition
JP2021102537A (en) * 2019-12-25 2021-07-15 デンカ株式会社 Hexagonal boron nitride powder, method for producing the same, cosmetic and method for producing the same

Also Published As

Publication number Publication date
JP2845983B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
Hu et al. Promising high-thermal-conductivity substrate material for high-power electronic device: Silicon nitride ceramics
JPH0812440A (en) Material containing boron nitride and its production
EP0187431B1 (en) Process for producing silicon aluminum oxynitride
JPS6112844B2 (en)
US4141740A (en) Solid solution and process for producing a solid solution
Imamura et al. A facile method to produce rodlike β‐Si3N4 seed crystallites for bimodal structure controlling
JPS61256905A (en) Fine hexagonal boron nitride power having high purity and its preparation
JP2845983B2 (en) Boron nitride powder
US3711594A (en) Process for making boron nitride bodies
JPS6291409A (en) Production of easy-to-sinter boron nitride powder
JPH08290905A (en) Hexagonal boron nitride powder and its production
JP2511337B2 (en) Method for manufacturing boron nitride atmospheric pressure sintered body
JP2564804B2 (en) Method for manufacturing aluminum nitride
JPS6144770A (en) Manufacture of silicon nitride sintered body
JPH01103960A (en) Production of boron nitride sintered compact
JPH03177307A (en) Silicon nitride powder
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JP3397503B2 (en) Method for producing low pressure phase boron nitride powder
JPH01179763A (en) Production of combined sintered body of boron nitride and silicon nitride
JPS6340769A (en) Manufacture of high density boron nitride normal pressure sintered body
JPH10316469A (en) Powdery magnesium silicide nitride and its production
JPS61168509A (en) Production of hexagonal boron nitride
정용권 Study of Producing α-Si3N4 Powder by Low-temperature Vapor-phase Reaction Method
JPS6340771A (en) Normal pressure high density composite sintered body of cubic boron nitride and manufacture
JPH0735303B2 (en) Method for manufacturing boron nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

EXPY Cancellation because of completion of term